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Abstract

Temperley-Lieb loop models describe systems through the connections of non-intersecting
loop segments. A key feature of these models is their ability to describe non-local degrees
of freedom, an illusive characteristic of physical systems. In this investigation we begin by
introducing the established case of the elementary (1, 1) Temperley-Lieb loop model and
its extension to the boundary [1]. A fusion procedure allows the construction of a (2, 2)
Temperley-Lieb loop model from elementary (1, 1) objects [2]. Adapting previous methods,
we introduce a new infinite class of Yang-Baxter integrable boundary conditions to the (2, 2)
Temperley-Lieb loop model. The one-boundary (2, 2) Temperley-Lieb Hamiltonian is then
determined. Examining the representation theory of the one-boundary (2, 2) Temperley-Lieb
algebra BT LN(β; β1, β2), permits a matrix representation of the Hamiltonian and hence
a determination of the energy level structure of the model. Finally, the representation
theory of the (2, 2) Temperley-Lieb algebra T LN(β) is examined. We propose a closed
form expression of the Gram determinant associated with the linkspace of this algebra.
Preliminary investigation of this expression provides novel insights into the conditions of
irreducibility of T LN(β).
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1
Introduction

Integrable models offer exact solutions to the physical systems they describe, thus super-
seding approximate perturbative approaches. Of foundational interest is the Yang-Baxter
equation (YBE), introduced independently by Yang in 1967 [3] and Baxter in 1972 [4]. This
equation is synonymous with a class of local equivalence relations manifesting in a variety
of different forms throughout the fields of statistical mechanics, quantum field theory, dif-
ferential equations, knot theory, quantum groups, and other disciplines [5]. If a model is
a solution to the Yang-Baxter equation it is integrable, facilitating a variety of approaches
and allowing an exact solution to be determined [6]. The rich description provided by in-
tegrable models motivates further investigation of these systems. The utility of integrable
models is demonstrated in the breadth of their application throughout aforementioned areas
of research. This thesis is concerned with the former, describing statistical systems using
two-dimensional (2D) lattice models.

The ubiquity of lattice models in the field of statistical mechanics arises from the natural de-
scription they provide. The physical constraints on these ensembles often produce discrete
crystalline structures, the essence of which can be captured by lattice models which are
manifestly discrete. The shear size and complexity of statistical systems ensure a complete
characterisation is intractable. Lattice models are scalable and provide rich descriptions of
the internal degrees of freedom which need not be local in nature. The success of such mod-
els was first demonstrated by Onsager [7] in 1944; producing an exact solution to the 2D
Ising model [8] introduced in 1925. Followed later by the 6-vertex model in the description
of ferroelectricity in 2D, Lieb [9] was the first to compute the free energy of this model in
the thermodynamic limit. Later that year Sutherland, Yang and Yang [10] calculated this
parameter in terms of an applied electric field.
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2 Introduction

The game was changed forever following the advent of the aforementioned Yang-Baxter equa-
tion [3, 4], ensuring the integrability of a system given a solution to this conceptually simple
expression. Soon followed an explosion of 2D lattice models providing rich descriptions of the
physical systems they describe. We pay particular attention to pioneering work of Nienhuis
[11, 12], laying the foundation for Temperley-Lieb loop models which are the focus of this
thesis. The model in question was developed by Jones [13] providing a description of planar
algebras. The underlying algebraic structure was established by Temperley and Lieb [14]
decades earlier. Such models have found success particularly in the description of percola-
tion, spin-cluster and polymer-chain phenomena, of rich interest to condensed matter and
material science [14–16]. Further successes have come with the introduction of integrable
boundary conditions [1, 17–19], providing a complete description of systems with well de-
fined borders, whilst also introducing additional algebraic structure.

Recent work by Morin-Duchesne, Pearce and Rasmussen concerns a fusion procedure whereby
a (m,n) Temperley-Lieb loop model can be constructed from operators of the elementary
(1, 1) Temperley-Lieb loop model [2]. Of particular interest is the (2, 2) Temperley-Lieb loop
model, the structure of which has been known for some time [20, 21]. Here a spin-1 system
is constructed from spin-1/2, (1, 1) constituents.

This thesis extends the (2, 2) Temperley-Lieb loop model allowing loop segments to termi-
nate on the boundary. Adapting the Robin boundary conditions introduced in [1], we have
produced a novel solution to the boundary Yang-Baxter equation ensuring the integrabil-
ity of the one-boundary (2, 2) Temperley-Lieb loop model. Applying a seam of width w
to these newly established conditions, an infinite class of integrable boundary conditions
are constructed. The Hamiltonian of the one-boundary (2, 2) Temperley-Lieb loop model
for w = 0 was determined as an element of the one-boundary (2, 2) Temperley-Lieb alge-
bra BT LN(β; β1, β2). Examining the representation theory of BT LN(β; β1, β2) we construct
matrix representations of the Hamiltonian for various system sizes N . Determining the
eigensystem of these representations provides insight into the energy level structure of the
system. The representation theory of the (2, 2) Temperley-Lieb algebra T LN(β) is explored,
we propose a closed form expression of the Gram determinant for an arbitrary system size
N . Such an expression provides novel insights into the conditions of irreducibility on the
linkspace associated with T LN(β). We present a preliminary investigation examining these
conditions whilst outlining future direction for a rigorous treatment.

The structure of this thesis detailing these contributions is as follows. Chapter 2 introduces
the (1, 1) Temperley-Lieb loop model in the bulk and on the boundary. The algebraic struc-
ture of this model is established. Chapter 3 outlines the fusion procedure allowing one to
produce an (m,n) Temperley-Lieb loop model from the elementary (1, 1) operators. Partic-
ular focus is placed on the (2, 2) Temperley-Lieb model, where we introduce Robin boundary
conditions. Here we present a general solution to the boundary Yang-Baxter equation for the
(2, 2) model in addition to a solution constructed from elementary (1, 1) operators, ensuring
the integrability of each construction. The algebraic structure of the one-boundary (2, 2)
Temperley-Lieb model is examined and the defining relations are listed. In Chapter 4 we
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construct an infinite class of boundary conditions from those introduced in Chapter 3. We
show that this infinite class satisfies the boundary Yang-Baxter equation, maintaining the
integrability of the model. Chapter 5 establishes the Hamiltonian of the one-boundary (2, 2)
Temperley-Lieb loop model by taking a series expansion of the transfer tangle, a diagram-
matic object generating the lattice. In Chapter 6 we explore the representation theory of
the regular and one-boundary (2, 2) Temperley-Lieb algebras T LN(β) and BT LN(β; β1, β2)
respectively. Particular focus is placed on the Hamiltonian of BT LN(β; β1, β2) whose spec-
trum is determined, facilitating an analysis of the energy level structure of the model. The
notion of an invariant bilinear form is introduced and a Gram matrix is constructed to exam-
ine the conditions of irreducibility on the linkspace of T LN(β). A closed form expression of
the Gram determinant for this linkspace is proposed. Both the zeros and poles of the Gram
determinant are examined to determine crude conditions on the parameter β ensuring the
irreducibility of the linkspace associated with T LN(β). Chapter 7 provides a summary of
the contributions made throughout the thesis and a lucid glance at future work, extending
the progress presented in this document.

The appendices are self contained companions to the ideas presented in the thesis and can
be overlooked on the first reading. Appendix A provides Mathematica code verifying the
solutions to the boundary Yang-Baxter equation presented in Chapter 3. Appendix B lists
the coefficients associated with the extended boundary conditions introduced in Chapter
4, in addition to an example calculation demonstrating this process. Appendix C presents
the Mathematica code detailing both the Hamiltonian and Gram matrices used through-
out Chapter 6, in addition to the eigenvectors of the Hamiltonians corresponding to the
eigenvalues presented.
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2
Temperley-Lieb Loop Model

In this chapter we introduce the one-boundary (1, 1) Temperley-Lieb loop model. The bulk
and boundary face operators are presented, detailing the statistical nature of the model. The
notion of integrability is established via solutions of the Yang-Baxter equations. Finally, the
algebraic structure underlying the model is explored.

2.1 One-boundary (1, 1) Temperley-Lieb Loop Model

The (1, 1) Temperley-Lieb loop model is constructed from non-intersection loop segments
expressed on square plaquettes. The edge of each plaquette possesses a single node, hence
termed the (1, 1) model. Each loop segment connects two nodes on adjacent edge of the
plaquette. The elementary orientations of the (1, 1) Temperley-Lieb loop model are given
by [13]

(1)

(3)

(2)

(4)

and

(1)

(3)

(2)

(4)

. (2.1)

We interpret (1) and (2) as labelling input nodes and (3) and (4) as labelling output nodes.
Neglecting labels, we observe the plaquettes are mapped to their partner via a π/2 radian
rotation and to themselves via a πradian rotation. Tiling the objects of the (1, 1) Temperley-
Lieb loop model we can construct a densely packed, non-oriented and non-intersecting con-
nectivity map on a rectangular strip with dimension M × N , where M, N ∈ Z+. Maps
constructed solely out of square plaquettes are known as bulk configurations. See Figure
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6 Temperley-Lieb Loop Model

Figure 2.1: Implementation of the one-boundary (1, 1) Temperley-Lieb elementary face opera-
tors producing a 8×4 lattice. On the left we have a bulk configuration without any boundaries. On
the right, boundary triangles are attached to the far edge producing a bulk-boundary configuration.

2.1 for an example of this construction. Arising naturally in bulk configurations are closed
loops, these are removed and assigned a bulk loop fugacity β.

Extending the (1, 1) Temperley-Lieb loop model to the boundary we introduce boundary
triangles [1]

(1)

(2)

and

(1)

(2)

. (2.2)

These define the Neumann and Dirichlet boundary conditions respectively. Taking a linear
combination of these diagrams we will refer to them as Robin boundary conditions. Maps
constructed from both square and triangle plaquettes are known as bulk-boundary configu-
rations. A lattice configuration constructed with Robin boundary conditions can be seen in
Figure 2.1. Bulk-boundary configurations give rise to half loops terminating on the bound-
ary. Boundary loops are treated in a similar manner as full loops in the bulk; they are
removed and assigned a weight β1 if the lower attachment point is odd and β2 if this point
is even. The parity of the boundary loop fugacities, β1 and β2 is demonstrated below
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β1 →

[4]

[1]

[3]

[2]

and β2 →

[4]

[1]

[3]

[2]

.

We can construct a statistical model by assigning local Boltzmann weights to each of the
bulk and boundary objects presented in equations (2.1) and (2.2) respectively. These weights
are interpreted as the probability of a particular plaquette existing in the lattice. Letting w1

and w2 label the weights associated with each of the bulk orientations expressed in equation
(2.1). Similarly we assign a1 and a2 to each of the boundary triangles in equation (2.2).
Given this construction we can compute the weight of an arbitrary lattice configuration σ

Wσ = wn1
1 w

n2
2 a

m1
1 am2

2 β`β`11 β
`2
2 , (2.3)

where n1, n2, m1 and m2 determine the multiplicity of each bulk and boundary objects
respectively. `, `1 and `2 count the number of loops existing in both the bulk and on the
boundary. This formalism leads naturally to the partition function of the system. This
object is simply a weighted sum over all possible lattice configurations σ

Z =
∑
σ

Wσ. (2.4)

Taking linear combinations of both the bulk square and boundary triangles we can construct
a lattice model parameterised by u. The bulk face operator of this model is given by

xj(u) =

j j+1

u = w1(u)

j j+1

+ w2(u)

j j+1

, u ∈ R, (2.5)

where w1(u) and w2(u) define the parameterisation of the local Boltzmann weights associated
with each bulk orientation. The small black ark on the bottom vertex of the bulk face
operator labels the orientation of the resulting bulk plaquettes. The boundary face operator
is of the form

rj(u) =

j

u = a1(u)

j

+ a2(u)

j

, (2.6)
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where a1(u) and a2(u) define the parameterisation of the Boltzmann weights associated with
each boundary triangle configuration. Here we have introduced the one-boundary (1, 1)
Temperley-Lieb loop model, we now seek to establish the integrability of this model.

2.2 Yang-Baxter Equations

In order for a Temperley-Lieb loop model to be Yang-Baxter integrable, the elementary
face operators must satisfy both the bulk and boundary Yang-Baxter equations (YBE and
BYBE). For the case of the one-boundary (1, 1) Temperley-Lieb loop model, we must de-
termine the Boltzmann weights w1(u), w2(u), a1(u) and a2(u), such that each Yang-Baxter
equation is satisfied. The YBE for the (1, 1) Temperley-Lieb loop model is of the form

xj(u)xj+1(u+ v)xj(v) = xj+1(v)xj(u+ v)xj+1(u), (2.7)

diagrammatically this expression is given by

j j+1 j+2

v

u+ v

u

=

j j+1 j+2

u

v

u+ v . (2.8)

A solution to the YBE equation is achieved by expanding this diagrammatic object into all of
the possible configurations. The bulk face operator of the (1, 1) Temperley-Lieb loop model
possess two possible diagrammatic forms, specified in equation (2.5). Evaluating all possible
diagrams constructed from this object there exists a total of 23 on each side of equation
(2.8). Illustrating this process, let us expand one of the 16 configurations as an example

j j+1 j+2

= . (2.9)

Performing all of the possible expansions the resulting 16 configurations fall into one of the
five diagrammatic equivalence classes expressed below
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, , , , .

Associated with each equivalence class there exists a functional equation. Assigning the
Boltzmann weights and loop fugacity

w1(u) = s1(−u), w2(u) = s0(u), β = 2 cosλ, (2.10)

where we have adopted the succinct notation

sk(u) =
sin(u+ kλ)

sinλ
, λ ∈ R, k ∈ Z, (2.11)

the five functional equations are simultaneously satisfied and the (1, 1) Temperley-Lieb loop
model is integrable in the bulk. Here we have introduced the additional parameter λ, which
characterises the particular (1, 1) Temperley-Lieb model. We direct the interested reader to
the paper [15] where the full proof is presented. Let us now turn our attention toward the
BYBE possessing the form

xj(u− v)rj+1(u)xj(u+ v)rj+1(v) = rj+1(v)xj(u+ v)rj+1(u)xj(u− v), (2.12)

diagrammatically

j j+1

v

u+ v

u

u− v

=

j j+1

u− v

u

v

u+ v
. (2.13)

Implementing the same procedure as detailed for the YBE. A solution to the BYBE can be
determined by assigning the Boltzmann weights

a1(u) = γ − β1[s0(u)]2 + β2

[
s0

(
u− λ

2

)]2
, a2(u) = s0(2u), γ ∈ R, (2.14)

where γ is a free parameter and the bulk weights are those established in equation (2.10).
It follow that the (1, 1) Temperley-Lieb loop model is integrable in the bulk and on the
boundary. Again we direct the interested reader to the original paper [1] for the full proof.
Here we have presented a brief introduction to the integrable one-boundary (1,1) Temperley-
Lieb loop model. Let us now examine the underlying algebraic structure.
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2.3 One-boundary (1, 1) Temperley-Lieb Algebra

Applying the elementary objects of the one-boundary (1, 1) Temperley-Lieb loop model we
can construct the diagrammatic objects

I =

1 2 3

...

N

, ej =

1

...

j + 1j N

... , eN =

1 2

...

N − 1 N

. (2.15)

Taking the vertical as the direction of transfer and assigning multiplication as the vertical
concatenation of diagrams; these objects generate the one-boundary (1, 1) Temperley-Lieb
algebra

BTLN(β; β1, β2) := 〈I, ej; j = 1, ..., N〉. (2.16)

This algebra is an extension of the (1, 1) Temperley-Lieb algebra

TLN(β) := 〈I, ej; j = 1, ..., N − 1〉, (2.17)

where the operator eN is introduced. The algebras BTLN(β; β1, β2) and TLN(β) share the
defining relations [14]

[ei, ej] = 0, |i− j|> 1 (2.18)

eiejei = ei, |i− j|= 1 (2.19)

e2j = βej, j = 1, ..., N − 1 (2.20)

with those specific to BTLN(β; β1, β2) given by

[ej, eN ] = 0, j = 1, ..., N − 2 (2.21)

eN−1eNeN−1 = β1eN−1, (2.22)

e2N = β2eN . (2.23)

Let us demonstrate the notion of multiplication by showing equation (2.20) holds

e2j =

... ...

1

...

j + 1j N

...
= β

1

...

j + 1j N

... = βej,

as required.

It should be noted that the one-boundary (1, 1) Temperley-Lieb algebra BTLN(β; β1, β2)
is a generalisation of the blob algebra BN(β, β′) [22]. These algebras are isomorphic given
β2 6= 0

BTLN(β; β1, β2) ' BN(β, β′), where β′ =
β1
β2
. (2.24)
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2.4 Wenzl-Jones Projector

Motivated by the fusion procedure which will be developed in Chapter 3, we must introduce
a key ingredient, the Wenzl-Jones (WJ) projector [23–25]. This object is defined recursively
as

Pn = n = n− 1 − sn−1(0)

sn(0)
n− 1

n− 1

... , 1 = . (2.25)

Examining the first non-trivial case n = 2, we have

2 = − 1

β
. (2.26)

This object is a projector in the sense that, P 2
n = Pn. Diagrammatically we have

n
n

= n . (2.27)

The projector is annihilated if there exists any half loops resting on the edge

n = n = 0. (2.28)

As will be clear in the following section, these properties are essential in the construction of
fused face operators.
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3
Fused Temperley-Lieb Loop Models

We are now in a position to introduce fused Temperley-Lieb loop models. Such models
are constructed from the elementary (1, 1) bulk operators defined in Chapter 2, ultimately
allowing one to produce a (m,n) Temperley-Lieb lattice loop model. In this investigation
we examine the (2, 2) Temperley-Lieb lattice loop model where we introduce a new class of
boundary conditions. A novel solution to the boundary Yang-Baxter equation is presented
ensuring the integrability of the model. This general solution is then reconstructed by de-
tailing a fusion procedure in terms of the elementary (1, 1) objects. The chapter is concluded
by exploring the underlying algebraic structure of the model.

3.1 (m,n) Temperley-Lieb Loop Model

Employing the fusion procedure discussed in [2], one can construct bulk face operators of
arbitrary size. This is achieved by forming a rectangular array of m by n elementary face
operators and placing Pm and Pn projectors on each of the respective edges. The resulting
(m,n) fused face operator is expressed diagrammatically as

u
(m,n)

=

u1−m

...
...

u−1

u0

u2−m

...
...

u0

u1

...

...

...

...

un−m

...
...

un−2

un−1

m

m

n

n

, where um = u+mλ. (3.1)

13
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The expansion of the (m,n) fused face operator yields 2m×n possible diagrams. Exploiting
the properties of the WJ projectors on the edges of the face operator, one can dramatically
simplify this object in terms of internal connections [2]

Xm,n
a =

..
.

(a)

......
(m− a)

...

...

..
.

(a)

(m− a)

m

m

n

n

(n−
m

)
, n ≥ m. (3.2)

Re-expressing the (m,n) operator from equation (3.1) in terms of this object, we have [2]

u
(m,n)

=
r∑

a=0

αm,na Xm,n
a , r := min(m,n), (3.3)

where

αm,na = (−1)a(m+n)

(
m−1∏
i=0

n−1∏
j=0

si−j+1(−u)

)(
a∏
k=1

sr−k+1(0)

sk(0)

)(
a−1∏
l=0

sn−r+l(u)

sm−l(−u)

)
. (3.4)

It follows that the Boltzmann weights associated with the general (m,n) face operator pre-
sented in equation (3.3), readily satisfies the (m,n) YBE. See [2] for a full treatment. Special-
ising this result to m = n = 1, we recover the bulk face operator of the (1, 1) Temperley-Lieb
loop model

u
(1, 1)

= s1(−u)X1,1
0 + s0(u)X1,1

1 , where X1,1
0 = , X1,1

1 = .

(3.5)

Setting m = n = 2 we have the bulk face operator of the (2, 2) Temperley-Lieb loop model
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Xj(u) =

j j+4

u
(2, 2)

= s−1(u)s0(u) (3.6)

(
s−2(u)s−1(u)

j j+4

− βs−1(u)s0(u)

j j+4

+ s1(u)s0(u)

j j+4

)
. (3.7)

Four elementary (1, 1) plaquettes were applied in the construction of each (2, 2) object. Ex-
amining the weights associated with the (2, 2) objects we have a product of four functions.
Each function is the contribution of the weight associated with the (1, 1) plaquettes used in
the construction of the (2, 2) object. For the remainder of this document we will be dealing
with (2, 2) operators, for convenience we have dropped the 2 label from the projectors.

Let us now introduce a (2, 2) boundary face operator such that the (2, 2) Temperley-Lieb
loop model can be extended to the boundary. This construction seeks to capture all possible
configurations connecting two input and output strands whilst allowing connections to and
from the boundary. As for all diagrammatic Temperley-Lieb objects, the crossing of loop
segments is forbidden. The general (2, 2) boundary face operator is of the form

Rj(u) =

j j+1

u = A(u)

j+1j

+B(u)

j+1j

+ C(u)

j+1j

. (3.8)

Collectively we will refer to this construction as the Robin boundary conditions. Applying
the (2, 2) bulk and boundary operators to the BYBE, we seek to determine the general form
of the functions A(u), B(u) and C(u) such that the BYBE is satisfied. Establishing the
integrability of the model.
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3.2 Boundary Yang-Baxter Equation

The algebraic form of the (2, 2) BYBE is given by

Xj(u− v)Rj+2(u)Xj(u+ v)Rj+2(v) = Rj+2(v)Xj(u+ v)Rj+2(u)Xj(u− v), (3.9)

diagrammatically

j j+2

v

u+ v

u

u− v

=

j j+2

u− v

u

v

u+ v
. (3.10)

Applying the (2, 2) bulk and boundary face operators to the BYBE, this object decomposes
into 34 connectivity diagrams on each side of equation (3.10). Each of the 162 diagrams are
then grouped into 19 inequivalent classes, presented below

, , , , , , , , ,

, , , , , , , , , .

Symmetry about the horizontal ensure the coefficients of the first nine diagrams readily
match for all u, v. Each of the non-horizontal symmetric diagrams possess a horizontal flip
pair. The resulting functional equations produced by equating coefficients are identical. It
follows that we need only to focus on the five diagrams

, , , , .



3.2 Boundary Yang-Baxter Equation 17

Equating the coefficients of these diagrams we have five functional equations that must be
simultaneously satisfied. After considerable simplification and applying the definitions

X (v) :=
A(v)

C(v)
, Y(v) :=

B(v)

C(v)
, (3.11)

we have the five functional equations.

I.

ββ1

{
sinλ sin(2v)

}
X (v)

−ββ1
{

sinλ sin(2u)

}
X (u)

+β1 sin(u− v)

{
β2 sin(u+ v − 2λ)− β1 sin(u+ v − λ)

}
Y(v)

+β1 sin(u− v)

{
β2 sin(u+ v − 2λ)− β1 sin(u+ v − λ)

}
Y(u)

+β

{
sinλ sin(2v)

}
X (v)Y(u)

−β
{

sinλ sin(2u)

}
Y(v)X (u)

+ sin(u− v)

{
β2 sin(u+ v − 2λ)− β1 sin(u+ v − λ)

}
Y(v)Y(u)

+β2
1 sin(u− v)

{
β2 sin(u+ v − 2λ)− β1 sin(u+ v − λ)

}
= 0
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II.

−β
(
β2 −

2β1
β

)
sinλ

{
sin(u+ v) sin(u− v) sin(2v)

}
X (v)

− sin(u+ v) sin(u− v)

[
β2 sin(u+ v − λ)− β1 sin(u+ v)

]
[
β2 sin(u− v + λ)− β1 sin(u− v)

]
Y(v)

− sin2 λ

{
sin(2v) sin(2u+ λ)

}
X (v)Y(u)

+ sin2 λ

{
sin(2u) sin(2u+ λ)

}
Y(v)X (u)

− sinλ sin(u− v) sin(2u+ λ)

{
β2 sin(u+ v − λ)− β1 sin(u+ v)

}
Y(v)Y(u) = 0

III.

−β sinλ

{
sin(2v)

}
X (v)

+β sinλ

{
sin(2u)

}
X (u)

+

{
− β sinλ

(
β2 −

β1
β

)
sin(2v) +

(
2β1
β
− β2

)
sin(u− v)

}
Y(v)

+

{
β sinλ

(
β2 −

β1
β

)
sin(2u) +

(
2β1
β
− β2

)
sin(u− v)

}
Y(u)

− 1

β
sinλ

{
sin(2u+ λ)− sin(2v + λ)

}
Y(v)Y(u)

+

{
β

(
β2 −

β1
β

)
sin(u− v)

[
β2 sin(u+ v)− β1 sin(u+ v − λ)

]
+β1

(
2β1
β
− β2

)
sin(u+ v) sin(u− v)

}
= 0
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IV.

β sinλ sin(2v)

{
cos(2λ) cos(2v)− cosλ cos(2u− λ)

}
X (v)

+β sin2 λ

{
sin(2u) sin(2u+ λ)

}
X (u)

+ sin(u+ v − λ) sin(u− v){
(ββ2 − β1) sin(u− v + λ) sin(u+ v − λ)− β1 sin(u+ v) sin(u− v)

}
Y(v)

+ sinλ sin(u− v) sin(2u+ λ)

{
− (β2β − 2β1) sin(u+ v − λ) + β1 sin(u+ v + λ)

}
Y(u)

+ sinλ

{
sin(u+ v − λ) sin(u− v) sin(2u+ λ)

}
Y(v)Y(u)

+

{
− ββ2

2 sin(u+ v − λ) sin(u+ v) sin(u− v) sin(u− v + λ)

+β1β2β sin(u− v)
[

sin(u+ v − λ)[ cosλ cos(2v − λ)− cos(2u)] + sin2(u+ v) sin(u− v + λ)
]

−β2
1 sin(u− v)

[
sin2(u+ v − λ) sin(u− v + λ)

+ sin(u+ v) sin(u− v)[2 sin(u+ v − λ) + sin(u+ v + λ)]
]}

= 0

V.

β sinλ sin(2v + λ)Y(v)

−β sinλ sin(2u+ λ)Y(u)

+β (2β1 − ββ2) sin(u− v) sin(u+ v) = 0.

3.2.1 Solution

The previous section established simplified forms of the five functional equations that must
be simultaneously satisfied to produce a solution to the BYBE. Let us now detail the process
applied to determine a solution. Further manipulations of functional equation I allows us to
write this relation as
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(
β sinλ sin(2v)

[
β1 + Y(v)

]−1
X (v)− sin(v)

(
β2 sin(v − 2λ)− β1 sin(v − λ)

))
(3.12)

−

(
β sinλ sin(2u)

[
β1 + Y(u)

]−1
X (u)− sin(u)

(
β2 sin(u− 2λ)− β1 sin(u− λ)

))
= 0.

The general solution of this expression is given by

Xη(v) =
1

β sinλ sin(2v)

[
β1 + Y(v)

][
η + sin(v)(β2 sin(v − 2λ)− β1 sin(v − λ))

]
, η ∈ R,

(3.13)

where η is a free parameter of the model. Applying similar techniques to functional equation
V, we have

(
sinλ sin(2v + λ)Y(v)− (2β1 − ββ2) sin2(v)

)
−
(

sinλ sin(2u+ λ)Y(u)− (2β1 − ββ2) sin2(u)

)
= 0.

(3.14)

The general solutions of this expression is given by

Yγ(v) =
1

sinλ sin(2v + λ)

[
γ + (2β1 − ββ2) sin2(v)

]
, γ ∈ R, (3.15)

where γ is another free parameter of the model. Applying the functions Xη(v) and Yγ(v),
to the functional equation III, this expression can be simplified

{
γ

(
1

sinλ sin(2u+ λ)
− 1

sinλ sin(2v + λ)

)
+ (2β1 − ββ2)

(
sin2(u)

sinλ sin(2u+ λ)
− sin2(v)

sinλ sin(2v + λ)

)}
(3.16)[{

ηβ − (ββ2 − β1) sin2 λ
}

+ γ
]

= 0.

Equation (3.16) must hold for all u, v this is true if we set

γ = (ββ2 − β1) sin2 λ− ηβ. (3.17)

It follows we have Xη(v) and Yη(v)

Xη(v) :=
A(v)

C(v)
=

1

β sinλ sin(2v)

[
β1 + Yη(v)

][
η + sin(v)(β2 sin(v − 2λ)− β1 sin(v − λ))

]
,

(3.18)
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Yη(v) :=
B(v)

C(v)
=

1

sinλ sin(2v + λ)

[
(ββ2 − β1) sin2 λ− ηβ + (2β1 − ββ2) sin2(v)

]
. (3.19)

Employing the assistance of Mathematica, functional equations II and IV are satisfied after
applying the forms of Xη(v) and Yη(v). See appendix A.1.1 for the full Mathematica code
verifying this solution. As the solutions are given as ratios of our desired functions, we have
the freedom to define an overall normalisation coefficient. This normalisation is assigned to
ensure, limv→0A(v) = 1 and limv→0B(v) = limv→0C(v) = 0. The resulting expressions are
given by

Aη(v) =

[
sinλ

η(η − β2 sin2 λ) sin(2v + λ)

][
η − β1 sin(v + λ) sin(v) + β2 sin(v + λ) sin(v − λ)

]
(3.20)[

η − β1 sin(v) sin(v − λ) + β2 sin(v) sin(v − 2λ)

]
,

Bη(v) =
sin2 λ sin(2v)

η(β2 sin2 λ− η) sin(2v + λ)

[
(ββ2 − β1) sin2 λ− ηβ + (2β1 − ββ2) sin2(v)

]
, (3.21)

Cη(v) =
sin3 λ sin(2v)

η(β2 sin2 λ− η)
. (3.22)

Assigning these functions to equation (3.8), ensures the integrability of the one-boundary
(2, 2) Temperley-Lieb loop model. Again, we encourage the reader to verify the forms of
Aη(v), Bη(v) and Cη(v) provide a solution to the BYBE by implementing the full Mathe-
matica code in appendix A.1.2.

3.3 Fused Boundary Operator

The previous section detailed a general solution to the BYBE, establishing the integrability
of the Robin boundary conditions presented in equation (3.8). We now seek to determine
a fusion procedure such that the Robin boundary conditions can be constructed from ele-
mentary (1, 1) bulk and boundary operators. Let us begin with two (1, 1) boundary face
operators possessing a common vertical edge and a single (1, 1) bulk face operator resting
in the centre of these objects. On each of the diagonal edges we place a WJ projector.
Diagrammatically this object is of the form

u = u

v

w

. (3.23)
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The arguments of the (1, 1) face operators remain arbitrary and are assigned the labels u, v
and w. Expanding this object we have

u = w1(u)a1(v)a1(w)

+ w1(u)[a1(v)a2(w) + a2(v)a1(w) + β2a2(v)a2(w)]

+ w2(u)a2(v)a2(w) .

(3.24)

Here we have recovered the three boundary triangles detailed in equation (3.8). Let us now
examine the corresponding coefficients, assigning the definitions

A(u) := w1(u)a1(v)a1(w) (3.25)

B(u) := w1(u)[a1(v)a2(w) + a2(v)a1(w) + β2a2(v)a2(w)] (3.26)

C(u) := w2(u)a2(v)a2(w). (3.27)

We seek to determine u, v and w such that Aη(u) = A(u), Bη(u) = B(u) and Cη(u) = C(u)
up to an arbitrary normalisation factor. Applying the known forms of w1(x), w2(x), a1(x)
and a2(x), we have

A(u) =
sin(λ− u)

sinλ

γ − β1 [sin(v)

sinλ

]2
+ β2

[
sin
(
v − λ

2

)
sinλ

]2γ − β1 [sin(w)

sinλ

]2
+ β2

[
sin
(
w − λ

2

)
sinλ

]2 ,

(3.28)

B(u) =
sin(λ− u)

sinλ

[
sin(2w)

sinλ

γ − β1 [sin(v)

sinλ

]2
+ β2

[
sin
(
v − λ

2

)
sinλ

]2
+

sin(2v)

sinλ

γ − β1 [sin(w)

sinλ

]2
+ β2

[
sin
(
w − λ

2

)
sinλ

]2+ β2
sin(2v)

sinλ

sin(2w)

sinλ

]
,

(3.29)

C(u) =
sin(u) sin(2v) sin(2w)

sin3 λ
. (3.30)
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Employing various trigonometric identities, we notice a striking similarity to the desired
forms of these expressions by setting u = 2u, v = u+ λ

2
and w = u− λ

2
. It follows that

A(u) = −sin(2u− λ)

sin5 λ

(
η − β1 sin(u+ λ) sin(u) + β2 sin(u− λ) sin(u+ λ)

)
(
η − β1 sin(u) sin(u− λ) + β2 sin(u− 2λ) sin(u)

)
,

(3.31)

B(u) =
sin(2u− λ) sin(2u)

sin4 λ

(
(ββ2 − β1) sin2 λ− ηβ + (2β1 − ββ2) sin2(u)

)
, (3.32)

C(u) =
sin(2u) sin(2u+ λ) sin(2u− λ)

sin3 λ
.

Comparing these coefficients with those satisfying the BYBE presented in equations (3.20)
– (3.22), we see they are the same up to a constant factor. It follows that the general
solution to the BYBE can be recovered by decomposing the boundary operator expressed
diagrammatically as

u = 2u

u+ λ
2

u− λ
2

. (3.33)

Here we have detailed a fusion procedure for the boundary operator of the one-boundary
(2, 2) Temperley-Lieb loop model. This result lays the foundation to construct a (n, n)
boundary operator. Pairing the (n, n) boundary operator with the (n, n) bulk operator
defined in equation (3.1), we envisage the construction of an integrable one-boundary (n, n)
Temperley-Lieb loop model.

3.4 One-boundary (2, 2) Temperley-Lieb Algebra

Applying the operators of the one-boundary (2, 2) Temperley-Lieb loop model we can con-
struct the diagrammatic objects

I =

1 2 3

...

N

, Ej =

1

...

j j + 1

...

N

, Xj =

1

...

j j + 1

...

N

, (3.34)
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EN =

1 2 3

...

N

, XN =

1 2 3

...

N

. (3.35)

Taking the vertical as the direction of transfer and defining multiplication as the vertical
concatenation of diagrams. These objects generate the one-boundary (2, 2) Temperley-Lieb
algebra

BT LN(β; β1, β2) := 〈I,Ej,Xj; j = 1, ..., N〉. (3.36)

This algebra is an extension of the (2, 2) Temperley-Lieb algebra

T LN(β) := 〈I,Ej,Xj; j = 1, ..., N − 1〉, (3.37)

where the operators EN and XN are introduced. The algebras BT LN(β; β1, β2) and T LN(β)
share the defining relations [26],

Ej =
(
β2 − 1

)
Ej (3.38)

EjEj±1Ej = Ej (3.39)

β2X2
j = β

(
β2 − 2

)
Xj + Ej (3.40)

βXjEj = βEjXj =
(
β2 − 1

)
Ej (3.41)

EiEj = EjEi, |i− j|≥ 2 (3.42)

XiXj = XjXi, |i− j|≥ 2 (3.43)

XiEj = EjXi, |i− j|≥ 2 (3.44)

XjEj±1Xj = Xj±1EjXj±1 (3.45)

EjXj±Ej =

(
β − 1

β

)
Ej (3.46)

XjEj±1Ej = Xj±1Ej (3.47)

XjXj±1Ej =

(
β − 2

β

)
Xj±1Ej +

1

β2
Ej (3.48)

β3 (XjXj+1Xj − Xj+1XjXj+1) = β (EjXj+1 − Ej+1Xj + Xj+1Ej − XjEj+1 + Xj − Xj+1)− Ej + Ej+1.
(3.49)

With the boundary defining relations specific to BT LN(β; β1, β2) listed below
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E2
N = β1

(
β2 −

β1
β

)
EN (3.50)

X2
N = β2XN −

1

β
EN (3.51)

ENXN =

(
β2 −

β1
β

)
EN (3.52)

XN−1ENEN−1 =

(
β2 −

β1
β

)
XNEN−1 +

β2
1

β2
EN−1 (3.53)

EN−1ENXN−1 =

(
β2 −

β1
β

)
EN−1XN +

β2
1

β2
EN−1 (3.54)

XN−1XNEN−1 =

(
β − 2

β

)
XNEN−1 +

β1
β2

EN−1 (3.55)

EN−1XNXN−1 =

(
β − 2

β

)
EN−1XN +

β1
β2

EN−1 (3.56)

+XNXN−1XN−
β1
β
XNEN−1XN +

1

β

[
ENXN−1 + XN−1EN − β1

(
XNXN−1 + XN−1XN

)]
EN−1ENEN−1 = β1

(
β2 −

β1
β

)
EN (3.57)

EN−1XNEN−1 = β1

(
β − 1

β

)
EN−1 (3.58)

XN−1ENXN−1 =
β1
β2

[
XNEN−1 + EN−1XN + β1

(
XN−1 −

1

β
EN−1

)]
− 1

β2
EN (3.59)

XN−1XNXN−1 =
1

β2
(XNEN−1 + EN−1XN) +

β1
β2

(XN−1 −
1

β
EN−1) (3.60)

+

(
β − 3

β

β2 − 2β1
β

)[
XNXN−1XN −

1

β

[
β1(XNXN−1 + XN−1XN)− (ENXN−1 + XN−1EN)

]
− 1

β2
EN
]

XNXN−1EN = −ENXN−1XN + 2β1

(
β2 − β1

β

β2 − 2β1
β

)
XNXN−1XN (3.61)

+
β1
β2

[
1 + 2

(
β2 − β1

β

β2 − 2β1
β

)]
EN −

(
2

β(β2 − 2β1
β

)

)[
ENXN−1EN −

β2
1

β2
EN−1

]
+

(
β2 −

β1
β

)[
1 +

2β1

β(β2 − 2β1
β

)

] [
ENXN−1 + XN−1EN − β1(XNXN−1 + XN−1XN)

]
(3.62)
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[EN ,EN−n] = 0, n ≥ 2 (3.63)

[EN ,XN−n] = 0, n ≥ 2 (3.64)

[XN ,EN−n] = 0, n ≥ 2 (3.65)

[XN ,XN−n] = 0, n ≥ 2 (3.66)

[EN ,XN ] = 0. (3.67)

Here we have defined the one-boundary (2, 2) Temperley-Lieb algebra BT LN(β; β1, β2). We
now seek to extend the Robin boundary conditions introduced in this chapter.



4
Extended Boundary Conditions

The previous chapter introduced new integrable boundary conditions to the (2, 2) Temperley-
Lieb loop model permitting three distinct behaviours at the boundary. Extending the width
of the Robin boundary triangle we can construct an infinite class of integrable boundary
conditions permitted by the one-boundary (2, 2) Temperley-Lieb loop model.

4.1 Extended Robin Boundary Conditions

Applying a boundary seam of width w ∈ 2N0 to the central vertex of the (2, 2) boundary
triangle operator, the extended boundary conditions are given by

u, ξ = u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2 –u–ξw−4 –u–ξw−6 −u−ξ2... −u−ξ0

, (4.1)

where

ξk = ξ + kλ.

Here ξ is a parameter of the model. Specialising to the case w = 0 we recover the simple
Robin boundary triangle. The boundary seam is constructed from bulk square operators of
the (2, 2) Temperley-Lieb loop model. Expressing them in terms of (1, 1) objects we have

27
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u =

u− λ
(1, 1)

u
(1, 1)

u u+ λ
(1, 1)(1, 1)

. (4.2)

Substituting this form of the (2, 2) operator into equation (4.1) we see the difference between
the argument of each (1, 1) operator is λ. Exploiting the drop-down property of (1, 1) oper-
ators

u− λ
(1, 1)

u
(1, 1)

= s2(−u)s0(u) , (4.3)

we see that any half loop existing on the top edge ensures a companion loop is also present
on the bottom edge. We would like to develop the drop-down property for loops terminating
on the boundary, this condition is as follows

u−ξ2

−u−ξ0
u = U(u, ξ) . (4.4)

Assigning a particular value to the free parameter η, we seek to eliminate contributions from
other connectivity diagrams ensuring the one expressed above is the only form remaining.
Such a construction is yet to be completed and will be a future direction of the project.
The action of the drop-down properties for half loops terminating on the edge and those on
the boundary ensure it suffices for there to exist one projector resting on the bottom edge,
diagrammatically

w

w

u−ξw u−ξw−2u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2–u–ξw−4–u–ξw−6 −u−ξ2... −u−ξ0
=

w

u−ξw u−ξw−2u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2–u–ξw−4–u–ξw−6 −u−ξ2... −u−ξ0
.

(4.5)
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Here we have introduced a generalised form of the WJ projector. This object eliminates
both half loops and boundary connections resting on its surface. The rigorous mathematical
construction of the boundary-Wenzl Jones projector is yet to be developed and is an imme-
diate future direction of the project. For the purpose of this investigation this object will be
enforced by hand.

4.2 Boundary Yang Baxter Equation

We seek to maintain the integrability of the Robin boundary conditions given the application
of the boundary seam. It follows we must show the BYBE is satisfied. Alternative yet
equivalent forms of both the BYBE and the YBE used throughout this section and are given
by [1]

v, ξ

2λ−u−v

u− v u, ξ

=

u, ξ

v, ξ

2λ−u−v

u− v

, 2λ− u− v

2λ− u

v

= 2λ− u− v
v

2λ− u
.

(4.6)

Let us first expand the left hand side (LHS) of the BYBE

LHS =

v

v−ξw v−ξw−2 v−ξw−4 ... v−ξ4 v−ξ2

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2 –u–ξw−4 –u–ξw−6 −u−ξ2... −u−ξ0

2λ− u− v

u− v

.
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Applying the YBE yields

LHS =

v

v−ξw−2 v−ξw−4 ... v−ξ4 v−ξ2

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−4 –u–ξw−6 −u−ξ2... −u−ξ0
u− v

2λ− u− v

v−ξw

–u–ξw−2

.

Iterating this process we can move this large square to rest between the boundary triangles.
In doing so we swap the labels on the two central blocks

LHS =

v

–u–ξw−2 –u–ξw−4 –u–ξw−6 ... −u−ξ2 −u−ξ0

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

v−ξw v−ξw−2 v−ξw−4 v−ξ4... v−ξ2

2λ− u− v

u− v

.

Again we iteratively apply the YBE such that the remaining large square is moved to the
far right, consequently we change the labels on the lower two blocks

LHS =

v

–u–ξw−2 –u–ξw−4 –u–ξw−6 ... −u−ξ2 −u−ξ0

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

u

v−ξw v−ξw−2 v−ξw−4 ... v−ξ4 v−ξ2

u−ξw u−ξw−2 u−ξw−4 u−ξ4... u−ξ2

2λ− u− v

u− v

.
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Now applying the BYBE equation (4.6), to flip the object on the right hand side

LHS =

u

–u–ξw−2 –u–ξw−4 –u–ξw−6 ... −u−ξ2 −u−ξ0

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

v

v−ξw v−ξw−2 v−ξw−4 ... v−ξ4 v−ξ2

u−ξw u−ξw−2 u−ξw−4 u−ξ4... u−ξ2

2λ− u− v

u− v

.

In a similar way that the squares were translated from left to right they can be translated
from right to left through iterative application of the YBE, producing the result

LHS =

u

u−ξw u− ξw−2u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2 –u–ξw−4 –u–ξw−6 −u−ξ2... −u−ξ0

v

v−ξw v−ξw−2 v−ξw−4 ... v−ξ4 v−ξ2

–v–ξw−2 –v–ξw−4 –v–ξw−6 −v−ξ2... −v−ξ0

2λ− u− v

u− v

.

LHS =

u, ξ

v, ξ

2λ−u−v

u− v

= RHS.

Arriving at the right hand side, it follows that the BYBE expressed in equation (4.6) is
satisfied. Here we have introduced an infinite class of integrable boundary conditions to the
(2, 2) Temperley-Lieb model.
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4.3 Decomposition

From the drop-down property detailed in the previous section we apply a boundary-Wenzl
Jones projector to the bottom edge of the boundary seam. The boundary-WJ projector
forbids diagrams possessing half loops on the bottom edge and connections from the edge to
the boundary. This is enforced by the properties of the projector prescribed in Section 4.1.
Applying this object we have

u, ξ =

w

u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

–u–ξw−2 –u–ξw−4 –u–ξw−6 −u−ξ2... −u−ξ0

. (4.7)

Exploiting crossing symmetry

u = λ− u ,

at the level of both the (1, 1) and (2, 2) operators, the boundary seam is equivalently ex-
pressed

u, ξ =

w

u

u−ξw u−ξw−2 u−ξw−4 ... u−ξ4 u−ξ2

u+ξw u+ξw−2 u+ξw−4 u+ξ4... u+ξ2

. (4.8)

To examine how this object decomposes let us examine the system for small boundary seams
and then generalise this result. For w = 0 we have

u = Aη(u) +Bη(u) + Cη(u) , (4.9)

where the coefficients Aη(u), Bη(u) and Cη(u), are defined in equations (3.20) – (3.22). In
the interest of the reader the coefficients of the following diagrams are presented in appendix
B.1. Applying the previous forms to the smallest boundary seam w = 2, we have
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u+ξ2

u−ξ2
= a(2)(u, ξ2) + b(2)(u, ξ2) + c(2)(u, ξ2) (4.10)

u+ξ2

u−ξ2
= r(2)(u, ξ2) + s(2)(u, ξ2) + t(2)(u, ξ2) + u(2)(u, ξ2)

(4.11)

u+ξ2

u−ξ2

= v(2)(u, ξ2) + w(2)(u, ξ2) + x(2)(u, ξ2) (4.12)

+y(2)(u, ξ2) + z(2)(u, ξ2) . (4.13)

Here we recognise seven forms that reoccur for arbitrary seam widths.

u+ξw

u−ξw
= a(w)(u, ξw) + b(w)(u, ξw) + c(w)(u, ξw) (4.14)

u+ξw

u−ξw
= d(w)(u, ξw) + e(w)(u, ξw) + f (w)(u, ξw) + g(w)(u, ξw)

(4.15)

u+ξw

u−ξw
= h(w)(u, ξw) + i(w)(u, ξw) + j(w)(u, ξw) (4.16)
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u+ξw

u−ξw
= k(w)(u, ξw) + l(w)(u, ξw) (4.17)

u+ξw

u−ξw
= m(w)(u, ξw) + n(w)(u, ξw) (4.18)

u+ξw

u−ξw
= o(w)(u, ξw) + p(w)(u, ξw) (4.19)

u+ξw

u−ξw
= q(w)(u, ξw) . (4.20)

We also observe two forms that only occur close to the boundary, for w = 4 these are given
by

u+ξ4

u−ξ4
= aa(4)(u, ξ4) (4.21)

u+ξ4

u−ξ4
= ab(w)(u, ξ4) . (4.22)

Here we see for w > 4, these diagrams evolve into the final reoccurring form expressed in
equation (4.20). From the elementary forms expressed in equations (4.9) – (4.22) we can
construct the objects
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u, ξ = ∆(w) ... + Θ(w) ...

+Λ̂(w) ... + Λ̃(w) ...

+Λ
(w)
k

......

k

+ Γ̂(w) ...

+Γ
(w)
l

... ...

l

+ Γ̃(w) ...

+Φ̂(w) ... + Φ̃(w) ...

+Φ
(w)
k

... ...

k

+ Ψ̂(w) ...

+Ψ̂
(w)
l

... ...

l

+ Ψ̃(w) ...

+Ψ̃
(w)
k,l

...... ......

k l

+ χ(w) ...

+χ
(w)
k

......

k

+ Ω(w)
wb

...

+Ω(w)
wc

... .
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Again, we direct the interested reader to Appendix B.2 where the coefficients associated with
each diagram are presented. The goal of this chapter was to extend the Robin boundary
triangles, enriching the description of the model. In doing so we have developed an infinite
class of integrable boundary conditions for the one-boundary (2,2) Temperley-Lieb loop
model.



5
Hamiltonian Limit

The previous chapter established the integrability of the one-boundary (2,2) Temperley-Lieb
loop model. We now seek to develop our understanding of this model. Of significant interest
is the Hamiltonian, allowing us to determine the underlying energy level structure of the
one-boundary (2,2) Temperley-Lieb loop model.

5.1 Double Row Transfer Tangle

In order to determine the Hamiltonian we must first introduce the double row transfer tangle,
a diagrammatic object given by

D(u) =
1

β2 − 1
u

u ... ... u

u ... ... uu

u

u

u

N

. (5.1)

The integrability of the one-boundary (2, 2) Temperley-Lieb loop model can be applied to
construct a family of commuting transfer tangles

[D(u), D(v)] = 0. (5.2)

The author would like to direct the interested reader to [27] for a through treatment of this
proof. The iterative application of the transfer tangle on an arbitrary initial configuration
C(i) of dimension 1×N constructs a lattice C(f) of dimension 2M ×N , given by

37
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C(f) = [D(u)]MC(i).

Here we can interpret D(u) as an operator generating the lattice. Expanding on this notion,
one can consider the dimension iterated by this operator as temporal rather than spacial
∆M → δτ . Equipped with this interpretation we can associate the double row transfer
tangle with the time translation operator of quantum mechanics

D = eδτHκ → U = e−itH , (5.3)

where κ defines a normalisation constant. Motivated by this association it is well established
that the normalised double row transfer tangle admits an expansion of the form [1, 2]

D(u) = I − 2u

sinλ
H +O(u2). (5.4)

Such an expression resembles the power series expansion of the time translation operator
introduced in equation (5.3). It follows that the expansion of this object will allow the direct
determination of the one-boundary (2, 2) Temperley-Lieb loop model Hamiltonian.

5.2 Hamiltonian Expansion

We now seek to take the Hamiltonian expansion of the double row transfer tangle equipped
with the boundary conditions established in Chapters 3 and 4. For this treatment we will
examine the case w = 0 where we are left with a single Robin boundary triangle. Performing
the expansion to first order, we must take the first order series expansion of the Boltzmann
weights associated with the (2, 2) bulk and boundary elementary face operators. Due to the
forms of both the YBE and the BYBE we are free to define an overall normalisation factor.
This factor is assigned to ensure

lim
u→0

α̂0(u) = 1 and lim
u→0

α̂1(u) = lim
u→0

α̂2(u) = 0,

where these expressions are the normalisation of the weights α2,2
0 (u), α2,2

1 (u) and α2,2
0 (u)

respectively. Assigning the normalisation factor accordingly, we have the expressions

α̂0(u) = −sin(u− 2λ) sin2(u− λ)

β sin3 λ
, (5.5)

α̂1(u) =
sin2(u− λ) sin(u)

sin3 λ
, (5.6)

α̂2(u) = −sin(u) sin(u+ λ) sin(u− λ)

β sin3 λ
. (5.7)
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Expanding these objects to first order we have

α̂0(u) = 1−
(

cos(2λ) + β2

β sinλ

)
u+O(u2), (5.8)

α̂1(u) =
u

sinλ
+O(u2), (5.9)

α̂2(u) =
u

β sinλ
+O(u2). (5.10)

The normalisation of the boundary weights was developed in Chapter 3, see equations (3.20)
– (3.20). Expanding these expressions to first order we have

Aη(u) = 1 +
u
(
β2 sin3 λ(2β2 cosλ− β1)− 2η2 cotλ

)
η
(
η − β2 sin2 λ

) +O
(
u2
)
, (5.11)

Bη(u) =
2u sinλ

(
sin2 λ(β1 − ββ2) + ηβ

)
η
(
η − β2 sin2 λ

) +O
(
u2
)
, (5.12)

Cη(u) = − 2u sin3 λ

η(η − β2 sin2 λ)
+O

(
u2
)
. (5.13)

To avoid confusion we will refer to the diagrammatic object associated with a particular
coefficient E(u) as simply E. Examining the expansions of α̂0(u) and Aη(u),these are the
only coefficients with zeroth order terms. The remaining coefficients only possess first order
terms. Let us now consider the contributing diagrams at first order. Placing the object Aη
on the boundary there exists 4N + 1 possible tangles. These are given by constructing the
entire bulk from the orientation α̂0 except for one position which can be taken by any of the
remaining two bulk orientations α̂1 or α̂2, cycling these two objects through the 2N places
produces 4N contributing tangles. The extra tangle is created by having the bulk consist of
all orientations α̂0 and the boundary with the Aη object. Now let us place the object Bη on
the boundary. As Bη(u) is first order in u, there exists no freedom to vary the bulk. Thus
it must be constructed out of zeroth order terms given by the bulk orientation α̂0. Finally,
placing Cη on the boundary we have a similar result as for Bη. It follows that this expansion
has 4N + 3 contributing terms at first order. Performing this expansion diagrammatically
we have
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(β2 − 1)D(u) = α̂2[α̂0]
2N−1Aη(u) ...

...
+

...

...

+
...

...

...

...
+ ...+

...

...

+
...

...
+

...

...

+
...

...
+

...

...
+ ...

+
...

...
+

...

...


+ α̂1[α̂0]
2N−1Aη(u) ...

...
+

...

...

+
...

...
+ ...+

...

...

+
...

...
+

...

...

+
...

...
+ + ...

+
...

...
+

...

...

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+ [α̂0]
2NAη(u)

...

...
+Bη(u)

...

...

+ Cη(u)
...

...
+O(u2).

Replacing these objects with the generators of the algebra we have

(β2 − 1)D(u) = 2α̂2[α̂0]
2N−1Aη(u)I + 2α̂1[α̂0]

2N−1Aη(u)

(
β − 1

β

)
I (5.14)

+ 2α̂2[α̂0]
2N−1Aη(u)(β2 − 1)[E1 + E2 + ...+ EN−2 + EN−1]

+ 2α̂1[α̂0]
2N−1Aη(u)(β2 − 1)[X1 + X2 + ...+ XN−2 + XN−1]

+ [α̂0]
2N [AηI +Bη(u)XN + CηEN ]

)
+O(u2)

D(u) =

(
2α̂2[α̂0]

2N−1Aη(u)

β2 − 1
+ 2α̂1[α̂0]

2N−1Aη(u)
1

β
+ [α̂0]

2NAη

)
I (5.15)

+ 2α̂2[α̂0]
2N−1Aη(u)

N−1∑
j=1

Ej + 2α̂1[α̂0]
2N−1Aη(u)

N−1∑
j=1

Xj

+ [α̂0]
2N [Bη(u)XN + CηEN ] +O(u2).

These coefficients to first order are given by

α̂2[α̂0]
2N−1Aη(u) =

u

β sinλ
+O(u2) (5.16)

α̂1[α̂0]
2N−1Aη(u) =

u

sinλ
+O(u2) (5.17)

[α̂0]
2NAη(u) = 1−

[
cos(2λ) + β2

β sinλ

]
u (5.18)

+

[(
β2 sin3 λ(ββ2 − β1)− 2η2 cotλ

)
η
(
η − β2 sin2 λ

) ]
u+O(u2)

[α̂0]
2NBη(u) =

[
2 sinλ

(
sin2 λ(β1 − ββ2) + ηβ

)
η
(
η − β2 sin2 λ

) ]
u+O(u2) (5.19)

[α̂0]
2NCη(u) = −

[
2 sin3 λ

η(η − β2 sin2 λ)

]
u+O(u2). (5.20)

Applying these expansions, we have
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D(u) =

(
2

β2 − 1

u

β sinλ
+

2u

β sinλ
+ 1−

[
cos(2λ) + β2

β sinλ

]
u+

[(
β2 sin3 λ(ββ2λ− β1)− 2η2 cotλ

)
η
(
η − β2 sin2 λ

) ]
u

)
I

+
2u

β sinλ

N−1∑
j=1

Ej +
2u

sinλ

N−1∑
j=1

Xj +

[
2 sinλ

(
sin2 λ(β1 − ββ2) + ηβ

)
η
(
η − β2 sin2 λ

) ]
uXN

−
[

2u sin3 λ

η(η − β2 sin2 λ)

]
uEN +O(u2).

Rearranging this expression

D(u) = I− 2u

sinλ

((
cos(2λ) + β2

2β
− β

β2 − 1
− 1

β
−

[(
β2 sin4 λ(ββ2 − β1)− 2η2 cosλ

)
2η
(
η − β2 sin2 λ

) ])
I

− 1

β

N−1∑
j=1

Ej −
N−1∑
j=1

Xj −

[
sin2 λ

(
sin2 λ(β1 − ββ2) + ηβ

)
η
(
η − β2 sin2 λ

) ]
XN +

[
sin4 λ

η(η − β2 sin2 λ)

]
EN

)
+O(u2).

The Hamiltonian be can directly read as

H =

(
cos(2λ) + β2

2β
− β

β2 − 1
− 1

β
−

[(
β2 sin4 λ(ββ2 − β1)− 2η2 cosλ

)
2η
(
η − β2 sin2 λ

) ])
I (5.21)

− 1

β

N−1∑
j=1

Ej −
N−1∑
j=1

Xj −

[
sin2 λ

(
sin2 λ(β1 − ββ2) + ηβ

)
η
(
η − β2 sin2 λ

) ]
XN +

[
sin4 λ

η(η − β2 sin2 λ)

]
EN

)
.

Fixing the ground state energy contribution and setting the free parameter η = η̃ sin2 λ,
produces the result

H = −
N−1∑
j=1

( 1

β
Ej + Xj

)
+

1

η̃(η̃ − β2)

[
{ββ2 − β1 − η̃β}XN + EN

]
. (5.22)

Here we have arrived at the Hamiltonian of the one-boundary (2, 2) Temperley-Lieb loop
model. Examining the form of this expression we see there exist three possible poles for the
parameter values η̃ = β2, η̃ = 0 and β = 0. As η̃ and β2 are free parameters of the model
assigning appropriate values to these variables we will ensure the poles of the Hamiltonian
are avoided. The parameter β is defined by λ as in equation (2.10) avoiding this pole we
will enforce λ 6= nπ

2
where n ∈ Z.



6
Representations

Chapter 5 concluded with an abstract algebraic description of the one-boundary (2,2) Temperley-
Lieb Hamiltonian. A natural question arises, what is the energy spectrum of this object? To
address this question we look to representation theory, allowing us to represent such objects
as matrices. With this goal in mind we must first define the space on which these operators
act.

6.1 Link-states

The generators of the (2, 2) Temperley-Lieb algebra T LN(β) act on a vector space of link-
states VN , also known as a linkspace. The link-states are analogous to a set of states in a
quantum system. These states are non-intersecting diagrams that connect N pairs of nodes
bound by projectors [28]. Let us examine the first two non-trivial linkspaces V2 and V3

V2 = span

{ }
, (6.1)

V3 = span

{ }
. (6.2)

Permitting connections to the boundary we define VkN as the space on which the generators
of the one-boundary (2, 2) Temperley-Lieb algebra BT LN(β; β1, β2) act. The index k labels
the number of paired boundary connections. When the k index is omitted the space will
consist of all possible boundary connections. Examining the spaces V2 and V3
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V2 = span

 , ,

 , (6.3)

V3 = span

 , , , , , ,

 ,

(6.4)

we see that the extension to the boundary introduces two and six additional basis states to
the N = 2, 3 linkspaces respectively. As is evident V2 and V3 are subspaces of V2 and V3
respectively (V2 ⊂ V2, V3 ⊂ V3). This is true for all N (VN ⊂ VN). The dimension of the
vector space VkN can be seen as equivalent to that established in [28]. This is evident by
associating defects – straight lines beginning at a node, with boundary connections. The
dimension of each space is given by the Riordan numbers RN,k

dimVkN = RN,k =

(
N

k

)
2

−
(

N

k + 1

)
2

, (6.5)

where

(
N

k

)
2

=
N∑
j=0

[
N

1
2
(N − j − k), 1

2
(N − j + k), j

]
,

and the trinomials are of the form

[
N

l,m,N − l −m

]
=

{
N !

l!m!(N−l−m)!
, l,m,N − l −m ∈ Z≥0

0, else
.

For convenience we have produced a table of relevant Riordan numbers, see table 6.1.
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N
k

0 1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0
3 1 3 2 1 0 0 0 0 0
4 3 6 6 3 1 0 0 0 0
5 6 15 15 10 4 1 0 0 0
6 15 36 40 29 15 5 1 0 0
7 36 91 105 84 49 21 6 1 0
8 91 232 280 238 154 76 28 7 1

Table 6.1: Riordan numbers where N labels the system size and k counts the number of paired
boundary connections or paired defects.

6.1.1 Link-state Representation

Let us now explore how the generators of our algebra act on the link-states. Similar to the
definition of multiplication, the action of our operators on the set of link-states is given by
vertical concatenation. As an example let us determine the matrix representation of the
operator X1 ∈ BT L2(β; β1, β2). These computations are performed by placing each link-
state atop the generator X1 and evaluating the connectivities of the loop segments. This
process is as follows

=

(
β − 1

β

)
,

=
β1
β2

+

(
β − 2

β

)
,

=
β2
1

β2
+

(
β2 −

2β1
β

)
.

The matrix representation is now constructed by aligning the input states as columns and
the resulting output states as rows. This convention is demonstrated by the coloration of
the coefficients associated with each output link-state
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ρ2(X1) =

 β − 1
β

β1
β2

β2
1

β2

0 β − 2
β

β2 − 2β1
β

0 0 0

 . (6.6)

Here we have introduced the convention ρN as labelling the link-state representation of
BT LN(β; β1, β2). Applying this same process to the remaining generators of our algebra we
have

ρ2(E1) =

β
(
β − 1

β

)
β1

(
β − 1

β

)
β1

(
β2 − β1

β

)
0 0 0
0 0 0

 , (6.7)

ρ2(E2) =

 0 0 0
0 0 0

1 β2 − β1
β

β1(β2 − β1
β

)

 , (6.8)

ρ2(X1) =

 β − 1
β

β1
β2

β2
1

β2

0 β − 2
β

β2 − 2β1
β

0 0 0

 , (6.9)

ρ2(X2) =

 0 0 0
1 β2 0

0 − 1
β

β2 − β1
β

 . (6.10)

As we have developed how one represents the operators of our algebra as matrices, we are
now in a position to explore the representation of the Hamiltonian – a special object within
our algebra.

6.2 Hamiltonian Representations

Recall the one-boundary (2, 2) Temperley-Lieb Hamiltonian from equation (5.22). We seek
to determine a representation of this object, that is

ρN(H) = −
N−1∑
j=1

( 1

β
ρN(Ej) + ρN(Xj)

)
+

1

η̃(η̃ − β2)

[
{ββ2 − β1 − η̃β}ρN(XN) + ρN(EN)

]
.

(6.11)

Not only do we wish to explore the energy spectrum for a fixed N , we also seek to gain insight
into how this spectrum varies as the system size N is increased. Ultimately one would like to
examine the continuum limit of the system where N →∞; in this regime such information
is necessary. Although interesting, such limits are beyond the scope of this thesis. Here we
seek to provide a solid foundation from which arguments regarding the energy level structure
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can be made for large N .

Let us now determine the Hamiltonian for the first non-trivial algebra BT L2(β; β1, β2). Ap-
plying the representation of the operators ρ2(E1), ρ2(E2), ρ2(X1) and ρ2(X2) from equations
(6.7) – (6.10) to the Hamiltonian presented in equation (6.11), we arrive at a representation
of H ∈ BT L2(β; β1, β2)

ρ2(H) =


2
β
− 2β −(β− 1

β )β1
β

− β1
β2 −β2

1

β2 −
(β2−β1β )β1

β

−−β1+ββ2−βη̃
(β2−η̃)η̃ −β − β2(−β1+ββ2−βη̃)

(β2−η̃)η̃ + 2
β

2β1
β
− β2

− 1
(β2−η̃)η̃ −−

β1
β
+β2−−β1+ββ2−βη̃β

(β2−η̃)η̃ −β1(β2−β1β )+(−β1+ββ2−βη̃)(β2−β1β )
(β2−η̃)η̃

 .

(6.12)

In order for this exercise to be computationally feasible we must fix the parameters β, β1, β2, η̃.
Avoiding the poles identified in Chapter 5, the most natural designation is given by

β = β1 = β2 = 1 and η̃ = 2. (6.13)

The matrix representation simplifies to

ρ2(H) =

 0 −1 −1
−1 0 1
1
2

1 0

 . (6.14)

The choice of the parameters detailed in equation (6.13) will be reevaluated in Section 6.2.2.
Applying a similar approach to that presented in Section 6.1.1, one can compute the following
Hamiltonian representations for N = 3, 4, 5

ρ3(H) =



2 0 1 1 0 0 0
−1 1 −1 −1 0 0 0
1
2
−1 0 −1 −1 −1 −1

0 −1 −1 0 −1 −1 −1
1
2

1 0 0 1 1 1
0 0 0 −1 1 0 1
0 0 0 1

2
0 1 0


, (6.15)
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ρ4(H) =



3 −2−1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−2−2 0 0 0 0 0 −1−1 0 0 0 −1 0 −1 0 0 0 0
−1 0 0 2 −2−1−1−1−1 0 −1 0 0 0 0 0 0 0 0
0 −1 0 −1−1 0 0 −1−1 0 −1 0 0 0 0 0 0 0 0
1
2

0 0 0 1 2 0 1 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 1 0 2 0 1 0 0 0 0 1 1 0 0 0 0
0 0 −1−1−1 1 −1 0 0 0 −1−1 1 0 0 0 0 −1 0
0 0 0 −1−1−1 1 0 1 −1−1 0 0 0 1 −1 0 0 0
1
2

0 0 1 0 0 0 0 0 2 1 0 −1−1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 1 1 1 0 0 0 1 0 1 0
0 0 0 0 0 0 −1 0 0 0 1 1 0 −1−1 0 0 0 0
0 0 1

2
0 0 0 0 1 0 −1 0 0 0 −1 0 −1−1 0 −1

0 1
2

0 0 1 0 1
2

0 0 −1 0 −1−1 0 −1−1−1−1−1
0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 −1−1−1
0 0 0 0 0 0 0 0 1

2
0 1 0 0 0 0 1 1 0 1

0 0 0 0 0 0 1
2

0 0 0 0 1 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 1 0

,



(6.16)

ρ5(H) =



4 −2 −1 −2 −2 −1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 2 −1 1 1 0 0 0 0 0 −1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 0 −1 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 −1 1 1 −1 2 0 0 0 −1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 3 −1 −1 −1 −2 −1 −1 −2 −2 −1 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 0 3 0 1 1 0 0 0 0 0 −1 0 0 −2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 3 0 1 1 0 0 0 0 0 0 −1 0 −2 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 3 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 −1 0 −1 1 −1 0 1 −1 0 0 −1 −1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 −1 0 0 0 1 −1 −1 0 −1 0 0 0 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 −1 0 0 −1 1 0 0 −1 0 −1 0 0 0 0 −1 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1 0 0 −1 1 0 0 −1 2 0 −1 −1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2
0 1

2
0 0 −2 0 0 0 0 −1 0 −1 0 0 −1 0 −2 −1 0 0 0 0 0 0 0 −1 0 −1 0 −1 0 −1 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 −1 −1 0 0 −1 0 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0 0 0 0 −1 0 −1 0 −1 0 −1 −2 0 0 0 0 0 0 0 0 −1 0 −1 0 −1 0 −1 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 0
0 0 0 1

2
0 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 −1 −1 0 0 0 0 0 −1 −2 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 2 1 0 0 0 0 −1 −1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 −1 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 −1 −1 0 −1 −2 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1
2

0 0 0 0 0 0 1
2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0 −1 −1 1 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 −1 0 1 −1 −1 0 −1 0 0 1 0 0 0 0 −1 0 −1 −1 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 −1 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 1 0 0 −1 1 0 0 0 1 0 −1 0 0 0 −1 0 0 0 1 0 −1 0 0 0
0 0 1

2
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 −1 0 0 0 1 −1 0 1 0 0 0 1 −1 0 0 0 −1 0 −1 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 1
2

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

0 0 0 0 0 0 1
2

0 0 1 0 0 0 0 0 0 −1 0 −1 0 −1 1 0 0 0 1 0 0 −1 1 −1 −1 0 0 −1 −1 0 0 0 1 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 1 0 0 −1 1 0 0 0 −1 −1 0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 −1 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 1 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 2 1 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 1 1 1 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 −1 −1 0 0 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 −1 0 −1 −1 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 1

2
0 0 1 0 0 0 0 0 0 −1 −1 0 0 0 0 −1 0 −1 0 −1 −1 −1 −1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 1 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 1 0



.

(6.17)

See Appendix C.1 for the form of each Hamiltonian in terms of the parameters β, β1, β2 and
η̃. Illustrated in the growth of the matrix dimension; the basis states of the vector space
VN increase significantly for large N , see table 6.1. A major limitation of these calculation
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was the sheer time required to produce matrix representations of each individual generator.
Examining the Riordan numbers, the next size up possesses dimV6 = 141 link-states. A
calculation of this size by hand is an inefficient use of resources. We envisage future work
where a computer program is created that determines the matrix representation of any object
within the algebra BT LN(β; β1, β2). Such a program will provide the required information
when the system is taken to the continuous limit.

6.2.1 Eigensystems

Now we seek to explore the energy level structure and the diagonalisability of the matrix
representations presented in the previous section. For this initial examination the parameters
remain fixed as defined by equation (6.13). We will adopt the indexing convention λ(N),
characterising the set of eigenvalues with system size N

λ(2) =

{
1

2

(√
3 + 1

)
,−1,

1

2

(
1−
√

3
)}

,

λ(3) = {2.97848, 1.8055,−1.72644,−1, 1, 0.942463, 0},

λ(4) = {4.58575, 3.68124,−3.20147, 2.93518, 2.74657,−2.54433, 2.46962, 2.27718,−1.42336,

−1.41421, 1.41421, 1.35159, 1.20336, 1.13674,−0.672982, 0.454904, 0, 0, 0},

λ(5) = {6.19006, 5.4516, 4.80273, 4.54755, 4.42378, 4.21699, 3.76703, 3.70519,−3.7013, 3.51826,

−3.50353, 3.43233, 3.34814, 2.87863, 2.64718, 2.64718, 2.64457, 2.62474,−2.54451, 2.30887,

−2.26608, 2.16475,−2.12941, 2.07859,−2.03138, 2, 1.7282, 1.7282, 1.65902, 1.56963,−1.43442,

1.35281, 1.32259,−1.30009, 1.05791,−1,−1, 0.797026,−0.756101,−0.756101, 0.673363, 0.615542,

0.615542,−0.604208, 0.510353, 0.473028,−0.369377, 0.283841,−0.23483,−0.23483, 0.0808893}.

See Appendix C.3 for the corresponding eigenvectors. Examining the eigenvalues of the
system we see they are real for all N = 2, 3, 4, 5, this is a remarkable result! Examining the
representations of each Hamiltonian presented in equations (6.14) – (6.17) the entries are
real however the matrix is highly non symmetric. It follows the matrix representations of
the Hamiltonians are non-hermitian

ρN(H) 6= ρ†N(H),

yet each spectra is physical. This result provides strong evidence for the following state-
ments i) the procedures applied to ensure the integrability, determine the Hamiltonian and
the corresponding representations are sound ii) the values assigned in equation (6.13) are
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sensible.

Another property of interest is that of diagonalisability, allowing one to express the Hamil-
tonian in the basis of it’s eigenstates. Examining the eigensystems of ρ2(H) and ρ3(H) it
follows these matrices are diagonalisable, admitting the forms

D2 = diag(λ(2)) (6.18)

D3 = diag(λ(3)) (6.19)

The remaining representations ρ4(H) and ρ5(H) are not diagonalisable. The next best thing
is to determine a set of generalised eigenvectors. A description of the Hamiltonian in this
basis will ensure it possesses Jordan normal form. Here we use the notation Jn(λ), defining
the Jordan block with dimension n associated with the eigenvalue λ. Omitting trivial blocks
the Jordan normal forms of these Hamiltonians are given by

J4 = diag(J3(0)), (6.20)

J5 = diag(J2(2.6472), J2(1.7282), J2(−1), J2(−0.7561), J2(0.6155), J2(−0.2346)). (6.21)

Examining each Jordan normal form. J4 possesses a single non-trivial Jordan block of
dimension 3 associated with the eigenvalue 0 and J5 possesses six non-trivial Jordan blocks of
dimension 2 associated with the eigenvalues 2.6472, 1.7282,−1,−0.7561, 0.6155 and −0.2346.

6.2.2 Varying Parameters

The previous section explored the eigensystem of each Hamiltonian representation for the
parameter values β, β1, β2, η̃ specified in equation (6.13). In this section we seek to provide
a preliminary glance at another set of ‘natural’ values for these parameters. Ideally this
analysis should provide further insight into the nature of the eigenvalues and the conditions
of diagonalisability. Divergences existing in the Hamiltonian place constraints on the param-
eters η̃ and β. Ensuring the poles associated with η̃ are avoided we will set this parameter to
η̃ = 2, for the remaining investigation. This assignment will allow us to explore the influence
of the loop fugacities on the eigensystem.

The bulk loop fugacity β = 2 cosλ, is the only parameter possessing a known closed form
expression. Rich results arise in the representation theory of the (1, 1) Temperley-Lieb
algebra in cases when β can be described by roots of unity [29, 30]. Values of λ giving rise
to such cases are given by the set

λ ∈
{nπ

2
,
nπ

3
,
nπ

4
,
nπ

6
, 0
}
, n ∈ Z (6.22)
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corresponding to the set of β values,

|β|∈
{

0, 1,
√

2,
√

3, 2
}
. (6.23)

These values will form the basis of ‘natural’ values that can be assigned to the loop fugacities
β, β1 and β2. In this preliminary investigation we examine each of the possible combinations
of the loop fugacities possessing the values 1 and

√
2. We seek to examine both the reality

of the spectrum and the diagonalisability of the matrix representation associated with the
Hamiltonian for each of the loop fugacity combinations. Representing this information in
a succinct manner we have constructed tables and used the conventions: real (R), a non-
zero imaginary component (C), diagonalisable (D), non-diagonalisable (N-D). Computational
limitations prevented the diagonalisability of the matrices N = 4, 5 being determined.

N = 2 β β1 β2
R, D 1 1 1

R, D
√

2 1 1

R, D 1
√

2 1

C, D 1 1
√

2

R, D
√

2
√

2
√

2

R, D 1
√

2
√

2

R, D
√

2 1
√

2

R, D
√

2
√

2 1

N = 3 β β1 β2
R, D 1 1 1

C, D
√

2 1 1

R, D 1
√

2 1

C, D 1 1
√

2

R, D
√

2
√

2
√

2

R, D 1
√

2
√

2

C, D
√

2 1
√

2

R, D
√

2
√

2 1

N = 4 β β1 β2
R 1 1 1

C
√

2 1 1

R 1
√

2 1

C 1 1
√

2

R
√

2
√

2
√

2

R 1
√

2
√

2

C
√

2 1
√

2

R
√

2
√

2 1

N = 5 β β1 β2
R 1 1 1

C
√

2 1 1

C 1
√

2 1

C 1 1
√

2

C
√

2
√

2
√

2

C 1
√

2
√

2

C
√

2 1
√

2

R
√

2
√

2 1

Table 6.2: Evaluating the influence of the parameters β, β1 and β2, nine different tuples are
constructed and applied to the Hamiltonian representations. The reality of the spectrum for the
Hamiltonian representations are evaluated for system sizes N = 2, 3, 4, 5 and the diagonalisability
for N = 2, 3. We use the conventions real (R), a non-zero imaginary component (C), diagonalisable
(D), non-diagonalisable (N-D).

Analysing the spectra we see that as the system size increases so does the instances of
complexity. Contrasting N = 2 with N = 5 the former possesses seven out of eight real
parameter tuples whereas the latter only possesses two out of eight. Interestingly the nature
of the spectrum remained the same for N = 3 and N = 4.
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There exist two tuples {1, 1 , 1} and {
√

2,
√

2 , 1} that remain real throughout the data set.
We associate these with the most natural parameter designations corresponding to physical
systems. The first tuple is unsurprising and was used in our initial analysis performed in Sec-
tion 6.2.1. The second is interesting, demonstrating the asymmetry between the parameters
β1 and β2. In order to extract more information regarding the influence of these parameters
on the reality of the spectra we require a deeper examination of the influence of varying the
parameter η̃. An investigation of this nature will form a future direction of the project.

Examining the diagonalisability, it is evident there is limited data available. This is a
consequence of the matrix dimensions for N = 4, 5. Of the N = 2, 3 tuples analysed all are
diagonalisable. In addition to further exploration of the parameter space we seek to employ
greater computational power to examine the diagonalisability of larger system sizes.

6.3 Invariant Bilinear Form

Our focus now turns toward the representation theory of the (2, 2) Temperley-Lieb alge-
bra T LN(β), specifically the question of irreducibility. In quantum mechanics irreducible
representations of the symmetry group associated with a Hamiltonian characterise the cor-
responding eigenspace, hence providing a consistent state labelling system [31]. Fuelled by
this observation, we seek to implement a similar approach as in [29]; examining an invariant
bilinear form on the link-states of T LN(β). As we will demonstrate, the conditions of irre-
ducibility for the (1, 1) and the (2, 2) Temperley-Lieb algebras are strikingly similar. As far
as the author is aware an examination of this nature for T LN(β) has not been presented in
the literature and hence forms a novel result of this thesis.

An invariant bilinear form on the vector space of linkstates VN is a map

〈 , 〉 : VN × VN → C.

Bilinearity ensures it must satisfy the following relations

〈av, bw〉 = ab〈v, w〉, (6.24)

〈v1 + v2, w〉 = 〈v1, w〉+ 〈v1, w〉, (6.25)

〈v, w1 + w2〉 = 〈v, w1〉+ 〈v, w2〉, (6.26)

where v, v1, v2, w, w1, w2 ∈ VN a, b ∈ C. For the Temperley-Lieb algebra we calculate the
bilinear form by placing the link-state of the first argument in the upright position, the
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second argument is then reflected about the horizontal and the nodes of each diagram are
matched in a consistent manner. This action is demonstrated below

〈
,

〉
= = = β

(
β − 1

β

)2

, (6.27)

where in the second equality we exploited the property of projectors P 2
2 = P2. An interesting

property of the bilinear form is given by

〈Uv,w〉 = 〈v, U †w〉, ∀ U, U † ∈ T LN(β) (6.28)

Here we have introduced the complex conjugate U † of an object U in T LN(β). This operation
is simply the mirror image of the original object about the horizontal [29], diagrammatically

U = U , (6.29)

U † = U . (6.30)

Let us show equation (6.28) holds for an arbitrary configuration U and the hermitian con-
jugate U †. Without loss of generality we assign the link-states

v = , (6.31)

w = . (6.32)

Applying these objects to each side of equation (6.28) we have

〈Uv,w〉 =

〈
U ,

〉

= U

〈v, U †w〉 =

〈
,

U
〉

= U .

Here the dotted line denotes the axis about which the second argument was reflected. Exam-
ining the forms of each expansion we see they are identical. Equating these terms, equation
(6.28) directly follows. Having established the properties of the bilinear form we can discuss
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how it provides insight into the irreducibility of VN . The radical of this bilinear form on VN
is defined

RN = {x ∈ VN | 〈x, y〉 = 0, ∀y ∈ VN}. (6.33)

Proposition 3.3 from [29] states, the radical RN is itself a submodule of VN . It follows that if
a space VN possesses a non-trivial radical this link space is reducible. To examine the radical
of a linkspace we require one final ingredient, the Gram matrix.

6.3.1 Gram Matrix

The Gram matrix facilitates the systematic analysis of the bilinear product of each link-state
within VN . This object is defined

GN =


〈v1, v1〉 〈v2, v1〉 . . . 〈vm, v1〉
〈v1, v2〉 〈v2, v2〉 . . . 〈vm, v2〉

...
...

. . .
...

〈v1, vm〉 〈v2, vm〉 . . . 〈vm, vm〉

 , (6.34)

where v1, v2, ..., vm ∈ VN and m = dimVN . Of great interest is the determinant of the
Gram matrix. Indeed, if detGN = 0 it follows there exists a non-trivial radical implying the
reducibility of VN . We seek to develop a closed form expression for the determinant of the
Gram matrix associated with the linkspace VN . This expression provides insight into the
conditions of irreducibility for any linkspace VN . To achieve this, the Gram matrices for the
first six non-trivial linkspaces (N = 2, 3, 4, 5, 6, 7) have been determined. The first four are
given by

G2 = β

(
β − 1

β

)
(6.35)

G3 = β

(
β − 1

β

)(
β − 2

β

)
(6.36)

G4 =

β(β − 1
β
)[(β − 1

β
)(β − 2

β
) + 1

β2 ] β(β − 1
β
)2 β(β − 1

β
)2

β(β − 1
β
)2 β2(β − 1

β
)2 β(β − 1

β
)

β(β − 1
β
)2 β(β − 1

β
) β2(β − 1

β
)2

 (6.37)

G5 =


β(β− 1

β
)(β− 2

β
)[(β− 1

β
)(β− 2

β
)+1] β(β− 1

β
)2(β− 2

β
) β(β− 1

β
)2(β− 2

β
) β(β− 1

β
)2(β− 2

β
) β(β− 1

β
)2(β− 2

β
) β(β− 1

β
)2(β− 2

β
)

β(β− 1
β
)2(β− 2

β
) β2(β− 1

β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
) 0 0 β(β− 1

β
)(β− 2

β
)

β(β− 1
β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
) β2(β− 1

β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
) 0 0

β(β− 1
β
)2(β− 2

β
) 0 β(β− 1

β
)(β− 2

β
) β2(β− 1

β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
) 0

β(β− 1
β
)2(β− 2

β
) 0 0 β(β− 1

β
)(β− 2

β
) β2(β− 1

β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
)

β(β− 1
β
)2(β− 2

β
) β(β− 1

β
)(β− 2

β
) 0 0 β(β− 1

β
)(β− 2

β
) β2(β− 1

β
)2(β− 2

β
)

 .

(6.38)
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The first two are one dimensional matrices as the linkspaces possess only one basis state.
Examining the remaining forms we see these matrices are symmetric, this follows from the
symmetry of the bilinear product. The matrices G6 and G7 are too large to display, see
Appendix C.2 for the Mathematica code to construct these objects. Taking the determinant
of these matrices we have the sequence

det(G2) =β2 − 1

det(G3) =
1

β2
(β2 − 1)(β3 − 2β)

det(G4) =
1

β4
(
β2 − 1

)3 (
β3 − 2β

)2 (
β4 − 3β2 + 1

)
det(G5) =

1

β15
(β2 − 1)5(β3 − 2β)6(β4 − 3β2 + 1)3(β5 − 4β3 + 3β)

det(G6) =
1

β40
(β2 − 1)11(β3 − 2β)14(β4 − 3β2 + 1)10(β5 − 4β3 + 3β)4(β6 − 5β4 + 6β2 − 1)

det(G7) =
1

β119
(β2 − 1)21(β3 − 2β)35(β4 − 3β2 + 1)28(β5 − 4β3 + 3β)15(β6 − 5β4 + 6β2 − 1)5

(β7 − 6β5 + 10β3 − 4β)1.

(6.39)

Examining this sequence we see Chebyshev polynomials of the second kind arising naturally.
These polynomials are defined recursively by

U0(β/2) = 1

U1(β/2) = β

Un+1(β/2) = βUn(β/2)− Un−1(β/2).

(6.40)

We will need the first seven polynomials, for convenience these are listed as follows

U0 = 1

U1 = β

U2 = β2 − 1

U3 = β3 − 2β

U4 = β4 − 3β2 + 1

U5 = β5 − 4β2 + 3β

U6 = β6 − 5β4 + 6β2 − 1

U7 = β7 − 6β5 + 10β3 − 4β.

(6.41)

Here we have used the convention Un = Un(β/2). Expressing the sequence of Gram deter-
minants in terms of Chebyshev polynomials, we have
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det(G2) =

(
1

β

)0(
U1

U0

)1(
U2

U1

)1

det(G3) =

(
1

β

)3(
U1

U0

)3(
U2

U1

)2(
U3

U2

)1

det(G4) =

(
1

β

)4(
U1

U0

)6(
U2

U1

)6(
U3

U2

)3(
U4

U3

)1

det(G5) =

(
1

β

)15(
U1

U0

)15(
U2

U1

)15(
U3

U2

)10(
U4

U3

)4(
U5

U4

)1

det(G6) =

(
1

β

)36(
U1

U0

)36(
U2

U1

)40(
U3

U2

)29(
U4

U3

)15(
U5

U4

)5(
U6

U5

)1

det(G7) =

(
1

β

)105(
U1

U0

)91(
U2

U1

)105(
U3

U2

)84(
U4

U3

)49(
U5

U4

)21(
U6

U5

)6(
U7

U6

)1

.

(6.42)

Examining this sequence we propose the following closed form expression for det(GN)

det(GN) =

(
U0

U1

)N dimV 0
N−1

N∏
j=1

(
Uj
Uj−1

)dimV jN

. (6.43)

Comparing this result to that of the (1, 1) Temperley-Lieb algebra det(GN), presented in
[29]. This equation given by

det(GN) =
N∏
l=1

(
Ul
Ul−1

)dimV
2l
N

. (6.44)

The author would like to express astonishment at the striking similarity between the forms of

the two expressions. Note that dimV j
N and dimV

2l

N give the dimensions of the vector spaces
associated with the (2, 2) Temperley-Lieb algebra T LN(β) and the (1, 1) Temperley-Lieb
algebra TLN(β) algebra respectively. Furthermore j defines a cabled boundary connection
whereas l defines a single boundary connection, it follows j = 2l. As in the TLN(β) case, the
conditions of irreducibility of the T LN(β) linkspace effectively reduces to an examination of
Chebyshev polynomial zeros.

6.3.2 Conditions of Irreducibility

This section will conclude our examination of the (2, 2) Temperley-Lieb algebra represen-
tation theory. Here we examine the conditions on the parameter β ensuring an irreducible
representation. Recall the form of the loop fugacity β

β = 2 cosλ. (6.45)
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The Chebyshev polynomials associated with the Gram determinant are given by Ux(β/2).
It suffices to examine the zeros of this function over the domain [−1, 1]. As in [32], this
polynomial can be expressed in terms of trigonometric functions

Ux(β/2) =
sin ((x+ 1) arccos(β/2))

sin ( arccos(β/2))
. (6.46)

Solving for the roots of this expression it follows that they are real, distinct and are given
by the function

β = 2 cos

((
k

x+ 1

)
π

)
, k = 1, ..., x. (6.47)

Here we have found the roots of Chebyshev polynomial. Let us now take a closer look at the
determinant of the Gram matrix as to avoid the poles of this function. The Gram determinant
det(GN), is presented in equation (6.43) and can be re-expressed as the proportionality

det(GN) ∝
N∏
j=1

Uj(β/2)dimV
j
N−dimV

j+1
N . (6.48)

This expression details the essential information required for the analysis of the conditions
of irreducibility. Examining the exponent

∆dimV j
N = dimV j

N − dimV j+1
N =

(
N

j

)
2

+

(
N

j + 2

)
2

, (6.49)

here we have simply applied the definition of Riordan numbers, see equation (6.5). We are
particularly interested in the cases where ∆dimV j

N < 0. In such instances the zeros of the
Chebyshev polynomials of order 1 ≤ j will become poles of the determinant. We propose two
approaches providing “approximate” conditions on the irreducibility of a particular linkspace.

Approach I: Avoid the poles

We have an understanding of both the zeros and poles of the Gram determinant in terms of
the Chebyshev polynomials, see equations (6.47) and (6.48). Avoiding both the zeros and
the poles of the Gram determinant the conditions of irreducibility are given by

β 6= 2 cos

((
k

x+ 1

)
π

)
, k = 1, ..., x, x = 1, ..., N. (6.50)

We recognise this condition is overly restrictive on the parameter β. The elimination of the
poles will permit the form of β possessing values x ≤ j, this case will now be explored.
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Approach II: Eliminate the poles

Exploiting the factorisation properties of the Chebyshev polynomial developed in [32]

Um(x) = Uh(x)

(
2

l∑
k=0

(
Tm−(2k+1)h−2k(x)− 1

))
, (6.51)

where

m = (2l + 1)h+ 2l, m, h, l ∈ Z+,

and Tn(x) denotes the nth Chebyshev polynomials of the first kind. The second kind Cheby-
shev polynomials of order x ≤ j existing on the denominator can be cancelled by the fac-
tored forms of second kind Chebyshev polynomials of order j + 1 ≤ x ≤ m. Here m defines
the order of Chebyshev polynomials required to cancel those existing in the denominator.
Eliminating the Chebyshev polynomials of order x ≤ j ensures these functions no longer
contribute poles or zeros to the Gram determinant. It follows that β can be expressed in
terms of zeros of these polynomials as they no longer exist in the Gram determinant. Given
this consideration, the refined conditions of irreducibility are given by

β 6= 2 cos

((
k

x+ 1

)
π

)
, k = 1, ..., x, x = j + 1, ..., N. (6.52)

The second kind Chebyshev polynomials of order j + 1 ≤ x ≤ m were used to cancel
those of order x ≤ j, one can imagine the possibility of this cancellation process eliminat-
ing particular order polynomials on that interval. For those particular x, β is permitted
to possess those values. Furthermore the introduction of the first order Chebyshev terms
may introduce further zeros, requiring additional conditions be enforced on the parameter β.

The author would like to concede the crudity of these arguments however, a full examination
of the conditions of irreducibility is beyond the scope of this thesis. Approach II is the
most rigorous in determining the full conditions on the parameter β. Here we outline the
steps required to achieve a thorough treatment of the irreducibility conditions. Understand
the conditions on j and N when ∆dimV j

N < 0. Determine an expression for m detailing
the polynomials required to cancel the poles. Finally, examine the first order Chebyshev
polynomial terms contributing new zeros to the Gram determinant.
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Conclusion

Beginning with a brief introduction to loop models at large, this thesis has provided a focused
look at the (1, 1) Temperley-Lieb loop model [13]. Integrable Robin boundary conditions for
the (1, 1) model were presented and the underlying algebraic structure was examined. Follow-
ing [2], a fusion procedure was detailed allowing the construction of a (m,n) Temperley-Lieb
loop model from the elementary (1, 1) face operators. Particular attention was placed on
the (2, 2) Temperley-Lieb loop model where we introduced generalised Robin boundary con-
ditions. A solution to the BYBE was presented ensuring the (2, 2) Temperley-Lieb loop
model remains integrable with the extension to the boundary. This solution was then used
to construct a (2, 2) boundary operator from (1, 1) constituent operators. Following these
advancements, the generators of the underlying one-boundary (2, 2) Temperley-Lieb algebra
were listed and the defining relations were determined.

Applying a seam of width w, the Robin boundary conditions introduced to the (2, 2) Temperley-
Lieb loop model were then used to construct an infinite class of integrable boundary condi-
tions. Focus was then placed on determining the Hamiltonian of the (2, 2) Temperley-Lieb
loop model with width w = 0. The integrability of the boundary conditions permitted the
construction of a commuting family of transfer tangles. Taking the expansion of the transfer
tangle allowed the Hamiltonian of the model to be determined. Exploring the representa-
tion theory of the one-boundary (2, 2) Temperley-Lieb algebra BT LN(β; β1, β2) allowed the
determination of the spectra for N = 2, 3, 4, 5. Examining the resulting spectra for the afore-
mentioned N , we provided insight into the energy level structure as the system size increases.

Our attention then turned toward the representation theory of the (2, 2) Temperley-Lieb al-
gebra T LN(β). Here an invariant bilinear form was constructed to examine the conditions of
irreducibility on the linkspace associated with this algebra. A Gram matrix was constructed
facilitating the systematic analysis of this form. Examining the first six non-trivial Gram
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matrices, a closed form expression of the determinant was proposed. Preliminary analysis of
this object yields novel insights into the conditions of irreducibility of linkspace associated
with the (2, 2) Temperley-Lieb algebra T LN(β).

The key contributions of this thesis are the introduction of an infinite class of Yang-Baxter
integrable boundary conditions to the (2, 2) Temperley-Lieb model and the novel closed form
expression of the Gram matrix determinant for the linkspace associated with T LN(β). These
contributions motivate two distinct directions of future investigation.

Firstly, we seek to establish the drop-down properties associated with the extended boundary
conditions, followed by a rigorous definition of the boundary Wenzl-Jones projector. Next,
we envisage the generalisation of the fusion procedure developed for the (2, 2) boundary
operator to an arbitrary size (n, n). Pairing this construction with the (n, n) bulk square
operator introduced in Chapter 3, one may be able to construct an integrable one-boundary
(n, n) Temperley-Lieb loop model. The energy level structure of the one-boundary (2, 2)
Temperley-Lieb loop model was explored through matrix representations of the Hamiltonian
associated with this model. It was recognised for particular parameter values the spectra
was real despite the non-Hermiticity of these representations. A similar phenomena was
observed for the Hamiltonian of the (1, 1) Temperley-Lieb loop model [15]. An argument
was constructed by Morin-Duchesne et al. [33] demonstrating this result to be the conse-
quence of the pseudo-Hermiticity of the Hamiltonian. We seek to adapt this argument to
the one-boundary (2, 2) Temperley-Lieb Hamiltonian, providing a consistent interpretation
of the reality of the spectra. The exploration of the energy level structure was conducted
for small system sizes N . Developing a computer program to determine representations of
the Hamiltonian for arbitrary system sizes will permit the examination of the energy level
structure for larger N . This information will allow us to generalise from finite N to the
continuous limit.

Secondly, we seek to continue our exploration of the Temperley-Lieb algebra representation
theory. Of immediate interest is finalising the conditions on β ensuring the irreducibility of
the linkspace VN , associated with the (2, 2) Temperley-Lieb algebra T LN(β). It follows that
a similar methodology can be applied to the linkspace of the one-boundary (2, 2) Temperley-
Lieb algebra BT LN(β; β1, β2). An examination of this nature allows a determination of the
conditions on the parameters β, β1 and β2 ensuring the irreducibility of the linkspace VN .



A
Boundary Yang Baxter Equation

A.1 Mathematica Code

Here we provide the code to verify the solution to the BYBE. Throughout the Mathematica
code blocks we have used the conventions

F (v, λ) = F [v, l]

β = b[l]

β1 = b2

β2 = b1

η = n

A.1.1 Ratio

Here we present the code verifying the forms of Xη(v) and Yη(v) are solutions to the BYBE

X[v_, l_] := (b2 + Y[v, l])((n + Sin[v] (b1 Sin[v - 2 l]

- b2 Sin[v - l]))/(b[l] Sin[l] Sin[2 v]))

Y[v_, l_] := ((-n b[l] + (b[l] b1 - b2) (Sin[l])^2 + (2 b2

- b[l] b1) (Sin[v])^2)/(Sin[l] Sin[2 v + l]))

b[l_]:= 2 Cos[l]

C1[u_, v_, l_] := 2 b2 b[l] Sin[l] Sin[v] Cos[v] X[v, l]
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- 2 b2 b[l] Sin[l] Sin[u] Cos[u] X[u, l] + b2 Sin[u - v]

(-b2 Sin[u + v - l] + b1 Sin[u + v - 2 l]) Y[v, l] +

b2 Sin[u - v] (-b2 Sin[u + v - l] + b1 Sin[u + v - 2 l])

Y[u, l] + 2 b[l] Sin[l] Sin[v] Cos[v] X[v, l] Y[u, l] -

2 b[l] Sin[l] Sin[u] Cos[u] Y[v, l] X[u, l] + Sin[u - v]

(-b2 Sin[u + v - l] + b1 Sin[u + v - 2 l]) Y[v, l] Y[u, l]

+ b2^2 Sin[u - v] (-b2 Sin[u + v - l] + b1 Sin[u + v - 2 l])

C2[u_, v_, l_] := -(b1 b[l] - 2 b2) Sin[l] Sin[u + v] Sin[u - v]

Sin[2 v] X[v, l] - Sin[u + v] Sin[

u - v] (b1 Sin[u + v - l] - b2 Sin[u + v]) (b1 Sin[u - v + l]

- b2 Sin[u - v]) Y[v, l] - (Sin[l])^2 Sin[2 v] Sin[2 u + l]

X[v, l] Y[u, l] + (Sin[l])^2 Sin[2 u] Sin[2 u + l] Y[v, l]

X[u, l] - Sin[l] Sin[u - v] Sin[2 u + l] (b1 Sin[u + v - l]

- b2 Sin[u + v]) Y[v, l] Y[u, l]

C3[u_, v_, l_] := -b[l] Sin[l] Sin[2 v] X[v, l] + b[l] Sin[l] Sin[2 u]

X[u, l] + (-b[l] Sin[l] (b1 - b2/b[l]) Sin[2 v] + ((2 b2)/b[l] - b1)

Sin[u + v] Sin[u - v]) Y[v, l] + (b[l] Sin[l] (b1 - b2/b[l]) Sin[2 u]

+ ((2 b2)/b[l] - b1) Sin[u + v] Sin[u - v]) Y[u, l] - 1/b[l] Sin[l]

(Sin[2 u + l] - Sin[2 v + l]) Y[v, l] Y[u, l] + (b[l] (b1 - b2/b[l])

Sin[u - v] (b1 Sin[u + v] - b2 Sin[u + v - l]) + b2 ((2 b2)/b[l] - b1)

Sin[u + v] Sin[u - v])

C4[u_, v_, l_] :=

b[l] Sin[l] Sin[2 v] (Cos[2 l] Cos[2 v] - Cos[l] Cos[2 u - l])

X[v, l] + b[l] (Sin[l])^2 Sin[2 u] Sin[2 u + l] X[u, l] +

Sin[u + v - l] Sin[u - v] ((b[l] b1 - b2) Sin[u - v + l]

Sin[u + v - l] - b2 Sin[u + v] Sin[u - v]) Y[v, l] + Sin[l]

Sin[u - v] Sin[2 u + l] (-(b1 b[l] - 2 b2) Sin[u + v - l]

+ b2 Sin[u + v + l]) Y[u, l] + Sin[l] Sin[u + v - l] Sin[u - v]

Sin[2 u + l] Y[v, l] Y[u, l] + (-b[l] b1^2 Sin[u + v - l]

Sin[u + v] Sin[u - v] Sin[u - v + l] + b2 b1 b[l] Sin[u - v]

(Sin[u + v - l] (Cos[l] Cos[2 v - l] - Cos[2 u]) +

(Sin[u + v])^2 Sin[u - v + l]) - b2^2 Sin[u - v]

((Sin[u + v - l])^2 Sin[u - v + l] + Sin[u + v]

Sin[u - v] (2 Sin[u + v - l] + Sin[u + v + l])))

C5[u_, v_, l_] := Sin[l] Sin[2 v + l] Y[v, l] - Sin[l] Sin[2 u + l]

Y[u, l] - (b[l] b1 - 2 b2) Sin[u - v] Sin[u + v]

Simplify[C1[u, v, l]]
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Simplify[C2[u, v, l]]

Simplify[C3[u, v, l]]

Simplify[C4[u, v, l]]

Simplify[C5[u, v, l]]

A.1.2 Coefficients

Here we present the code verifying the forms of Aη(v), Bη(v) and Cη(v) are solutions to the
BYBE

Ae[v_,l_]:= (Sin[l]/(n(n-b1 (Sin[l])^2)Sin[2v+l]))(n-b2 Sin[v+l]Sin[v]

+ b1 Sin[v+l]Sin[v-l])(n-b2 Sin[v]Sin[v-l] + b1 Sin[v]Sin[v-2l])

Be[v_,l_]:= (((Sin[l])^2 Sin[2v])/(n(b1 (Sin[l])^2-n)Sin[2v+l]))

((b[l]b1 - b2)(Sin[l])^2 - n b[l] + (2b2 - b[l] b1)(Sin[v])^2)

Ce[v_,l_]:= ((Sin[l])^3 Sin[2v])/(n(b1 (Sin[l])^2-n))

b[l_]:= 2 Cos[l]

D1[u_, v_,l_]:= 2 b2 b[l] Sin[l] Sin[v] Cos[v] Ae[v,l]Ce[u,l]-2 b2 b[l]

Sin[l] Sin[u] Cos[u] Ae[u,l]Ce[v,l]+b2 Sin[u-v](-b2 Sin[u+v-l]+

b1 Sin[u+v-2l]) Be[v,l]Ce[u,l]+b2 Sin[u-v] (-b2 Sin[u+v-l]+b1

Sin[u+v-2 l]) Be[u,l]Ce[v,l]+2 b[l] Sin[l] Sin[v] Cos[v] Ae[v,l] Be[u,l]

-2 b[l] Sin[l] Sin[u] Cos[u] Be[v,l] Ae[u,l]+Sin[u-v] (-b2 Sin[u+v-l]

+b1Sin[u+v-2 l])Be[v,l] Be[u,l]+b2^2 Sin[u-v]

(-b2 Sin[u+v-l]+b1 Sin[u+v-2 l])Ce[v,l] Ce[u,l]

D2[u_,v_,l_]:= -(b1 b[l]-2 b2) Sin[l]Sin[u+v] Sin[u-v] Sin[2v] Ae[v,l]Ce[u,l]

-Sin[u+v] Sin[u-v](b1 Sin[u+v-l]-b2 Sin[u+v]) (b1 Sin[u-v+l]-b2 Sin[u-v])

Be[v,l]Ce[u,l]-(Sin[l])^2 Sin[2v] Sin[2u+l] Ae[v,l]Be[u,l]+(Sin[l])^2 Sin[2u]

Sin[2u+l] Be[v,l] Ae[u,l]-Sin[l] Sin[u-v] Sin[2u+l] (b1 Sin[u+v-l]-b2 Sin[u+v])

Be[v,l] Be[u,l]

D3[u_,v_,l_]:= -b[l] Sin[l] Sin[2 v] Ae[v,l]Ce[u,l]+b[l] Sin[l] Sin[2 u]

Ae[u,l]Ce[v,l] +(-b[l] Sin[l](b1-b2/b[l]) Sin[2 v]+((2b2)/b[l]-b1) Sin[u+v]

Sin[u-v]) Be[v,l]Ce[u,l]+(b[l] Sin[l] (b1-b2/b[l]) Sin[2 u]+((2b2)/b[l]-b1)

Sin[u+v] Sin[u-v]) Be[u,l]Ce[v,l]-1/b[l] Sin[l] (Sin[2 u+l]-Sin[2 v+l])

Be[v,l] Be[u,l]+(b[l] (b1-b2/b[l]) Sin[u-v](b1 Sin[u+v]-b2 Sin[u+v-l])

+b2 ((2b2)/b[l]-b1) Sin[u+v] Sin[u-v])Ce[u,l]Ce[v,l]
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D4[u_,v_,l_]:= b[l] Sin[l] Sin[2v] (Cos[2l] Cos[2v]-Cos[l] Cos[2u-l]) Ae[v,l]Ce[u,l]

+b[l] (Sin[l])^2 Sin[2u] Sin[2u+l] Ae[u,l]Ce[v,l]+Sin[u+v-l] Sin[u-v] ((b[l] b1-b2)

Sin[u-v+l] Sin[u+v-l]-b2 Sin[u+v] Sin[u-v]) Be[v,l]Ce[u,l]+Sin[l] Sin[u-v] Sin[2u+l]

(-(b1 b[l]-2 b2) Sin[u+v-l]+b2 Sin[u+v+l]) Be[u,l]Ce[v,l]+Sin[l] Sin[u+v-l] Sin[u-v]

Sin[2u+l] Be[v,l] Be[u,l]+(-b[l] b1^2 Sin[u+v-l] Sin[u+v] Sin[u-v] Sin[u-v+l]+

b2 b1 b[l] Sin[u-v] (Sin[u+v-l] (Cos[l] Cos[2v-l]-Cos[2u])+(Sin[u+v])^2 Sin[u-v+l])

-b2^2 Sin[u-v] ((Sin[u+v-l])^2 Sin[u-v+l]+Sin[u+v]Sin[u-v]

(2Sin[u+v-l]+Sin[u+v+l])))Ce[u,l]Ce[v,l]

D5[u_,v_,l_]:= Sin[l] Sin[2 v+l]Be[v,l]Ce[u,l]-Sin[l] Sin[2 u+l]Be[u,l]Ce[v,l]

-(b[l] b1-2 b2) Sin[u-v] Sin[u+v]Ce[u,l]Ce[v,l]

Simplify[D1[u, v, l]]

Simplify[D2[u, v, l]]

Simplify[D3[u, v, l]]

Simplify[D4[u, v, l]]

Simplify[D5[u, v, l]]



B
Extended Boundary Coefficients

The size and number of coefficients for both the reoccuring forms and the boundary opera-
tors were far too large to be presented eloquently in the body of the report. As such we will
present them in the following sections.

The extended boundary coefficients are defined in terms of the functions α̂0(u), α̂1(u), α̂2(u)
and Aη(u), Bη(u), Cη(u). For convenience these are listed below

α̂0(u) = −sin(u− 2λ) sin2(u− λ)

β sin3 λ

α̂1(u) =
sin2(u− λ) sin(u)

sin3 λ

α̂2(u) = −sin(u) sin(u+ λ) sin(u− λ)

β sin3 λ
.

and

Aη(v) =

[
sin(v + λ)

ηβ2 sinλ sin(2v + λ)

][
β1 sin(v)− β2 sin(v − λ)

][
η + sin(v)

{
β2 sin(v − 2λ)− β1 sin(v − λ)

}]

Bη(v) =

[
sin(2v)

ηβ2 sin(2v + λ)

][
(ββ2 − β1) sin2 λ− ηβ + (2β1 − ββ2) sin2(v)

]

Cη(v) =
sinλ sin(2v)

ηβ2
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B.1 Reoccuring Forms

For a seam of arbitrary width w ∈ 2N0 we recognise 17 reoccurring forms. These are given
by the coefficients a(w)(u, ξw) to s(w)(u, ξw), where the width of the seam is indexed by the
superscript.

a(w)(u, ξw) = α̂0(u+ ξw)α̂0(u− ξw)

b(w)(u, ξw) = α̂1(u+ ξw)α̂0(u− ξw) + α̂0(u+ ξw)α̂1(u− ξw) +

(
β − 2

β

)
α̂1(u+ ξw)α̂1(u− ξw)

c(w)(u, ξw) = α̂2(u+ ξw)α̂0(u− ξw) +
1

β2
α̂1(u+ ξw)α̂1(u− ξw) + α̂0(u+ ξw)α̂2(u− ξw)

+

(
β − 1

β

)
[α̂1(u+ ξw)α̂2(u− ξw) + α̂2(u+ ξw)α̂1(u− ξw) + βα̂2(u+ ξw)α̂2(u− ξw)]

d(w)(u, ξw) = − 1

β
α̂0(u+ ξw)α̂1(u− ξw)

e(w)(u, ξw) =
1

β2
α̂1(u+ ξw)α̂1(u− ξw)

f (w)(u, ξw) =
1

β2
α̂1(u+ ξw)α̂1(u− ξw) +

(
β − 2

β

)
α̂1(u+ ξw)α̂2(u− ξw) + α̂0(u+ ξw)α̂2(u− ξw)

g(w)(u, ξw) =
1

β2

(
α̂2(u+ ξw)α̂1(u− ξw) + α̂1(u+ ξw)α̂2(u− ξw)− 1

β
α̂1(u+ ξw)α̂1(u− ξw)

)
+

(
β − 1

β

)
α̂2(u+ ξw)α̂2(u− ξw)

h(w)(u, ξw) = α̂2(u+ ξw)α̂2(u− ξw)

i(w)(u, ξw) = α̂1(u+ ξw)α̂2(u− ξw)

j(w)(u, ξw) = α̂0(u+ ξw)α̂2(u− ξw)

k(w)(u, ξw) = − 1

β
α̂0(u+ ξw)α̂1(u− ξw)

l(w)(u, ξw) =
1

β2
α̂1(u+ ξw)α̂1(u− ξw) + α̂0(u+ ξw)α̂2(u− ξw) +

(
β − 2

β

)
α̂1(u+ ξw)α̂2(u− ξw)

m(w)(u, ξw) = − 1

β
α̂1(u+ ξw)α̂2(u− ξw)

n(w)(u, ξw) = α̂0(u+ ξw)α̂2(u− ξw)

o(w)(u, ξw) = α̂0(u+ ξw)α̂2(u− ξw)

p(w)(u, ξw) = − 1

β
α̂1(u+ ξw)α̂2(u− ξw)

q(w)(u, ξw) = α̂0(u+ ξw)α̂2(u− ξw)

r(w)(u, ξw) = − 1

β
α̂0(u+ ξw)α̂1(u− ξw)
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s(w)(u, ξw) =
1

β2
α̂1(u+ ξw)α̂1(u− ξw) + α̂0(u+ ξw)α̂2(u− ξw) +

(
β − 2

β

)
α̂1(u+ ξw)α̂2(u− ξw)

Forms specific to small system sizes w = 2, 4 are given by

t(2)(u, ξ2) =
β1
β2
α̂1(u+ ξ2)α̂1(u− ξ2)

u(2)(u, ξ2) =
β1
β2

(
α̂2(u+ ξ2)α̂1(u− ξ2) + α̂1(u+ ξ2)α̂2(u− ξ2)−

1

β
α̂1(u+ ξ2)α̂2(u− ξ2)

)
v(2)(u, ξ2) = −β1

β
α̂0(u+ ξ2)α̂1(u− ξ2)

w(2)(u, ξ2) =
β1
β2
α̂1(u+ ξ2)α̂1(u− ξ2) +

(
β2 −

2β1
β

)
α̂1(u+ ξ2)α̂2(u− ξ2)

x(2)(u, ξ2) = α̂0(u+ ξ2)α̂2(u− ξ2)

y(2)(u, ξ2) =
β2
1

β2
α̂1(u+ ξ2)α̂1(u− ξ2)

z(2)(u, ξ2) =
β2
1

β2

(
α̂2(u+ ξ2)α̂1(u− ξ2) + α̂1(u+ ξ2)α̂2(u− ξ2)−

1

β
α̂1(u+ ξ2)α̂1(u− ξ2)

)
+ β1

(
β2 =

β1
β

)
aa(4)(u, ξ4) = α̂0(u+ ξ4)α̂2(u− ξ4)
ab(4)(u, ξ4) = α̂0(u+ ξ4)α̂2(u− ξ4).

B.2 Boundary Operators

The boundary operators are constructed by the iterative application of the reoccurring forms
defined above. Let us first present the base coefficients, these are given by the coefficients of
the first non-trivial seam width w = 2

∆(2) =a(2)(u, ξ2)Aη(u)

Θ(2) =b(2)(u, ξ2)Aη(u) + t(2)(u, ξ2)Bη(u) + y(2)(u, ξ2)Cη(u)

Λ
(2)
0 =c(2)(u, ξ2)Aη(u) + u(2)(u, ξ2)Bη(u) + z(2)(u, ξ2)Cη(u)

For a general seam width the coefficients are defined recursively as follows. Note: we use the
convention where

∏N
(p=0) is incremented by 2.
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∆(w) =a(w)(u, ξw)∆(w−2)

Θ(w) =b(w)(u, ξw)∆(w−2) + e(w)(u, ξw)Θ(w−2)

Λ̂(w) =c(w)(u, ξw)∆(w−2) + g(w)(u, ξw)Θ(w−2) + h(w)(u, ξw)Λ̂(w−2)

Λ̃(w) =j(w)(u, ξw)Λ̂(w−2)

Λ
(w)
k =

( w∏
(p=w−k+2)

q(p)(u, ξp)
)

Λ̃(w−k)

Γ̂(w) =d(w)(u, ξw)Θ(w−2)

Γ
(w)
l =

( w∏
(p=w−l+2)

k(p)(u, ξp)
)

Γ̂(w−l)

Γ̃(w) =
( w∏

(p=4)

k(p)(u, ξp)
)

(r(2)(u, ξ2)Bη(u) + v(2)(u, ξ2)Cη(u))

Φ̂(w) =f (w)(u, ξw)Θ(w−2) + i(w)(u, ξw)Λ̂(w−2)

Φ̃(w) =o(w)(u, ξw)Φ̂(w−2)

Φ
(w)
k =

( w∏
(p=w−k+2)

q(p)(u, ξp)
)

Φ̃(w−k)

Ψ̂(w) =p(w)(u, ξw)Φ̂(w−2)

Ψ̂
(w)
l =

( w∏
(p=w−l+2)

m(p)(u, ξp)
)

Ψ̂(w−l)

Ψ̃(w) =n(w)(u, ξw)Ψ̂(w−2)

Ψ̃
(w)
k,l =

( w∏
(p=w−k+2)

q(p)(u, ξp)
)

Ψ̂
(w−k)
l

χ(w) =l(w)(u, ξw)Γ̃(w−2)

χ
(w)
k =

( w∏
(p=w−k+2)

n(p)(u, ξp)
)
χ(w−k)

Ω(w)
wb

=
( w∏

(p=2)

q(p)(u, ξp)
)
Bη(u)

Ω(w)
wc =

( w∏
(p=2)

q(p)(u, ξp)
)
Cη(u)

To demonstrate how these expressions are determined we will calculate the coefficient of the
following diagram as an example
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... ...

l

,

We recognise the key expression defining this object is given by

u+ξw

u−ξw
= d(w)(u, ξw) + e(w)(u, ξw)

+ f (w)(u, ξw) + g(w)(u, ξw) .

Constructing the intermediate object of width w − k with the corresponding coefficient

...

w − l

→ d(w−l)(u, ξw−l)Θ
(w−l−2).

In order to generate the rest of the object we recognise the importance of the expression

u+ξw

u−ξw
= k(w)(u, ξw) + l(w)(u, ξw) . (B.1)

It follows that the application of this result for the remaining w − k blocks, produces the
desired operator with the corresponding coefficient

... ...

l

→
( w∏
p=w−l+2

k(p)(u, ξp)
)
d(w−l)(u, ξw−l)Θ

(w−l−2) =
( w∏

(p=w−l+2)

k(p)(u, ξp)
)

Γ̂(w−l)

Here we have arrived at an expanded form of Γ
(w)
l , as required.
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C
Matrix Representations

The shear size of the matrices in some contexts are too large to be presented using standard
LATEX formatting. This is true for the Hamiltonian representations and the Gram matrix.
For completeness we will present the Mathematica code defining these objects for all calcu-
lated system sizes.

Throughout the Mathematica code blocks we have used the conventions

ρN(H) = HN

β = b

β1 = b1

β2 = b2

η̃ = n

GN = GN

C.1 Hamiltonian

N = 1
H1 = {{-((b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n)), -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(

b2 n))}, {0, -((b (-b1 + b b2 - b n))/n)}}

N = 2
H2= = {{-2 b (-(1/b) + b), -(b1/b) - (-(1/b) + b) b1, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {-((b (-b1 + b b2 - b n))/(

b2 n)), -b (-(2/b) + b) - (b (-b1 + b b2 - b n))/

n, -b (-((2 b1)/b) + b2)}, {-(b/(b2 n)), -((

b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), -((

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n))}}

N = 3
H3 = {{-b (-(4/b) + 2 b), 0, b1, b1, 0, 0,

0}, {-((b (-b1 + b b2 - b n))/(b2 n)), -b (-(4/b) + 2 b) - (

b (-b1 + b b2 - b n))/

n, -b, -b, -b (-(b1/b) + b2), -b (-(b1/b) + b2),
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0}, {-((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), -b,

1 - b^2 - b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, -(b1/b) - (-(1/b) + b) b1, -b2, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {0, -b, -1,

1 - b^2 -

b (-(1/b) + b), -b2, -(b1/b) - (-(1/b) + b) b1, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {-(b/(b2 n)), -((

b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0,

0, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, -b (-((2 b1)/b) + b2)}, {0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)),

1, -b (-(2/b) + b) - (b (-b1 + b b2 - b n))/

n, -b (-((2 b1)/b) + b2)}, {0, 0, 0, -(b/(b2 n)),

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), -((

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n))}}

N = 4

H4 = {{-b (-(6/b) + 3 b), -2 b, -b, 0, 0, b1, b1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0}, {-b, -2 b (-(1/b) + b), -1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0,

0}, {-2 b, -2, -2 b (-(1/b) + b) - b (-(2/b) + 2 b), 0, 0, 0,

0, -(b1/b) - (-(1/b) + b) b1, -(b1/b) - (-(1/b) + b) b1, 0, 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, -(b1^2/b) - b1 (-(b1/b) + b2),

0, 0, 0, 0}, {-((b (-b1 + b b2 - b n))/(b2 n)), 0,

0, -b (-(6/b) + 3 b) - (b (-b1 + b b2 - b n))/

n, -2 b, -b, -b, -b, -b, -b (-(b1/b) + b2), -b b2, -b (-(b1/b) +

b2), 0, 0, 0, 0, 0, 0, 0}, {0, -((b (-b1 + b b2 - b n))/(b2 n)),

0, -b, -2 b (-(1/b) + b) - (b (-b1 + b b2 - b n))/n, 0, 0, -1, -1,

0, -b2, 0, 0, 0, 0, 0, 0, 0,

0}, {-((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0,

1, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 1, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 1,

0, -b (-(4/b) + 2 b), 0, 1, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0}, {0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), -b, -1,

1, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (b (-b1 + b b2 - b n))/

n, 0, 0, -(b1/b) - (-(1/b) + b) b1, -b2, -b (-((2 b1)/b) + b2), 0,

0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2), 0}, {0, 0, 0, -b, -1, -1, 1,

0, -b (-(1/b) + b) -

b (-(3/b) + 2 b), -b2, -(b1/b) - (-(1/b) + b) b1, 0, 0,

0, -b (-((2 b1)/b) + b2), -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0,

0}, {-(b/(b2 n)), 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, -b, -b, 0, -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0, 0}, {0, 0,

0, 0, 0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)),

1, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 1, 0, 0,

0, -b (-((2 b1)/b) + b2), 0, -b (-((2 b1)/b) + b2), 0}, {0, 0, 0, 0,

0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0,

1, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 0, -b, -b,

0, -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0}, {0, 0, -(b/(b2 n)), 0,

0, 0, 0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, -b,

0, 0, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, -(b1/b) - (-(1/b) + b) b1, -b2,

0, -(b1^2/b) - b1 (-(b1/b) + b2)}, {0, -(b/(b2 n)), 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)),

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, -b,

0, -b, -1, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, -b2, -(b1/b) - (-(1/b) + b) b1, -b2, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -b,

0, -1, -2 b (-(1/b) + b),

0, -b2, -(b1/b) - (-(1/b) + b) b1, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)),

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0,

0, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0,

0, 0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0,

1, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0,

1, -b (-(2/b) + b) - (b (-b1 + b b2 - b n))/

n, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -(b/(b2 n)), 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), -((

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n))}}

N = 5
H5 = {{-b (-(8/b) + 4 b), -2 b, -b, -2 b, -2 b, -b, 0, b1, b1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {0, -b (-(4/b) + 2 b), 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {-b, -1, -b (-(1/b) + b) - b (-(5/b) + 3 b), -1, 1, 1, 0, 0, 0,

0, 0, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0, 0,

0, 0, 0, 0, -(b1/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-b,

1, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b), -1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, b1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-b, 1,

0, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b), -1, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, b1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {-b, -1, 1,

1, -1, -b (-(1/b) + b) - b (-(5/b) + 3 b), 0, 0,

0, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0,

0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {-((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0,

0, -b (-(8/b) + 4 b) - (b (-b1 + b b2 - b n))/

n, -b, -b, -b, -2 b, -b, -b, -2 b, -2 b, -b, 0, 0, 0, 0,

0, -b (-(b1/b) + b2), -b b2, -b b2, -b (-(b1/b) + b2), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {-((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0, 0,

0, -b (-(6/b) + 3 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 1, 1, 0, 0, 0, 0, 0, -b, 0, 0, -2 b, 0, 0, 0, 0, 0, b1, b1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0, -b (-(6/b) + 3 b), 0, 1, 1, 0, 0, 0, 0,

0, 0, -b, 0, -2 b, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 1,

0, -b (-(6/b) + 3 b) - (b (-b1 + b b2 - b n))/n, 0, 0, 1, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, -b (-((2 b1)/b) + b2), 0, 0, b1, b1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 0, 0, 1, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, -b (-(6/b) + 3 b), 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b (-((2 b1)/b) + b2), 0, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, -b, 0, -1, 1, -1,

0, -b (-(1/b) + b) - b (-(5/b) + 3 b) - (b (-b1 + b b2 - b n))/

n, -1, 0, 0, -b, -b, 0, 0, 0, 0, 0, -(b1/b) - (-(1/b) + b) b1, -b2,

0, 0, 0, -b (-(b1/b) + b2), 0, 0, 0, -b (-(b1/b) + b2), 0, 0, 0, 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, -b, 0, 0, 0,

1, -1, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (

b (-b1 + b b2 - b n))/n, -1, 0, 0, 0, 0, -b, 0, 0, 0, -b2, 0, 0, 0,

0, 0, 0, 0, 0, 0, -b (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)),

0, -b, 0, 0, -1, 1, 0,

0, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (b (-b1 + b b2 - b n))/

n, -1, 0, 0, 0, 0, -b, 0, -b2, 0, 0, 0, 0, 0, 0,

0, -b (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, -b, -1, 0, 0, -1, 1, 0,

0, -1, -b (-(1/b) + b) - b (-(5/b) + 3 b), 0, -b, -b, 0,

0, -b2, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0, 0, 0, 0, 0,

0, -b (-(b1/b) + b2), 0, 0,

0, -b (-(b1/b) + b2), -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)),

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, -2 b, 0, 0,

0, 0, -b, 0, -b,

0, -2 b (-(1/b) + b) - b (-(2/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, -2, -1, 0, 0, 0, 0, 0, 0, 0, -b2, 0, -b2,

0, -(b1/b) - (-(1/b) + b) b1, 0, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0,

0, 0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2),

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -b, 0,

0, -b, -1, -2 b (-(1/b) + b) - b (-(2/b) + 2 b), -1, 0, 0, 0, 0, 0,

0, 0, 0, 0, -(b1/b) - (-(1/b) + b) b1, 0, 0, -b2, -b2, 0,

0, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0, 0, 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,

0, 0, -2 b, 0, 0, 0, 0, -b, 0, -b,

0, -1, -2 b (-(1/b) + b) - b (-(2/b) + 2 b), -1, -2, 0, 0, 0, 0, 0,

0, 0, 0, -(b1/b) - (-(1/b) + b) b1, 0, -(b1/b) - (-(1/b) + b) b1,

0, -b2, 0, -b2, 0, 0, 0, 0, 0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2),

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0, 0, 0}, {0, 0,

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, -b, 0,

0, 0, 0, 0, 0, 0, 0, -1, 0,

0, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
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0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, -b, 0, 0, 0, 0,

0, 0, 0, 0, 0, -1, 0, -2 b (-(1/b) + b), 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0}, {-(b/(b2 n)), 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b (-(6/b) + 3 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, 0, -b, -b, 0, 0, 0, 0, 0, -b, -2 b, -b,

0, -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0, -b b2, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0, 0,

1, -b (-(6/b) + 3 b) - (b (-b1 + b b2 - b n))/n, 1, 0, 0, 0,

0, -b, -b, 0, 0, 0, 0, 0, 0, -b (-((2 b1)/b) + b2), 0, 0,

0, -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0, 0, 0, 0, 0, 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, -b (-(6/b) + 3 b) - (b (-b1 + b b2 - b n))/n, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, -b, -b, 0,

0, -b (-((2 b1)/b) + b2), -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0,

0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, -b (-(6/b) + 3 b) - (b (-b1 + b b2 - b n))/n,

0, -b, -b, 0, -b, -2 b, -b, 0, 0, 0, 0,

0, -b (-(b1/b) + b2), -b (-(b1/b) + b2), 0, 0, -b b2, 0, 0, 0, 0, 0,

0, 0, 0, 0}, {0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0,

0, 0, 0}, {0, -(b/(b2 n)), 0, 0, 0, 0, 0,

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)),

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0,

0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -b (-(4/b) + 2 b), 0, 0, 1, 1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, b1, b1, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0,

0, 0, 0, -b, 0, 0, 0, 0,

0, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (b (-b1 + b b2 - b n))/

n, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0,

0, -(b1/b) - (-(1/b) + b) b1, -b2, -b (-((2 b1)/b) + b2), 0, 0, 0,

0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2), 0}, {0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0,

0, 0, -b, 0, -b, 0,

1, -1, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (

b (-b1 + b b2 - b n))/n, -1, 0, 0, 1, 0, 0, 0, 0, -b2,

0, -b2, -(b1/b) - (-(1/b) + b) b1, 0, -b (-((2 b1)/b) + b2), 0, 0,

0, 0, 0, -(b1^2/b) - b1 (-(b1/b) + b2), 0}, {0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, -b, 0, 0, 0,

0, -1, -2 b (-(1/b) + b) - (b (-b1 + b b2 - b n))/n, -1, 0, 0, 0, 0,

0, 0, 0, 0, 0, -b2, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -b, 0, -1, 1,

0, 0, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b), 0, 0, 0, 1, 0, -b2, 0,

0, 0, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0, -b (-((2 b1)/b) + b2),

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0}, {0, 0, -(b/(b2 n)), 0,

0, 0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, -b, 0, 0, 0, 1, -1, 0, 1, 0, 0,

0, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, 0, 0, -b2, 0, -(b1/b) - (-(1/b) + b) b1, 0,

0, -b (-((2 b1)/b) + b2), 0, 0, 0, 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0}, {0, 0, 0, -(b/(b2 n)), 0,

0, 0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, -b, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -1, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, 0, 0, 0, -b2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0,

0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0, 0,

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, -b, 0, -b, 0, -1, 1, 0, 0, 0, 1, 0,

0, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, -b2, 0, 0, -(b1/b) - (-(1/b) + b) b1, -b2, 0, 0,

0, -b (-((2 b1)/b) + b2), 0, -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, -b, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, -1, -b (-(1/b) + b) - b (-(3/b) + 2 b), 0, 0,

0, -b2, -(b1/b) - (-(1/b) + b) b1, 0, 0, 0,

0, -b (-((2 b1)/b) + b2), -(b1^2/b) - b1 (-(b1/b) + b2), 0, 0, 0,

0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0,

0, 0, 0, 0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 0, 1, 0, 0, -b, -b, 0, 0, -b (-(b1/b) + b2), -b (-(b1/b) + b2),

0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

0, 1, 0, 1, 0, -b, -b, 0, 0, -b (-(b1/b) + b2), -b (-(b1/b) + b2),

0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 0,

0, 1, 0, 0, -b, -b, 0, 0, -b (-(b1/b) + b2), -b (-(b1/b) + b2),

0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)),

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, -b (-(4/b) + 2 b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, 0, 0, 0, 0, -b (-((2 b1)/b) + b2), 0, -b (-((2 b1)/b) + b2),

0, 0}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0,

1, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 1, 0, 0, 0,

0, -b (-((2 b1)/b) + b2), 0, 0, -b (-((2 b1)/b) + b2), 0}, {0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0, 0, 0, 0,

1, 1, 0, 1, -b (-(4/b) + 2 b) - (b (-b1 + b b2 - b n))/n, 0, 0, 0,

0, 0, -b (-((2 b1)/b) + b2), 0, -b (-((2 b1)/b) + b2), 0}, {0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, -b, 0, 0, 0, 0,

0, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, 0, -(b1/b) - (-(1/b) + b) b1, -b2, 0,

0, -(b1^2/b) - b1 (-(b1/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, -b, -b, 0, 0, 0,

0, -1, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1, 0, -b2, -(b1/b) - (-(1/b) + b) b1, -b2,

0, -(b1^2/b) - b1 (-(b1/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0, 0, 0,

0, -((b (-(b1/b) - (-b1 + b b2 - b n)/b))/(b2 n)), 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, -b, -b, 0, 0, 0,

0, -1, -2 b (-(1/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n), -1,

0, -b2, -(b1/b) - (-(1/b) + b) b1, -b2, -(b1^2/b) -

b1 (-(b1/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -b, 0, 0, 0, 0, 0, -1, -2 b (-(1/b) + b), 0,

0, -b2, -(b1/b) - (-(1/b) + b) b1, -(b1^2/b) - b1 (-(b1/b) + b2)},

{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, 0, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -(b/(b2 n)), 0, 0, 0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

1, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, 0, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0, 0,

0, 0, 0, 0, 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), 0, 0, 0, 0,

0, 0, 0, 0,

1, -b (-(2/b) + b) - (

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(b2 n),

1, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, -b (-(b1/b) + b2), 0, 0, 0,

0, -((b (-b1 + b b2 - b n))/(b2 n)), 0, 0,

1, -b (-(2/b) + b) - (b (-b1 + b b2 - b n))/

n, -b (-((2 b1)/b) + b2)}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, -(b/(b2 n)), 0, 0,

0, -((b (-(b1/b) + b2 - (-b1 + b b2 - b n)/b))/(b2 n)), -((

b (b1 (-(b1/b) + b2) + (-(b1/b) + b2) (-b1 + b b2 - b n)))/(

b2 n))}}
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C.2 Gram Matrices

N=4
G4 = {{b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2, b (-(1/b) + b)^2}, {b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^2, b (-(1/b) + b)}, {b (-(1/b) + b)^2,

b (-(1/b) + b), b^2 (-(1/b) + b)^2}}

N=5
G5 = {{b (-(2/b) + b) (-(1/b) + b) (1 + (-(2/b) + b) (-(1/b) + b)),

b (-(2/b) + b) (-(1/b) + b)^2, b (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b)^2, b (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b)^2}, {b (-(2/b) + b) (-(1/b) + b)^2,

b^2 (-(2/b) + b) (-(1/b) + b)^2, b (-(2/b) + b) (-(1/b) + b), 0, 0,

b (-(2/b) + b) (-(1/b) + b)}, {b (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b), b^2 (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b), 0, 0}, {b (-(2/b) + b) (-(1/b) + b)^2,

0, b (-(2/b) + b) (-(1/b) + b), b^2 (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b), 0}, {b (-(2/b) + b) (-(1/b) + b)^2, 0,

0, b (-(2/b) + b) (-(1/b) + b), b^2 (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b)}, {b (-(2/b) + b) (-(1/b) + b)^2,

b (-(2/b) + b) (-(1/b) + b), 0, 0, b (-(2/b) + b) (-(1/b) + b),

b^2 (-(2/b) + b) (-(1/b) + b)^2}}

N=6
G6 = {{b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^3, b (-(1/b) + b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(2/b) + b)^2 (-(1/b) + b), 0, 0, b^2 (-(1/b) + b)^3,

b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b (-(1/b) + b)^2,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(1/b) +

b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^3, b (-(1/b) + b)^3, b (-(1/b) + b)^3, 0,

b (-(2/b) + b)^2 (-(1/b) + b), 0, b (-(1/b) + b)^2,

b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(1/b) +

b)^3, b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^3, b (-(1/b) + b)^3, 0, 0,

b (-(2/b) + b)^2 (-(1/b) + b), b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(1/b) +

b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^3, b (-(2/b) + b)^2 (-(1/b) + b), 0, 0,

b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(1/b) +

b)^3, b (-(1/b) + b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)), 0,

b (-(2/b) + b)^2 (-(1/b) + b), 0, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(1/b) +

b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)), b (-(1/b) + b)^3,

b (-(1/b) + b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b) (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b^2 (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)), 0, 0,

b (-(2/b) + b)^2 (-(1/b) + b), b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3, b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b))}, {b (-(2/b) +

b)^2 (-(1/b) + b), 0, 0, b (-(2/b) + b)^2 (-(1/b) + b), 0, 0,

b^2 (-(2/b) + b)^2 (-(1/b) + b)^2, b (-(2/b) + b)^2 (-(1/b) + b),

b (-(2/b) + b)^2 (-(1/b) + b), 0, b (-(2/b) + b) (-(1/b) + b), 0, 0,

0, b (-(2/b) + b)^2 (-(1/b) + b)^2}, {0,

b (-(2/b) + b)^2 (-(1/b) + b), 0, 0, b (-(2/b) + b)^2 (-(1/b) + b),

0, b (-(2/b) + b)^2 (-(1/b) + b), b^2 (-(2/b) + b)^2 (-(1/b) + b)^2,

b (-(2/b) + b)^2 (-(1/b) + b), 0, 0, 0, 0,

b (-(2/b) + b) (-(1/b) + b), b (-(2/b) + b)^2 (-(1/b) + b)^2}, {0,

0, b (-(2/b) + b)^2 (-(1/b) + b), 0, 0,

b (-(2/b) + b)^2 (-(1/b) + b), b (-(2/b) + b)^2 (-(1/b) + b),

b (-(2/b) + b)^2 (-(1/b) + b), b^2 (-(2/b) + b)^2 (-(1/b) + b)^2, 0,

0, 0, b (-(2/b) + b) (-(1/b) + b), 0,

b (-(2/b) + b)^2 (-(1/b) + b)^2}, {b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2, 0, 0, 0, b^3 (-(1/b) + b)^3,

b^2 (-(1/b) + b)^2, b (-(1/b) + b), b^2 (-(1/b) + b)^2,

b^2 (-(1/b) + b)^2, b (-(1/b) + b)^3}, {b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b (-(1/b) + b)^2, b (-(2/b) + b) (-(1/b) + b), 0,

0, b^2 (-(1/b) + b)^2, b^3 (-(1/b) + b)^3, b^2 (-(1/b) + b)^2,

b (-(1/b) + b), b (-(1/b) + b),

b (-(1/b) + b)^3}, {b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3, 0, 0, 0, b (-(1/b) + b), b^2 (-(1/b) + b)^2,

b^3 (-(1/b) + b)^3, b^2 (-(1/b) + b)^2, b^2 (-(1/b) + b)^2,

b (-(1/b) + b)^3}, {b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3, b (-(1/b) + b)^2, b (-(1/b) + b)^2,

b^2 (-(1/b) + b)^3, 0, 0, b (-(2/b) + b) (-(1/b) + b),

b^2 (-(1/b) + b)^2, b (-(1/b) + b), b^2 (-(1/b) + b)^2,

b^3 (-(1/b) + b)^3, b (-(1/b) + b),

b (-(1/b) + b)^3}, {b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, b (-(1/b) + b)^2, b^2 (-(1/b) + b)^3,

b (-(1/b) + b)^2, 0, b (-(2/b) + b) (-(1/b) + b), 0,

b^2 (-(1/b) + b)^2, b (-(1/b) + b), b^2 (-(1/b) + b)^2,

b (-(1/b) + b), b^3 (-(1/b) + b)^3,

b (-(1/b) + b)^3}, {b (-(1/b) + b)^2 (1/

b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(1/b) + b)^2 (1/b^2 + (-(2/b) + b) (-(1/b) + b)),

b (-(2/b) + b)^2 (-(1/b) + b)^2, b (-(2/b) + b)^2 (-(1/b) + b)^2,

b (-(2/b) + b)^2 (-(1/b) + b)^2, b (-(1/b) + b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b)^3, b (-(1/b) + b)^3, b (-(1/b) + b)^3,

b (-(1/b) + b) (b^4 - (5 (-(1/b) + b) (1 + (-(1/b) + b)^2))/b)}}

N=7
G7 = {{((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/
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b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4}, {((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/b^4}, {0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/
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b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3,

0, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/b^3, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^3)/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^3, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, 0, 0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/
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b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^3}, {0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, 0, 0, 0, 0, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0, 0, 0, 0,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, 0, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/



78 Matrix Representations

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^3}, {0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/b^2, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b^2, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b^2,

0, ((-1 + b) (1 + b) (-2 + b^2)^2)/

b^2, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/b, 0,

0, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, 0, 0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/b,

0, 0, 0,

0, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^2 (1 + b)^2 (-2 + b^2))/

b, ((-1 + b) (1 + b) (-2 + b^2))/b, ((-1 + b) (1 + b) (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3}, {((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (2 - 2 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/
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b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^2 (1 + b)^2 (-2 + b^2) (3 - 3 b^2 + b^4))/

b^4, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b)^3 (1 + b)^3 (-2 + b^2))/

b^3, ((-1 + b) (1 + b) (-2 + b^2) (3 - 3 b^2 + b^4) (1 - b^2 +

b^4))/b^5}}

C.3 Eigenvectors

The eigenvectors of the matrix representations of the Hamiltonian for N = 2, 3, 4, 5 are as
follows

v(2) =

(
2
√
3√

3−3

− 2
√
3√

3−3

1

)
,
(

0
−1
1

)
,

(
2
√
3√

3+3

− 2
√
3√

3+3

1

)

v(3) =


−35.1154
35.1154
−21.6170
−12.7427
14.1055
9.34981
1.00000

 ,

 3.72816
−3.72816
0.794531
−1.51966
2.11204
2.56533
1.00000

 ,


0.542583
−0.542583
−1.06070
−0.961199
0.189673
−1.24584
1.00000

 ,

 0
0
0
0
0

−1.00000
1.00000

 ,

 0
−2.00000

0
0
0

1.00000
1.00000

 ,


0.844682
−0.844682
−4.11681
3.22353
1.59274
−0.669300
1.00000

 ,

 0
0
0
0

−1.00000
0

1.00000


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v(4) =



−2060.26
164.087
1307.80
2060.26
−164.087
−1114.49
−516.606
−1111.98
−803.483
855.990
607.658
416.234
−248.393
−327.195
−41.0523
78.0927
73.1047
25.1119
1.00000


,



114.407
−19.9919
−40.8118
−114.407
19.9919
33.2197
−36.0767
21.2945
−33.4180
22.8233
52.9353
50.8121
−10.9403
−31.6994
−15.5281
23.4336
25.6048
11.4453
1.00000


,



0
0
0

4.87897
7.20147

0
0

4.72545
3.04795
−3.84648
3.20147
−3.20147
−4.72545
−7.20147
−3.04795
−1.67750
1.32250
−1.67750
1.00000


,



13.1441
−6.54987
6.08091
−13.1441
6.54987
−29.3688
21.4980
−23.1186
13.7091
15.2110
3.32862
−9.30919
−19.4708
2.00234
−2.15675
10.2352
8.62377
4.01356
1.00000


,



0
0
0

−8.63824
1.25343

0
0

0.398534
6.29021
−13.0368
−2.74657
2.74657
−0.398534
−1.25343
−6.29021
5.89167
8.89167
5.89167
1.00000


,



−1.53400
−1.94687
−3.41948
1.53400
1.94687
0.752844
0.438931
−0.247683
1.39743
−1.62622
2.26973
−2.02288
−0.951341
−3.40202
−1.93693
−1.42228
1.07257
−1.57586
1.00000


,



0
0
0
0
0
0
0
0

4.93923
−10.5176
−4.93923

0
0
0

−4.93923
3.25879
6.25879
4.93923
1.00000


,



3.02569
17.3836
−42.6113
−3.02569
−17.3836
−12.0744
2.04336
26.6996
25.5698
10.8401
−9.65812
−3.19588
−1.30522
−12.8703
5.25057
5.93861
3.45786
−0.348107
1.00000


,



1.49049
3.52377
3.52509
−1.49049
−3.52377
1.70643
2.27323
−0.793172
−1.94829
−0.216501
−0.783627
0.308188
−1.11481
−1.15522
−1.15479
0.704994
−0.950678
−0.845964
1.00000


,



0
0
0
0
0
0
0

−1.41421
0
0

1.41421
−0.585786
1.41421

0
0

−1.41421
1.00000
−1.41421
1.00000


,



0
0
0
0
0
0
0

1.41421
0
0

−1.41421
−3.41421
−1.41421

0
0

1.41421
1.00000
1.41421
1.00000


,



0.130683
−0.198932
0.138191
−0.130683
0.198932
−0.227195
−0.247897
1.27816
−0.0612406
0.0390715
−1.35511
−3.21470
−1.34268
−0.0524352
0.0754827
1.32410
0.851268
1.31385
1.00000


,



0
0
0
0
0
0
0
0

2.40673
3.02112
−2.40673

0
0
0

−2.40673
−3.51056
−0.510558
2.40673
1.00000


,



−2.40018
−4.30649
7.29555
2.40018
4.30649
2.47723
0.677509
−3.13484
−1.76600
−1.06042
−2.39471
0.388564
5.51817
−7.62821
4.50285
−0.306915
2.23574
−1.11468
1.00000


,



0
0
0
0
0
0
0
0

−1.34596
−0.503544
1.34596

0
0
0

1.34596
−1.74823
1.25177
−1.34596
1.00000


,



0
0
0

0.759271
3.54510

0
0

−2.12398
−3.33816
−1.11675
−0.454904
0.454904
2.12398
−3.54510
3.33816
−1.21417
1.78583
−1.21417
1.00000


,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−1.00000
0

1.00000


,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0


,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0





C.3 Eigenvectors 81

v(5) =



−540624.
21533.1
288534.
48092.5
42132.5
298617.
540624.
−272485.
−100846.
−247489.
−21533.1
−148432.
−262437.
−48092.5
−42132.5
−217340.
184418.
59653.7
80900.4
18111.9
3222.27
228246.
166213.
122335.
86288.0
−49594.5
−59673.2
−4723.07
−42727.1
−63041.4
−2993.34
−13851.6
−79049.8
−16698.4
−93792.0
−14671.2
22751.8
19332.1
3193.24
23913.7
9252.94
8905.00
−4387.96
−9487.04
−2832.20
−112.807
470.767
524.968
273.650
62.5934
1.00000



,



18303.1
−1552.98
−5013.55
−3030.49
−2329.78
−6184.94
−18303.1
6187.48
−4643.69
3806.63
1552.98
−5034.18
3346.33
3030.49
2329.78
−2528.38
−2372.29
1228.45
3175.05
−977.775
269.397
27.5918
4906.69
6701.40
5893.25
−519.581
−3150.19
−1039.25
−1492.64
−3598.06
−304.620
−2540.28
−1339.23
617.217
−4042.19
−2418.05
2587.87
3191.80
836.195
3504.25
1816.01
1940.99
−469.469
−1316.06
−684.121
−58.0463
186.391
221.749
128.896
34.4748
1.00000



,



1239.34
−310.387
138.136
−256.758
−613.173
893.408
−1239.34
−1612.73
1278.50
−1746.33
310.387
971.529
−867.218
256.758
613.173
239.050
1012.20
649.459
−580.392
98.3077
−145.356
879.644
613.871
−242.447
−760.650
−1122.99
240.763
−88.9870
−770.401
115.493
117.502
−239.205
−1363.76
−14.9612
16.1287
−306.455
667.465
445.464
148.466
668.219
374.544
347.886
−217.426
−251.685
−102.127
−25.5771
84.1410
97.6492
57.9091
17.5913
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

201.162
0
0
0

606.114
0
0
0
0
0

−744.357
−606.114
−201.162

0
0
0

−201.162
0
0
0

−337.714
15.5760
77.9345
145.648
−239.291
7.52699
310.109
201.162
228.722
249.298
337.714
−15.5760
−77.9345
−145.648
−29.1091
59.5689
80.6710
56.7587
19.1021
1.00000



,



0
0
0
0
0
0

187.024
0
0

−3.16830
−13.9555
165.840
−17.1842
−23.8902
−23.8902
449.740

0
0
0
0
0

−507.189
−517.976
−220.060
−42.4600
3.16830
13.9555
−165.840
8.59208
21.6347
2.25548
−257.097
13.4015
45.0743
141.950
−165.840
−48.2426
212.441
169.008
128.548
183.410
265.689
−4.80943
−42.8189
−120.315
−26.8030
50.0521
69.8774
51.0521
17.8253
1.00000



,



184.407
242.885
−1158.00
383.918
154.557
−849.796
−184.407
−498.924
93.8644
327.500
−242.885
519.804
989.436
−383.918
−154.557
649.207
−39.2509
−438.010
20.6101
173.141
−27.1460
449.637
−126.911
−351.239
−139.645
−216.838
−260.136
63.7681
125.061
−138.548
32.9297
109.743
−24.7858
−158.887
−116.902
97.2192
255.963
100.139
−12.0195
170.117
45.8224
23.8021
−74.7591
−124.900
4.09762
−5.39706
43.7952
45.4569
22.7657
6.91552
1.00000



,



75.9174
21.0734
563.551
−523.249
560.486
−941.082
−75.9174
−255.334
−23.2617
491.842
−21.0734
−128.332
−476.768
523.249
−560.486
796.353
1006.91
−179.762
−509.384
−268.965
141.396
267.102
−347.113
41.5496
−14.5954
−135.238
−100.358
5.33038
−38.1775
310.288
−112.912
140.226
−350.619
197.435
−499.238
182.867
146.452
48.7200
−9.57569
100.636
−32.6006
−39.0608
−81.1160
−25.9703
−24.7710
6.87601
30.7561
25.2702
7.11547
0.329027
1.00000



,



−21.4377
18.8257
−23.1101
17.4945
14.6068
−23.9105
21.4377
26.4449
34.7085
42.0873
−18.8257
19.5723
74.9507
−17.4945
−14.6068
3.77389
−12.3595
10.4968
−8.15953
−1.44072
−7.16536
−3.53084
−21.9507
−71.4129
−108.450
−16.5884
7.45329
−6.21421
−33.9208
14.4645
14.0649
0.929570
−18.3814
−3.28974
4.81127
−8.67056
21.8312
−6.58382
24.3416
20.5428
35.4700
34.0434
−25.0897
−11.6576
−13.6255
−11.9654
23.0085
30.1076
22.9300
9.68787
1.00000



,



−1.32856
0.468871
−1.54184
−1.39243
−1.28075
−1.39654
1.32856
1.63958
1.24507
−6.54583
−0.468871
−0.543739
4.11771
1.39243
1.28075
2.12223
4.79367
3.67941
4.06552
1.92620
1.43479
−0.583626
5.82014
−2.03214
8.58486
5.53485
−0.197083
−0.198825
9.63598
13.6027
11.9293
4.27578
−3.20064
−0.709356
−0.541323
−0.264147
−5.20571
−6.92402
−4.16839
2.39626
−1.22417
4.32651
−7.99602
−12.4058
−11.1400
−3.93150
0.503809
−2.01231
1.49228
−1.73555
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

56.8808
0
0
0

26.4679
0
0
0
0
0

120.772
−26.4679
−56.8808

0
0
0

−56.8808
0
0
0

−33.8434
−9.22747
−20.8879
36.4251
23.4667
−77.6089
−16.5324
56.8808
−74.4810
−18.9393
33.8434
9.22747
20.8879
−36.4251
−16.0912
4.84624
18.4101
23.5934
11.5639
1.00000



,



0
0
0
0
0
0
0
0
0

−3.77181
0
0

1.22755
0
0
0
0
0
0
0
0
0

3.77181
−1.22755
6.75586
3.77181

0
0

6.27533
9.48354
9.48354
3.58230
−1.79115

0
0
0

−3.77181
−5.71174
−3.77181
1.79115
−0.980659
3.92059
−5.71174
−9.48354
−9.48354
−3.58230
0.417063
−1.89759
1.41706
−1.71238
1.00000



,



0
0
0
0
0
0
0
0
0

11.7600
0
0

38.7332
0
0
0
0
0
0
0
0
0

−11.7600
−38.7332
−55.4788
−11.7600

0
0

−16.1923
6.06331
6.06331
9.43518
−4.71759

0
0
0

11.7600
−17.8233
11.7600
4.71759
17.4776
13.1057
−17.8233
−6.06331
−6.06331
−9.43518
16.5380
21.7484
17.5380
8.14992
1.00000



,



−64.8022
−36.4852
109.148
−40.4431
−8.74395
81.0525
64.8022
48.1453
12.9528
−9.28428
36.4852
9.30007
−87.8168
40.4431
8.74395
−49.3031
8.23444
−33.4049
14.6346
−22.8788
−8.23963
−25.1250
−22.4651
−30.6315
3.61285
59.9803
−75.5421
32.4215
58.9247
−51.1407
4.24215
39.7834
60.2089
8.23497
−49.0909
47.5135
−16.0487
39.3805
−14.7206
6.65676
−11.4945
−2.46136
19.2566
−38.0807
−0.725033
0.408211
13.1834
17.6943
9.93487
3.14403
1.00000



,



−6.12244
−1.91650
−35.9529
59.8475
−61.5314
78.5396
6.12244
36.3788
5.87248
−26.1545
1.91650
−13.0295
23.1175
−59.8475
61.5314
−40.2192
−37.3755
29.0793
−59.3750
10.7413
18.5861
−27.0498
−12.1659
25.8649
−2.91176
20.3162
−13.3249
1.52228
−26.9471
62.5414
−26.6298
43.3759
−17.8842
18.7847
−62.7597
35.6340
−14.1294
14.7441
−2.35171
23.6956
−11.8881
−18.3042
−11.0561
14.8908
−22.4296
7.02112
8.54101
9.11659
4.20204
−0.631923
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

5.29437
4.50661

0
0
0
0

−15.1440
0

−4.50661
0

−5.29437
−4.50661

0
0

−5.29437
4.50661
6.42322
7.72080
5.29437
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,
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

0
0
0
0
0
0
0
0
0
0
0

28.0284
0
0
0

−50.5118
0
0
0
0
0

−42.0878
50.5118
−28.0284

0
0
0

−28.0284
0
0
0

10.2960
6.72993
10.1389
17.0470
51.5311
52.1628
13.0128
28.0284
−8.50220
−48.5180
−10.2960
−6.72993
−10.1389
−17.0470
−11.3153
−17.7642
−7.46194
9.64051
8.30223
1.00000



,



0
0
0
0
0
0

5.95268
0
0

−4.46193
10.3948
−14.2207
−16.1733
8.44444
8.44444
−25.7731

0
0
0
0
0

−10.7885
4.06827
4.22723
2.55517
4.46193
−10.3948
14.2207
8.08667
−7.60725
−0.837188
10.4071
−0.572659
11.7289
−5.77623
14.2207
−16.1908
15.0914
−9.75873
−5.20357
−9.33139
−2.32046
8.65933
−12.5661
−1.83102
1.14532
4.53151
8.58359
5.53151
2.05208
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

−1.58712
0
0
0

0.517094
0
0
0
0
0

2.49270
−0.517094
1.58712

0
0
0

1.58712
0
0
0

−0.934530
1.90214
3.47594
4.05768
2.63793
−1.21280
−1.94964
−1.58712
0.392025
1.01683
0.934530
−1.90214
−3.47594
−4.05768
−2.22049
−0.858515
−0.292778
0.429002
−1.43426
1.00000



,



0
0
0
0
0
0
0
0
0

2.76401
0
0

2.11175
0
0
0
0
0
0
0
0
0

−2.76401
−2.11175
4.87576
−2.76401

0
0

0.544860
0.961141
−0.961141
3.52803
1.76401

0
0
0

2.76401
−9.94865
−2.76401
−1.76401

0
−6.18464
−4.42062
−0.961141
0.961141
−3.52803
3.87576
4.07289
4.87576
4.07289
1.00000



,



0
0
0
0
0
0
0
0
0

1.69382
0
0

−0.518610
0
0
0
0
0
0
0
0
0

−1.69382
0.518610
1.17521
−1.69382

0
0

−2.95990
−2.05365
2.05365
1.38764
0.693822

0
0
0

1.69382
−0.602956
−1.69382
−0.693822

0
2.09087
2.78469
2.05365
−2.05365
−1.38764
0.175212
−1.57226
1.17521
−1.57226
1.00000



,



−18.0256
−6.40635
−35.4000
17.9207
−18.9761
−12.3106
18.0256
−11.3094
−18.2433
27.2583
6.40635
17.2731
18.0824
−17.9207
18.9761
−6.84193
117.948
−79.5836
79.0981
−45.1223
−28.1117
−0.924903
−8.10579
0.0445093
13.2434
0.213022
12.2849
2.14810
17.2255
−14.1106
11.3288
1.58562
−52.9692
26.2701
−28.4034
17.9370
−4.18207
−4.41013
1.67652
16.4689
−5.41266
−8.45973
−26.7122
32.3434
−19.4859
6.92534
4.92138
1.17633
3.11567
−1.29792
1.00000



,



0
0
0
0
0
0

1.53087
0
0

−0.721803
−1.88397
−1.65392
0.815211
2.94786
2.94786
0.933973

0
0
0
0
0

0.864491
−0.297678
0.753196
−0.586521
0.721803
1.88397
1.65392
−0.407605
−1.09665
−1.85121
−0.962733
0.812578
0.236930
1.29394
1.65392
−0.958733
−1.19356
−0.932112
0.481367
0.880465
0.555128
−1.22018
−2.08814
−2.39059
−1.62516
−0.821084
−0.137915
0.178916
−1.31683
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

−6.62126
0
0
0

−5.52462
0
0
0
0
0

−3.05216
5.52462
6.62126

0
0
0

6.62126
0
0
0

1.01755
−3.15000
4.32417
1.83102
3.17324
−8.65954
6.62445
−6.62126
−4.61702
−5.91874
−1.01755
3.15000
−4.32417
−1.83102
1.33383
1.01224
4.42392
3.26812
1.41168
1.00000



,



−1.20496
0.985200
−4.60608
−4.86160
0.889889
3.86511
1.20496
5.30993
−4.75633
−4.23127
−0.985200
2.17641
3.12783
4.86160
−0.889889
−1.34620
10.1984
1.05807
−7.19683
8.83102
−5.88425
−1.95348
1.71237
−0.698159
0.481419
3.53642
3.42675
0.347618
4.33279
−0.245611
−1.04845
1.49111
−2.41282
−4.67863
−2.89093
−1.41459
−1.51058
−0.854136
−1.50836
0.183960
−1.39633
3.07599
−3.80089
−1.06561
−1.01454
−0.829502
1.17490
−2.45793
1.45449
−1.61663
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0

6.00000
−9.00000
9.00000
−18.0000

0
0
0
0
0

−9.00000
9.00000
3.00000

0
0
0
0

−3.00000
6.00000
−3.00000
12.0000
3.00000
−9.00000
9.00000

0
−9.00000
3.00000

0
6.00000
−2.00000
−9.00000
−6.00000
12.0000
−15.0000
6.00000
2.00000
3.00000
3.00000
−1.00000
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3.45641
−3.22952

0
0
0
0

0.834778
0

3.22952
0

−3.45641
3.22952

0
0

−3.45641
−3.22952
−3.35175
1.51697
3.45641
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,



0
0
0
0
0
0
0
0
0
0
0

0.338622
0
0
0

−7.71096
0
0
0
0
0

−4.51513
7.71096
−0.338622

0
0
0

−0.338622
0
0
0

6.66859
3.81529
−8.38428
12.0253
−4.42977
−5.48647
1.30018
0.338622
2.58427

0.0346812
−6.66859
−3.81529
8.38428
−12.0253
5.47214
0.754448
1.67740
2.68529
−1.07705
1.00000



,



2.72171
7.41010
3.77090
−0.564272
−2.62478
2.50525
−2.72171
3.00248
5.10102
2.80371
−7.41010
−1.79915
0.0901724
0.564272
2.62478
−1.94268
2.77998
1.40825
1.55829
−3.86370
−4.24259
−0.143156
−3.36628
−2.06192
3.82272
−3.05941
−2.93712
−2.07683
0.218775
0.482331
1.62156
0.328899
−0.125270
1.48556
−0.980738
−0.152113
2.41224
−2.79924
−2.50105
−0.800490
−0.135869
−4.55818
−3.29641
−0.803554
0.613416
−1.67008
2.72449
0.763887
1.10438
2.40467
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

−0.306217
0
0
0

0.0950432
0
0
0
0
0

−0.250539
−0.0950432
0.306217

0
0
0

0.306217
0
0
0

−0.118987
−0.502693
−0.424112
0.426805
0.529829
0.365784
0.0466593
−0.306217
−0.281928
1.15753
0.118987
0.502693
0.424112
−0.426805
−0.505885
−0.943674
−0.125150
0.188848
−1.18148
1.00000



,



0
0
0
0
0
0
0
0
0

−0.858739
0
0

1.46543
0
0
0
0
0
0
0
0
0

0.858739
−1.46543
0.948409
0.858739

0
0

−1.49407
−0.274326
−0.274326
2.20884
−1.10442

0
0
0

−0.858739
1.13307
−0.858739
1.10442
1.24568
−2.23749
1.13307
0.274326
0.274326
−2.20884
−0.884676
−2.55780
0.115324
2.45723
1.00000



,
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

0
0
0
0
0
0
0
0
0

−3.27379
0
0

−3.47575
0
0
0
0
0
0
0
0
0

3.27379
3.47575
−2.35450
3.27379

0
0

0.951203
1.46845
1.46845
−1.43839
0.719196

0
0
0

−3.27379
1.80535
−3.27379
−0.719196
−2.99299
−1.08615
1.80535
−1.46845
−1.46845
1.43839
0.236439
2.06926
1.23644
0.603396
1.00000



,



−2.21172
2.61909
1.49421
−3.59018
−5.05307
−0.842954
2.21172
−0.749350
1.07462
−1.25524
−2.61909
−1.82584
1.42299
3.59018
5.05307
1.63993
−1.21729
−0.683694
1.99170
−0.131954
2.35855
−1.00892
0.458265
−1.09136
−0.891410
2.33115
4.39012
2.14265
−1.35109
−1.94443
−4.42302
−1.21354
−1.64863
−3.72705
−1.99730
−0.0617016
−1.06763
−0.981073
0.149882
1.60446
−0.361147
0.363536
0.326438
−0.967027
−0.656706
−0.777664
−0.287768
0.0538908
−0.592952
−0.911256
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

−2.42708
0
0
0

2.90751
0
0
0
0
0

0.459169
−2.90751
2.42708

0
0
0

2.42708
0
0
0

−2.50745
2.11828
−1.65228
0.783303
−1.40429
2.76040
−0.0272594
−2.42708
−1.61279
−0.155733
2.50745
−2.11828
1.65228
−0.783303
1.00422
−2.86376
−0.307965
0.592208
0.555800
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.00000
0
0
0
0
0

−1.00000
0
0

−1.00000
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,



−1.25950
−1.70757
−2.15835
0.486716
1.56744
−1.62178
1.25950
0.887468
0.0597315
−1.29619
1.70757
1.42689
−0.927579
−0.486716
−1.56744
1.02972
−0.451519
0.646913
0.741401
−0.241638
−1.00515
−0.985548
1.88825
1.65904
−2.07010
0.461530
−3.13302
−1.40193
−0.219646
0.222442
2.80197
−1.47139
−0.659967
1.89211
−0.323203
−0.940282
−1.91250
0.686561
−1.65053
0.217295
−1.62305
−0.711006
1.02731
−0.707585
−1.00045
1.35635
−0.235986
1.14109
0.451078
0.118851
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−1.51220
0.794465

0
0
0
0

−0.260417
0

−0.794465
0

1.51220
−0.794465

0
0

1.51220
0.794465
−2.39516
1.65558
−1.51220
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,



0
0
0
0
0
0
0
0
0

−1.06150
0
0

3.24978
0
0
0
0
0
0
0
0
0

1.06150
−3.24978
2.18828
1.06150

0
0

2.73486
−5.63791
5.63791
−4.12300
−2.06150

0
0
0

−1.06150
−1.80014
1.06150
2.06150

0
−1.86164
−3.92314
5.63791
−5.63791
4.12300
1.18828
−1.38814
2.18828
−1.38814
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.23108
1.72883

0
0
0
0

2.13796
0

−1.72883
0

−1.23108
−1.72883

0
0

−1.23108
1.72883
−1.66466
−1.47330
1.23108
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,



0
0
0
0
0
0
0
0
0

0.144346
0
0

0.0495503
0
0
0
0
0
0
0
0
0

−0.144346
−0.0495503
0.129039
−0.144346

0
0

−0.540138
0.259027
0.259027
−1.78792
0.893960

0
0
0

0.144346
−0.403373
0.144346
−0.893960
0.250385
1.29733
−0.403373
−0.259027
−0.259027
1.78792
0.693125
−2.36230
1.69313
−1.49817
1.00000



,



−0.196390
−0.161869
0.00479129
1.14660
−0.905467
−0.457135
0.196390
−0.380500
0.772006
−0.270147
0.161869
−0.472150
3.41435
−1.14660
0.905467
−0.201760
1.71760
−0.108743
−1.33253
−1.49662
1.09830
−0.218426
0.929041
−2.94699
1.76661
0.563021
−0.684881
−0.0627895

2.54049
−5.04548
5.15721
−4.24637
−2.06089
0.644557
−0.249447
0.0120105
−0.925273
−1.59126
0.984736
1.62652

0.0160683
−1.36226
−3.61975
4.69610
−4.64965
3.83235
1.14571
−1.58307
2.11488
−1.40582
1.00000



,



0
0
0
0
0
0
0
0
0
0
0

0.531657
0
0
0

1.64553
0
0
0
0
0

1.53813
−1.64553
−0.531657

0
0
0

−0.531657
0
0
0

1.13603
−2.26145
2.47509
3.75603
−6.21338
3.15174
−0.583900
0.531657
−4.20349
4.02444
−1.13603
2.26145
−2.47509
−3.75603
3.43182
−1.75175
−0.994631
1.84390
−1.24288
1.00000



,



7.18176
−13.3191
−5.67620
14.0652
17.4927

0.000327867
−7.18176
1.22428
−1.80230
6.46761
13.3191
8.74614
−4.57951
−14.0652
−17.4927
−4.45391
10.6312
5.58337
5.72223
13.0568
10.6123
−2.19436
−2.01403
1.50957
−3.56591
1.87238
7.36969
3.58449
2.82345
−2.59928
−6.60514
0.294856
1.33204
−7.34471
−5.32537
−3.97925
1.22706
3.06243
1.44472
−3.55788
−2.66883
−0.576593
−4.31066
−0.580834
−0.764641
−1.41808
3.47019
−1.09355
−2.54354
0.339663
1.00000



,



0
0
0
0
0
0
0
0
0

0.603661
0
0

−0.842916
0
0
0
0
0
0
0
0
0

−0.603661
0.842916
−0.239254
−0.603661

0
0

0.680180
−0.269581
0.269581
−0.792677
−0.396339

0
0
0

0.603661
−0.648248
−0.603661
0.396339

0
0.955413
0.559074
0.269581
−0.269581
0.792677
−1.23925
−0.112497
−0.239254
−0.112497
1.00000



,
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

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

−0.469660
−0.800394

0
0
0
0

−0.568300
0

0.800394
0

0.469660
0.800394

0
0

0.469660
−0.800394
−0.0116497
−0.420050
−0.469660
1.00000



,



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0



,



0
0
0
0
0
0

3.49231
0
0

2.35203
5.44463
2.03460
2.54229
−2.50211
−2.50211
1.09959

0
0
0
0
0

−1.88740
1.20519

0.0799250
−1.50865
−2.35203
−5.44463
−2.03460
−1.27114
−0.930815
3.43292
−0.347836
−0.641424
3.95982
−0.467506
−2.03460
−1.60779
0.660636
−0.317432
0.173918
0.0411444
−0.923308
−0.629720
−0.526898
−0.463309
1.28285
−0.762493
0.676972
0.237507
−0.560535
1.00000



.
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