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Abstract

This thesis studies algebraic aspects of two-dimensional statistical mechanical models. Centred around

the transfer operator, we develop a framework to describe such models with planar algebras, general-

ising features of the Quantum Inverse Scattering Method. To each planar algebra, we thus assign a

model on the strip and a model on the cylinder, and refer to these as planar-algebraic models.

Within this framework, we develop a set of sufficient conditions that imply a planar-algebraic model is

integrable, which include generalised Yang–Baxter equations. We refer to planar-algebraic models

satisfying these conditions as Yang–Baxter integrable. For each such model, we outline a general

procedure to identify a countable set of Hamiltonians that each share a set of eigenvectors with the

transfer operator. We consider the algebraic relations among the Hamiltonians, and for a particular

class of planar algebras, identify when they are all algebraically related to a single Hamiltonian. In this

case, the transfer operator is expressible as a polynomial in this same Hamiltonian, and we say that the

model is polynomialisable.

These general considerations are then applied to the class of so-called singly generated planar algebras.

We show that the planar-algebraic models on the strip and on the cylinder are Yang–Baxter integrable

if and only if the underlying planar algebra satisfies a Yang–Baxter relation. To establish this result,

we develop a new model whose algebraic structure owes to the recently introduced Liu planar algebra.

Moreover, we show that each such Yang–Baxter integrable model on the strip is polynomialisable,

although the polynomials are not determined explicitly. Again on the strip, we consider an eight-vertex

model and a model described by the Temperley–Lieb planar algebra. In each case, we determine

explicit expressions for the transfer operator as a polynomial in a Hamiltonian. Putting integrability

aside, we apply the planar-algebraic framework to determine the critical behaviour of two models of

non-intersecting loop segments defined on causal triangulations.
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Chapter 1

Introduction

We begin this thesis with a brief review of statistical and quantum mechanics and highlight some

analogies between the two formalisms. Turning to an example, we show that these analogies are

far deeper than initially presented if the statistical mechanical system possesses the property of

integrability. Moreover, this example will serve to introduce many objects that will reoccur throughout

the thesis including, transfer operators, 𝑅-operators, Yang–Baxter equations, integrals of motion and

quantum Hamiltonians. Distilling insights from this case, we present the statistical-quantum duality in

general and highlight the role played by integrability. We conclude by presenting an outline of the

thesis and a summary of the chapters to come.

1.1 Statistical and quantum mechanics

1.1.1 Statistical mechanics

In the canonical formulation of classical mechanics, a system with 𝑛 degrees of freedom consists

of a 2𝑛-dimensional manifold 𝑀 called the configuration space and a differentiable function 𝐿

of 𝑀, known as the Lagrangian [5]. The space 𝑀 is parameterised by generalised positions q =

(𝑞1, . . . , 𝑞𝑛) and generalised momenta ¤q = ( ¤𝑞1, . . . , ¤𝑞𝑛) where the ‘dot’ notation indicates a time

derivative. The Lagrangian is a function of q and ¤q, specifying the energy contributions to the system

and is decomposed as

𝐿 (q, ¤q) = 𝑇 (q, ¤q) −𝑉 (q, ¤q), (1.1)

where 𝑇 and 𝑉 are the kinetic and potential energies respectively. A state of the system is a point in 𝑀 ,

whose time evolution is governed by the Euler-Lagrange equations:

0 =
𝜕𝐿

𝜕q
− 𝑑
𝑑𝑡

(
𝜕𝐿

𝜕 ¤q

)
. (1.2)

From this simple set of equations, one can derive forces, momenta, torques or any other mechanical

property associated with the system.
1
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(a) 𝑑 = 0 (b) 𝑑 = 1 (c) 𝑑 = 2

Figure 1.1: A Z𝑑+1 lattice can be constructed by a sequence of Z𝑑 lattices that connect to neighbouring
subsystems only, here the first in the sequence is highlighted red.

While the Euler-Lagrange equations can, in principle, describe mechanical systems exactly, prac-

tical limitations arise as the number of degrees of freedom becomes large. Statistical mechanics

provides a powerful framework for analysing systems when solving the Euler-Lagrange equations

becomes intractable. Instead of evaluating the positions and momenta of every particle in a system,

statistical mechanics treats each particle and their interactions probabilistically, from which one derives

macroscopic properties such as energy, pressure and entropy.

All statistical mechanical systems considered here are assumed to be in thermal equilibrium with a

bath at temperature 𝑇 . With this in hand, the probability of a system occupying a state 𝑠 is given by

𝑝(𝑠) = 1
𝑍
𝑒−𝐸 (𝑠)/𝑘𝐵𝑇 , (1.3)

where 𝐸 (𝑠) is the energy associated with 𝑠, 𝑘𝐵 is Boltzmann’s constant, and 𝑍 is a central object in

statistical mechanics [6]. The partition function 𝑍 is defined such that the sum of all probabilities (1.3)

is equal to one, and can therefore be expressed as

𝑍 =
∑︁
𝑠∈𝑆

𝑒−𝐸 (𝑠)/𝑘𝐵𝑇 , (1.4)

where 𝑆 denotes the set of all states of the system. For each 𝑠, the quantity 𝑒−𝐸 (𝑠)/𝑘𝐵𝑇 is referred to

as the Boltzmann weight. Intuitively, the partition function can be thought of as a measure of the

energy content of state space. To illustrate the utility of the partition function, we present here some

thermodynamic properties that can be determined from this quantity [6]:

𝐹 = −𝑘𝐵𝑇 ln𝑍, 𝑆 =
𝜕

𝜕𝑇
(𝑘𝐵𝑇 ln𝑍), 𝐶 = 𝑇

𝜕2

𝜕𝑇2 (𝑘𝐵𝑇 ln𝑍), (1.5)

where 𝐹, 𝑆 and 𝐶 are free energy, entropy and heat capacity respectively. To assist in the computation

of the partition function, it is often convenient to introduce a transfer matrix.

Consider a 𝑑 +1-dimensional system that can be decomposed into a sequence of 𝑑-dimensional

subsystems, each of which is connected to neighbouring subsystems only, and is spaced uniformly
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by a distance denoted by 𝛿𝜏. For example, the Z𝑑+1 lattice can be decomposed into a sequence of Z𝑑

dimensional lattices where 𝛿𝜏 = 1, see Figure 1.1 illustrating this example for 𝑑 = 0,1,2. For systems

that can be decomposed in this way, we introduce the transfer matrix T as the algebraic object that

generates each configuration of a 𝑑-dimensional subsystem and assigns the appropriate Boltzmann

weights. By construction, the product of 𝑚 transfer matrices generates each 𝑑 + 1-dimensional

configuration consisting of 𝑚, 𝑑-dimensional subsystems, up to boundary conditions. Accordingly, the

partition function can be written as

𝑍𝑚 = v0 · T𝑚 ·v𝑚+1, (1.6)

where if T is a 𝑘 × 𝑘 matrix, then v0 and v𝑚+1 are 1× 𝑘 and 𝑘 ×1 vectors respectively, which encode

the boundary conditions of the system. As a special case of (1.6), the partition function of systems

with periodic boundary conditions can typically be expressed as

𝑍𝑚 = tr(T𝑚) = 𝜆𝑚1 + . . .+𝜆
𝑚
𝑘 , (1.7)

where tr denotes the matrix trace and 𝜆1, . . . ,𝜆𝑘 are the eigenvalues of T . It is transparent in (1.7)

that the eigenvalues of T provide a great deal of insight into determining the partition function 𝑍𝑚.

Moreover, under reasonable physical circumstances, the matrix elements of the transfer operator are

strictly positive. In this case, it follows from the Perron–Frobenius theorem [7], that the transfer

operator has a unique largest eigenvalue which dominates the behaviour of the partition function as

𝑚→∞. To see this, we express (1.7) as

𝑍𝑚 = 𝜆𝑚1

[
1+

(𝜆2
𝜆1

)𝑚
+ . . .+

(𝜆𝑘
𝜆1

)𝑚]
(1.8)

where 𝜆1 > 𝜆𝑖 for all 𝑖 = 2, . . . , 𝑘 , and observe that the terms inside the square brackets tend to one in

the limit 𝑚→∞. We note that the eigenvalues of the transfer matrix are similarly illuminating for

arbitrary boundary conditions (1.6), with details depending on the form of v0 and v𝑚+1.

1.1.2 Quantum mechanics

A Hilbert spaceH is an inner product space, that is complete with respect to the metric induced by

the inner product. Dirac notation expresses elements ofH by |𝜓⟩ and the inner product between two

elements by ⟨𝜙 |𝜓⟩. Define the equivalence relation ∼ onH as

|𝜓⟩ ∼ |𝜙⟩ ⇐⇒ |𝜓⟩ = 𝜆 |𝜙⟩, 𝜆 ∈ C×. (1.9)

A ray in H is the set of all |𝜓⟩ ∈ H related by ∼. A Hilbert space is separable if it admits a basis

{|𝜓𝑖⟩ | 𝑖 ∈ 𝑆}, satisfying

⟨𝜓𝑖 |𝜓 𝑗 ⟩ = 𝛿𝑖 𝑗 , ∀ 𝑖, 𝑗 ∈ 𝑆, (1.10)

where 𝛿𝑖 𝑗 is the Dirac delta function and 𝑆 is a countable set.
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A quantum mechanical system consists of a separable Hilbert spaceH and a self-adjoint operator

𝐻 that acts on H , known as the Hamiltonian [8]. Similar to the role of the Lagrangian in classical

mechanics, the Hamiltonian defines the energy of the system and is decomposed as

𝐻 = 𝑇 +𝑉, (1.11)

here 𝑇,𝑉 ∈ End(H) are the kinetic and potential energy operators respectively. A state of the system

is a ray inH , whose time evolution is governed by the Schrödinger equation

iℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩ = 𝐻 |𝜓(𝑡)⟩, (1.12)

where ℏ is Planck’s constant. For a time-independent Hamiltonian, the Schrödinger equation is solved

by

|𝜓(𝑡)⟩ =𝑈 (𝑡) |𝜓(0)⟩, 𝑈 (𝑡) = 𝑒−i𝑡𝐻/ℏ, (1.13)

where𝑈 (𝑡) is a unitary operator that generates time-evolution.

Physical quantities such as position and momentum, correspond to self-adjoint operators that act

on H and are known as observables. Measurements of these quantities correspond to expectation

values. For an observable 𝐴 and a state |𝜓⟩, the corresponding expectation value is given by

⟨𝐴⟩𝜓 = ⟨𝜓 |𝐴|𝜓⟩. (1.14)

At face value, the differences between classical and quantum systems are stark. Despite these

initial appearances, there exist formal analogies between statistical and quantum mechanics, these are

discussed in the following section.

1.1.3 Analogies

Let T denote the transfer matrix for a statistical mechanical system in 𝑑 + 1-dimensions, and let

𝑈 (𝑡) denote the unitary operator generating time translations for a quantum system in 𝑑-dimensions.

Similarities between these formalisms arise when considering the roles of T and𝑈 (𝑡) in their respective

domains – each generates a dimension of sorts. On the quantum side𝑈 (𝑡) generates the time dimension,

while on the statistical side, T generates a spacial dimension. Taking a ‘quantum’ view of the transfer

operator, we can think of this object as the Euclidean time-evolution operator

T “ = ” 𝑒−𝛿𝜏𝐻/𝑘𝐵𝑇 , (1.15)

where 𝛿𝜏 denotes the lattice spacing and 𝐻 denotes a 𝑑-dimensional quantum Hamiltonian [9]. We

use “ = ” to indicate that the equality should not be taken literally. Contrasting (1.13) and (1.15), we

can read off the following analogies:

𝑈 (𝑡) ↔ T𝑚, i𝑡↔ 𝑚𝛿𝜏, ℏ↔ 𝑘𝐵𝑇, (1.16)
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where𝑈 (𝑡) and T𝑚 generate time-evolution and imaginary time-evolution respectively, and where ℏ

and 𝑘𝐵𝑇 parameterise quantum and thermal fluctuations respectively [9].

The relation between 𝑑 +1-dimensional statistical mechanics and 𝑑-dimensional quantum mechan-

ics discussed here has been purely analogical. As will be demonstrated in the following section, if we

endow a statistical mechanical model with integrability, the correspondence is far deeper than just a

formal analogy. While we have stressed that (1.15) should not be taken literally, integrability implies,

at least to linear order, that the equality holds up to an overall factor.

1.2 A motivating example

1.2.1 Six-vertex model

Let S𝑚,𝑛 denote the set of all 𝑚 × 𝑛 square lattices with periodic boundary conditions in both the

horizontal and vertical direction, and where each vertex corresponds to one of the following states:

1 2 3 4 5 6

(1.17)

as indicated, each of the above vertices is labelled from one to six. The six-vertex model is defined

by assigning the energy 𝐸𝑘 to each 𝑘-labelled vertex in a given configuration. For each 𝑚,𝑛 ∈ N, the

partition function of the model is given by

𝑍𝑚,𝑛 =
∑︁

𝐶∈S𝑚,𝑛

𝑒−𝐸 (𝐶)/𝑘𝐵𝑇 , 𝐸 (𝐶) =
6∑︁
𝑘=1

𝑛𝑘 (𝐶)𝐸𝑘 , (1.18)

where 𝑛𝑘 (𝐶) denotes the number of 𝑘-labelled vertices in the configuration 𝐶. See Figure 1.2a for an

example of a six-vertex model configuration.

Physically, this model can be interpreted as an idealisation of crystalline H2O, and is often referred

to as an ice-type model. To see this, we identify each vertex of the lattice with an oxygen atom and each

incoming arrow with a hydrogen atom – covalently bonded to the oxygen at that site. Reinterpreting

the states in (1.17) accordingly, we have:

1 2 3 4 5 6

(1.19)

which are viewed as orientations of a H2O molecule. Arranging these states on a square lattice,

hydrogen-oxygen neighbours that are not bonded covalently represent hydrogen bonds between

adjacent H2O molecules, giving rise to the crystalline structure characteristic of ice. See Figure 1.2b

for an example of a six-vertex model configuration interpreted as ice. The ice model is defined as the

following specialisation

𝐸1 = 𝐸2 = 𝐸3 = 𝐸4 = 𝐸5 = 𝐸6 = 0, (1.20)
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(a) (b)

Figure 1.2: An example configuration of the six-vertex model; in (a) the configuration is expressed
using the arrow notation of (1.17), while in (b) the configuration is expressed using the molecule
notation of (1.19).

where the Boltzmann weight of each state in (1.19) is one, and the corresponding partition function

simply counts the number of possible configurations.

Another specialisation of the six-vertex model relevant to our analysis employs the so-called

zero-field assumption. In the absence of an external electric or magnetic field, which would serve to

privilege a given direction, the energy of a configuration remains invariant under the reversal of all

arrows. Accordingly, the energies of the zero-field six-vertex model are defined such that

𝐸1 = 𝐸2, 𝐸3 = 𝐸4, 𝐸5 = 𝐸6. (1.21)

We will return to this model in Section 1.2.3.

To determine the partition function of the six-vertex model, we introduce the corresponding

transfer matrix. By construction, this algebraic object generates each single-row configuration of the

model (with periodic boundary conditions in the horizontal direction only) and assigns the appropriate

Boltzmann weights. The transfer matrix of the six-vertex model is given by

T𝑛 :=
∑︁

𝛼1,...,𝛼𝑛=±
𝑎1,...,𝑎𝑛=±
𝑏1,...,𝑏𝑛=±

(
𝑅𝑏1𝛼2
𝛼1 𝑎1𝑅

𝑏2𝛼3
𝛼2 𝑎2 . . . 𝑅

𝑏𝑛−1𝛼𝑛
𝛼𝑛−1 𝑎𝑛−1𝑅

𝑏𝑛 𝛼1
𝛼𝑛 𝑎𝑛

)
𝑒𝑏1
𝑎1 ⊗ 𝑒

𝑏2
𝑎2 ⊗ . . .⊗ 𝑒

𝑏𝑛−1
𝑎𝑛−1 ⊗ 𝑒

𝑏𝑛
𝑎𝑛
, (1.22)

where

𝑅++++ := 𝑒−𝐸1/𝑘𝐵𝑇 , 𝑅−++− := 𝑒−𝐸3/𝑘𝐵𝑇 , 𝑅+−+− := 𝑒−𝐸5/𝑘𝐵𝑇 , (1.23)

𝑅−−−− := 𝑒−𝐸2/𝑘𝐵𝑇 , 𝑅+−−+ := 𝑒−𝐸4/𝑘𝐵𝑇 , 𝑅−+−+ := 𝑒−𝐸6/𝑘𝐵𝑇 , (1.24)

are the Boltzmann weights associated with the model, and

𝑒++ :=

[
1 0
0 0

]
, 𝑒−+ :=

[
0 1
0 0

]
, 𝑒+− :=

[
0 0
1 0

]
, 𝑒−− :=

[
0 0
0 1

]
. (1.25)
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The transfer matrix can be expressed diagrammatically as

T𝑛 =
∑︁

𝛼1,...,𝛼𝑛=±
𝑎1,...,𝑎𝑛=±
𝑏1,...,𝑏𝑛=±

. . .𝛼1 𝛼2 𝛼3 𝛼𝑛−1 𝛼𝑛 𝛼1

𝑎1 𝑎2 𝑎𝑛−1 𝑎𝑛

𝑏1 𝑏2 𝑏𝑛−1 𝑏𝑛

,
(
𝑅
𝑏 𝛽
𝛼𝑎

)
𝑒
𝛽
𝛼 ⊗ 𝑒𝑏𝑎 = 𝛽𝛼

𝑏

𝑎

. (1.26)

The transfer matrix admits an equivalent, arguably neater, description in terms of 𝑅-matrices. For

the six-vertex model, the relevant 𝑅-matrix is defined

𝑅̌ := 𝑅++++𝑒++ ⊗ 𝑒++ +𝑅−++−𝑒++ ⊗ 𝑒−− +𝑅+−+−𝑒−+ ⊗ 𝑒+− +𝑅−+−+𝑒+− ⊗ 𝑒−+ +𝑅+−−+𝑒−− ⊗ 𝑒++ +𝑅−−−−𝑒−− ⊗ 𝑒−−, (1.27)

and corresponds to the matrix

𝑅̌ =


𝑅++++ 0 0 0
0 𝑅−++− 𝑅+−+− 0
0 𝑅−+−+ 𝑅+−−+ 0
0 0 0 𝑅−−−−


. (1.28)

By definition 𝑅̌ ∈ End(V ⊗V) whereV = C2. Now considerV0 ⊗V1 ⊗ . . .⊗V𝑛 whereV𝑘 =V for

all 𝑘 = 0, . . . , 𝑛, we define 𝑅̌𝑖 𝑗 ∈ End(V0 ⊗ . . . ⊗V𝑛) as the operator that acts as 𝑅̌ on V𝑖 ⊗V𝑗 and

as the identity elsewhere. To avoid excess notation, we have not indicated the 𝑛 dependence of the

operator 𝑅̌𝑖 𝑗 . In places where this may be confusing, we have included a remark. Expressing the

transfer operator (1.22) in terms of 𝑅-matrices, we have

T𝑛 = tr0(𝐿𝑛), 𝐿𝑛 := 𝑅̌01𝑅̌02 . . . 𝑅̌0𝑛, (1.29)

where T𝑛 ∈ End(V1 ⊗ . . .⊗V𝑛) and 𝐿𝑛 ∈ End(V0 ⊗ . . .⊗V𝑛), and tr0 denotes the matrix trace over the

tensor factorV0. As in (1.26), the transfer matrix and the 𝑅-matrix can be expressed diagrammatically

as

T𝑛 = . . .𝑅̌ 𝑅̌ 𝑅̌ 𝑅̌

1 2 𝑛−1 𝑛

1 2 𝑛−1 𝑛

0 0 , 𝑅̌𝑖 𝑗 =
𝑅̌

𝑖

𝑗

𝑖

𝑗 , (1.30)

where we identify the left- and right-most horizontal edges. In (1.30), we have indicated the factors

inV0 ⊗ . . .⊗V𝑛 where the operators act non-trivially, accordingly, the identification of the left- and

right-most horizontal edges implement the trace overV0.

The natural algebraic structure of T𝑛 facilitates the construction of 𝑚-row configurations by taking
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the product of 𝑚 transfer matrices, which can be expressed diagrammatically as

T𝑚𝑛 =
∑︁

𝑎11,...,𝑎𝑚+1𝑛=±
𝛼11,...,𝛼𝑚𝑛=±

...
...

...
...

. . .

. . .

. . .

. . .

𝛼11 𝛼12 𝛼13 𝛼1𝑛−1 𝛼1𝑛 𝛼11

𝛼21 𝛼22 𝛼23 𝛼2𝑛−1 𝛼2𝑛 𝛼21

𝛼𝑚−11 𝛼𝑚−12 𝛼𝑚−13𝛼𝑚−1𝑛−1 𝛼𝑚−1𝑛 𝛼𝑚−11

𝛼𝑚 1 𝛼𝑚 2 𝛼𝑚 3 𝛼𝑚𝑛−1 𝛼𝑚𝑛 𝛼𝑚 1

𝑎11 𝑎12 𝑎1𝑛−1 𝑎1𝑛

𝑎21 𝑎22 𝑎2𝑛−1 𝑎2𝑛

𝑎31 𝑎32 𝑎3𝑛−1 𝑎3𝑛

𝑎𝑚−11 𝑎𝑚−12 𝑎𝑚−1𝑛−1 𝑎𝑚−1𝑛

𝑎𝑚 1 𝑎𝑚 2 𝑎𝑚𝑛−1 𝑎𝑚𝑛

𝑎𝑚+11 𝑎𝑚+12 𝑎𝑚+1𝑛−1 𝑎𝑚+1𝑛

=
...

...
...

...

. . .

. . .

. . .

. . .

𝑅̌ 𝑅̌ 𝑅̌ 𝑅̌

𝑅̌ 𝑅̌ 𝑅̌ 𝑅̌

𝑅̌ 𝑅̌ 𝑅̌ 𝑅̌

𝑅̌ 𝑅̌ 𝑅̌ 𝑅̌

. (1.31)

By imposing periodic boundary conditions in the vertical direction, we have

𝑍𝑚,𝑛 = tr(T𝑚𝑛 ) = 𝜆𝑚𝑛,1 +𝜆
𝑚
𝑛,2 + . . .+𝜆

𝑚
𝑛,2𝑛 , (1.32)

where tr denotes the matrix trace and 𝜆𝑛,1,𝜆𝑛,2, . . . ,𝜆𝑛,2𝑛 are the eigenvalues of the transfer matrix

T𝑛. As indicated in (1.7) and again in (1.32), the thermodynamic details of the six-vertex model are

encoded in the spectrum of the transfer matrix.

1.2.2 XXZ model

Following Section 1.1, quantum systems are distinguished from their classical counterparts by occupy-

ing states in a Hilbert space. We consider here a two-dimensional Hilbert spaceH = C2. The space

End(H) is spanned by Pauli matrices:

1 :=

[
1 0
0 1

]
, 𝜎𝑥 :=

[
0 1
1 0

]
, 𝜎𝑦 :=

[
0 −i
i 0

]
, 𝜎𝑧 :=

[
1 0
0 −1

]
. (1.33)

Accordingly, an arbitrary quantum state |𝜓⟩ ∈ H admits a geometric interpretation as a vector in R3

with coordinates (⟨𝜎𝑥⟩𝜓 , ⟨𝜎𝑦⟩𝜓 , ⟨𝜎𝑧⟩𝜓). Define

|0⟩ :=

[
1
0

]
, |1⟩ :=

[
0
1

]
, (1.34)

which form an orthonormal basis forH . An arbitrary quantum state is a ray inH , and can therefore

be represented by

|𝜓⟩ = 𝑟0 |0⟩ + 𝑟1𝑒
i𝜑 |1⟩, (1.35)

where 𝑟0, 𝑟1, 𝜑 ∈ R satisfy 𝑟2
0 + 𝑟

2
1 = 1. Note that we have conveniently selected the representative to

satisfy ⟨𝜓 |𝜓⟩ = 1 and have no global phase. Parameterising trigonometrically, each quantum state in

H can be expressed uniquely as

|𝜓⟩ = cos( 𝜃2 ) |0⟩ + 𝑒
i𝜑 sin( 𝜃2 ) |1⟩, (1.36)
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⟨𝜎𝑥⟩

⟨𝜎𝑦⟩

⟨𝜎𝑧⟩

|𝜓⟩

𝜃

𝜑

(a) (b)

Figure 1.3: In (a) we present an example of a quantum state inH . While in (b) we present an example
of a quantum state in the four-site XXZ vector spaceH⊗4.

where 𝜃 ∈ [0, 𝜋] and 𝜑 ∈ [0,2𝜋). Computing the coordinates (⟨𝜎𝑥⟩𝜓 , ⟨𝜎𝑦⟩𝜓 , ⟨𝜎𝑧⟩𝜓) of a state parame-

terised as (1.36), we have

⟨𝜎𝑥⟩𝜓 = cos(𝜑) sin(𝜃), ⟨𝜎𝑦⟩𝜓 = sin(𝜑) sin(𝜃), ⟨𝜎𝑧⟩𝜓 = cos(𝜃), (1.37)

which corresponds to an angular parameterisation of the unit sphere. It follows that a quantum state in

H can be represented by a point on the unit sphere, often referred to as the Bloch sphere [10]. See

Figure 1.3a for an example of a state expressed on the Bloch sphere.

We now consider a one-dimensional chain with 𝑛 sites, each of which occupies a state in H .

The periodic XXZ model describes the interaction of sites within the chain when equipped with a

nearest-neighbour interaction described by the Hamiltonian

𝐻XXZ = −1
2

𝑛∑︁
𝑖=1

(
𝜎𝑥𝑖 𝜎

𝑥
𝑖+1 +𝜎

𝑦

𝑖
𝜎
𝑦

𝑖+1 +Δ𝜎
𝑧
𝑖
𝜎𝑧
𝑖+1

)
, 𝜎

𝑝

𝑖
= 1⊗𝑖−1 ⊗𝜎𝑝 ⊗1⊗𝑛−𝑖, (1.38)

where 𝜎𝑝
𝑛+1 ≡ 𝜎

𝑝

1 and Δ ∈ R, and we note that 𝐻XXZ ∈ End(H⊗𝑛). See Figure 1.3b for an example of

an XXZ model configuration. Physically, the XXZ model offers a quantum mechanical treatment of an

idealised magnet, consisting of spin-1
2 particles dominated by a nearest-neighbour interaction induced

by the spin-statistics theorem. This model has been shown to exhibit ferromagnetism, a feature absent

in classical counterparts.

1.2.3 Duality

At face value, the zero-field six-vertex model and the periodic XXZ model appear mathematically

and physically distinct. On the one hand, we have a two-dimensional classical statistical mechanical

model and on the other, a one-dimensional quantum mechanical model. Despite this, we show that a

six-vertex model with the property of integrability, is intimately related to the XXZ model.

A statistical mechanical model is considered integrable if it is described by a transfer matrix T (𝑢)
satisfying

[T (𝑢),T (𝑣)] = 0, ∀ 𝑢, 𝑣 ∈ Ω, (1.39)
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where Ω ⊆ C is some suitable domain. Consider a transfer matrix T𝑛 (𝑢) of the form (1.30), where the

𝑢-dependence of the 𝑅-matrix is expressed diagrammatically as

T𝑛 (𝑢) = . . .
𝑢 𝑢 𝑢 𝑢

, 𝑅̌𝑖 𝑗 (𝑢) =
𝑢

. (1.40)

A model described by T𝑛 (𝑢) is integrable if the 𝑅-matrix satisfies the Yang–Baxter equation (YBE)

and inversion identity (Inv):

YBE :
𝑢

𝑣

𝑤 =
𝑣

𝑢

𝑤 Inv : 𝑢 𝑢 = (1.41)

where 𝑤 is a function of 𝑢 and 𝑣, and 𝑢 is a function of 𝑢. To illustrate, we use the following

diagrammatic manipulations

T𝑛 (𝑢)T𝑛 (𝑣) =
. . .

. . .

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

(Inv)
=

. . .

. . .

𝑢

𝑣

𝑢

𝑣

𝑢

𝑣

𝑤𝑤 (1.42)

(YBE)
=

. . .

. . .

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑤 𝑤 =
. . .

. . .

𝑣

𝑢

𝑣

𝑢

𝑣

𝑢

𝑤𝑤
(Inv)
= T𝑛 (𝑣)T𝑛 (𝑢).

Let 𝑢,𝜆 ∈ C and parameterise the zero-field six-vertex model as

𝑅̌(𝑢) :=


𝑎(𝑢) 0 0 0

0 𝑏(𝑢) 𝑐(𝑢) 0
0 𝑐(𝑢) 𝑏(𝑢) 0
0 0 0 𝑎(𝑢)


,

𝑎(𝑢) = sinh(𝜆−𝑢)
sinh(𝜆)

𝑏(𝑢) = sinh(𝑢)
sinh(𝜆)

𝑐(𝑢) = 1

(1.43)

we observe that this 𝑅-matrix satisfies (1.41), and that the model is integrable [11]. Expanding the

transfer matrix in powers of 𝑢, we have

T𝑛 (𝑢) =
∞∑︁
𝑖=0
𝑢𝑖𝑄𝑖, (1.44)

where 𝑄𝑖 ∈ End(V⊗𝑛). Integrability implies that

[T𝑛 (𝑢),𝑄 𝑗 ] = 0, [𝑄𝑖,𝑄 𝑗 ] = 0, ∀𝑖, 𝑗 ∈ N0, (1.45)

and we refer to each 𝑄𝑖 as an integral of motion of the model. It follows from (1.45) that the transfer

matrix and the integrals of motion are closely related – each sharing a common set of eigenvectors.
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Following [12], we will make contact with the XXZ model by determining 𝑄0 and 𝑄1 of the

six-vertex model. To this end, it is convenient to expand the 𝑅-matrix to linear order in 𝑢 as

𝑅̌(𝑢) = P +𝑢𝑅̌(𝛿) +O(𝑢2), (1.46)

where

P :=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


, 𝑅̌(𝛿) :=


− cosh(𝜆)

sinh(𝜆) 0 0 0
0 1

sinh(𝜆) 0 0
0 0 1

sinh(𝜆) 0
0 0 0 − cosh(𝜆)

sinh(𝜆)


. (1.47)

Note that P and 𝑅̌(𝛿) satisfy

P2 = 1⊗2, 𝑅̌
(𝛿)
0 𝑗 P0 𝑗+1 = P0 𝑗P0 𝑗+1P 𝑗 𝑗+1𝑅̌(𝛿)𝑗 𝑗+1, [𝑅̌(𝛿)

𝑗 𝑗+1,P0 𝑘 ] = 0, ∀𝑘 < 𝑗, 𝑗 +1 < 𝑘. (1.48)

Expanding the 𝐿𝑛 operator in (1.29) to linear order in 𝑢, we have

𝐿𝑛 =

𝑛∏
𝑖=1
(P0 𝑖 +𝑢𝑅̌(𝛿)0 𝑖 ) +O(𝑢

2) =
𝑛∏
𝑖=1
P0 𝑖 +𝑢

𝑛∑︁
𝑗=1

( 𝑗−1∏
𝑖=1
P0 𝑖

)
𝑅̌
(𝛿)
0 𝑗

( 𝑛∏
𝑖= 𝑗+1
P0 𝑖

)
+O(𝑢2). (1.49)

Remark. Here and elsewhere we use left-to-right ordering of products i.e.
∏𝑛
𝑖=1 𝑥𝑖 ≡ 𝑥1𝑥2 . . . 𝑥𝑛.

Applying the relations (1.48), we have

𝐿𝑛 =

𝑛∏
𝑖=1
P0 𝑖

(
1⊗(𝑛+1) +𝑢P0𝑛 𝑅̌

(𝛿)
0𝑛

)
+𝑢

𝑛−1∑︁
𝑗=1

( 𝑗+1∏
𝑖=1
P0 𝑖

)
P 𝑗 𝑗+1𝑅̌(𝛿)𝑗 𝑗+1

( 𝑛∏
𝑖= 𝑗+2
P0 𝑖

)
+O(𝑢2) (1.50)

=

( 𝑛∏
𝑖=1
P0 𝑖

) (
1⊗(𝑛+1) +𝑢𝑅(𝛿)0𝑛 +𝑢

𝑛−1∑︁
𝑗=1
𝑅
(𝛿)
𝑗 𝑗+1

)
+O(𝑢2)

where we have introduced 𝑅(𝛿) := P 𝑅̌(𝛿) . Tracing over the zeroth tensor factor, we have

T𝑛 (𝑢) = tr0

(( 𝑛∏
𝑖=1
P0 𝑖

) (
1⊗(𝑛+1) +𝑢𝑅(𝛿)0𝑛 +𝑢

𝑛−1∑︁
𝑗=1
𝑅
(𝛿)
𝑗 𝑗+1

))
+O(𝑢2) (1.51)

= tr0

(( 𝑛∏
𝑖=1
P0 𝑖

)) (
1⊗𝑛 +𝑢

𝑛−1∑︁
𝑗=1
𝑅
(𝛿)
𝑗 𝑗+1

)
+𝑢 tr0

(( 𝑛∏
𝑖=1
P0 𝑖

)
𝑅
(𝛿)
0𝑛

)
+O(𝑢2)

and note the relations

tr0

(( 𝑛∏
𝑖=1
P0 𝑖

))
= 𝜏𝑛, tr0

(( 𝑛∏
𝑖=1
P0 𝑖

)
𝑅
(𝛿)
0𝑛

)
= 𝜏𝑛𝑅

(𝛿)
𝑛1 , 𝜏𝑛 :=

𝑛∏
𝑖=1
P𝑛−𝑖 𝑛+1−𝑖 . (1.52)

Remark. We highlight that in equations (1.51) and (1.52), operators within the partial trace operation

act onV⊗(𝑛+1) , while the operators outside the partial trace operation act onV⊗𝑛.

Applying (1.52) to the transfer matrix, we have

T𝑛 (𝑢) = 𝜏𝑛
(
1⊗(𝑛+1) +𝑢

𝑛∑︁
𝑗=1
𝑅
(𝛿)
𝑗 𝑗+1

)
+O(𝑢2), 𝑅𝑛𝑛+1 ≡ 𝑅𝑛1, (1.53)
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and read off the first two integrals of motion as

𝑄0 = 𝜏𝑛, 𝑄1 = 𝜏𝑛

𝑛∑︁
𝑗=1
𝑅
(𝛿)
𝑗 𝑗+1. (1.54)

Expressing 𝑅(𝛿)
𝑗 𝑗+1 in terms of Pauli matrices, we have

𝑅
(𝛿)
𝑗 𝑗+1 = −

1
2

cosh(𝜆)1⊗𝑛 + 1
2

(
𝜎𝑥𝑗 𝜎

𝑥
𝑗+1 +𝜎

𝑦

𝑗
𝜎
𝑦

𝑗+1− cosh(𝜆)𝜎𝑧
𝑗
𝜎𝑧
𝑗+1

)
+O(𝑢2), (1.55)

and we recognise the appearance of the XXZ model in 𝑄1

𝑄1 = −𝜏𝑛
(𝑛
2

cosh(𝜆)1⊗𝑛 +𝐻XXZ

)
, Δ = −cosh(𝜆). (1.56)

It immediately follows from (1.45) that [T𝑛 (𝑢), 𝜏𝑛] = 0 and

[T𝑛 (𝑢), 𝐻𝑋𝑋𝑍 ] = 0. (1.57)

Consequently, the transfer matrix of a zero-field six-vertex model and the Hamiltonian of the XXZ

model share a common set of eigenvectors! This is a remarkable result. From a practical perspective, a

solution to one of the models can be immediately passed to the other via the ‘duality’ (1.57). In fact,

this approach was the first to yield a solution to the XXZ model, where the initial breakthrough was

achieved via an application of the algebraic Bethe ansatz to the six-vertex model [11].

1.3 Statistical-quantum duality

Taking lessons from the six-vertex and XXZ example, we proceed by stating the statistical-quantum

duality in a general setting. Let T denote the transfer matrix describing a 𝑑 +1-dimensional statistical

mechanical system, and letV denote the vector space acted on by T . LetH denote the Hilbert space

of a quantum system described by a Hamiltonian 𝐻. These two systems are dual ifV can be viewed

as a Hilbert space such thatV =H , and if the transfer operator and Hamiltonian satisfy

[T , 𝐻] = 0. (1.58)

As illustrated in Section 1.2, the integrability of a statistical mechanical model described by T (𝑢)
naturally gives rise to a statistical-quantum duality (1.58), provided that V is a Hilbert space. For

an arbitrarily parameterised transfer matrix T (𝑢), we demonstrate how to determine a countable set

of dual Hamiltonians. Let B denote a basis for End(V), expressing the transfer matrix in terms of

elements in the basis B, we have

T (𝑢) =
∑︁
𝑎∈B

𝑡𝑎 (𝑢)𝑎, (1.59)

where 𝑡𝑎 : Ω→ C for each 𝑎 ∈ B. Define the space of scalar functions

F := spanC{𝑡𝑎 : Ω→ C | 𝑎 ∈ B} (1.60)
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and denote by BT a basis for F . Determining the dual Hamiltonians associated with T (𝑢), it is

convenient to express the transfer matrix in terms of elements from the basis BT

T (𝑢) =
∑︁
𝑓 ∈BT

𝑓 (𝑢)𝑄 𝑓 , (1.61)

where 𝑄 𝑓 ∈ End(V) for each 𝑓 ∈ BT . The integrability of the model implies that

[T (𝑢),𝑄 𝑓 ] = 0, [𝑄 𝑓 ,𝑄𝑔] = 0, ∀ 𝑓 , 𝑔 ∈ BT . (1.62)

It follows from (1.62) that any Hamiltonian defined as a multi-variate function of elements in {𝑄 𝑓 | 𝑓 ∈
BT }, is dual to the statistical mechanical system described by T (𝑢). We return to the analysis

(1.59)–(1.62) in a general setting in Chapter 3.

1.4 Outline

This thesis describes two-dimensional statistical mechanical models in a planar-algebraic setting.

We develop a framework, centred around the transfer operator (which takes the role of the transfer

matrix) but is not necessarily a matrix, instead it is an element of a so-called planar algebra. Planar

algebras were developed by Vaughan Jones to study inclusions of von Neumann algebras [13], but have

found applications ranging from knot theory [14–16] to various areas of mathematical physics [17–20].

Intuitively, planar algebras describe the ‘multiplication’ of vectors in the plane and therefore are

natural objects to describe two-dimensional statistical mechanical systems. While we are not the first

to observe the utility of planar algebras to describe statistical mechanical systems [13, 17], nor are

we the first to express the transfer operator as an element of a planar algebra [21]; the novelty in

this thesis owes to the generality of the framework, which can be summarised in the following: to

each planar algebra, we assign a model on the strip and a model on the cylinder. We refer to these as

planar-algebraic models.

Within this framework, we develop sufficient conditions that imply that a planar-algebraic model

is integrable, which generalises and translates the Yang–Baxter equation and inversion identities

introduced in Section 1.2 to the planar-algebraic setting. We present an algebraic characterisation of

integrals of motion of a planar-algebraic model and consider algebraic relations among them. For a

general class of planar algebras, we identify when each integral of motion arising from the transfer

operator is algebraically related to a single element of the planar algebra. In this case, we can express

the transfer operator as a polynomial in a single algebraic element, suggesting that, in some instances,

(1.15) may be taken literally. We also highlight that the planar-algebraic framework recovers the

standard formulation of transfer operators as matrices by specialising to the tensor planar algebra.

Stepping back, we present three motivations for studying planar-algebraic models. The first and

most straightforward is that planar algebras offer an inherently two-dimensional setting to describe

models native to the plane. The second is that the planar-algebraic framework is more general than the

standard matrix formalism. To see this, observe that planar-algebraic models can only be described in
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the standard formalism via a representation, which is typically unable to capture the structure of the

underlying planar algebra. On the other hand, each model in the standard formalism is expressible as a

planar-algebraic model by specialising to the tensor planar algebra. Finally, planar-algebraic models

offer new perspectives on statistical mechanical systems, in particular, by suggesting new integrable

models and connections to other areas of mathematics.

To conclude this section, we present an overview of the upcoming chapters. Chapter 2 serves

to introduce many of the planar-algebraic objects used throughout the thesis. We begin by defining

shaded and unshaded planar algebras. Imposing additional structure on shaded planar algebras, we

introduce subfactor, singly generated and Yang–Baxter relation planar algebras. Using [22], we show

that shaded planar algebras consistent with our Yang–Baxter integrability framework necessarily admit

an unshaded description. We conclude by presenting planar algebras in a categorical setting.

In Chapter 3, we develop the planar-algebraic framework. We begin by defining 𝑅- and 𝐾-operators

from which we construct a transfer operator on the strip and a transfer operator on the cylinder. For

each of these transfer operators, we develop a finite set of relations, including generalised Yang–Baxter

equations, that serve as sufficient conditions for integrability. A planar-algebraic model satisfying

these sufficient conditions is referred to as Yang–Baxter integrable. Integrals of motion of each model

are determined by identifying identity points, about which a power series expansion of the transfer

operator is performed. We refer to the linear order term in this expansion as the principal Hamiltonian

of the model. We conclude this chapter with an algebraic characterisation of the integrals of motion

and quantum Hamiltonians associated with a planar-algebraic model and introduce the notion of

polynomial integrability.

Chapter 4 develops the groundwork to establish algebraic relations among integrals of motion

arising from the transfer operator of an integrable planar-algebraic model. Specifically, we identify

necessary and sufficient conditions for a parameter-dependent matrix to be expressible in terms of a

polynomial in a parameter-independent matrix. This result is then extended to parameter-dependent

elements of a semisimple algebra. We also review cellular algebras and establish results relevant to

the spectral analysis of planar-algebraic models.

In Chapter 5, we apply the planar-algebraic framework to show that a singly generated planar

algebra underlies a Yang–Baxter integrable model if and only if it is a Yang–Baxter relation planar

algebra. According to a result by Liu, there are three singly generated Yang–Baxter relation planar

algebras: the well-known Fuss–Catalan and Birman–Wenzl–Murakami planar algebras, in addition to

a new planar algebra, that we refer to as the Liu planar algebra. The Fuss–Catalan and Birman–Wenzl–

Murakami planar algebras have long been known to admit integrable models, which we review and

place within our framework. While, to the best of our knowledge, no such model has been introduced

for the Liu planar algebra. We address this absence by constructing an integrable model from the Liu

planar algebra, which fits naturally within our framework. We conclude this chapter by showing that

all of the singly generated Yang–Baxter relation planar algebras encoding Yang–Baxter integrable

models on the strip are polynomially integrable, that is, the transfer operator is expressible in terms of

a polynomial in a single Hamiltonian.
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In Chapter 6, we focus on an eight-vertex model and a model with an underlying Temperley–

Lieb planar-algebraic structure, both defined on the strip. In each case, we determine the principal

Hamiltonians of the model and establish conditions for which the model is polynomially integrable.

For the eight-vertex model, we find that it is polynomially integrable for all 𝑛 ∈ N, while for the

Temperley–Lieb model, we show that it is polynomially integrable for all but finitely many 𝛿 ∈ C and

all 𝑛 ≤ 17. For both models, we find that the transfer operator can be expressible as a polynomial in

the corresponding principal Hamiltonian, and we determine these polynomials explicitly in each case.

Chapter 7 is distinct from the preceding chapters in two main ways: (i) we consider models defined

on causal triangulations, and (ii) our primary interest is the critical behaviour of the model, not whether

it is integrable. We introduce a dense and a dilute loop model on causal triangulations and describe

each model by a transfer operator different from those introduced in Chapter 3. We show that the

dense loop model can be mapped to a planar tree model, which can be solved exactly to determine

the critical behaviour. The dilute loop model can similarly be mapped to a planar tree model, albeit

one that cannot be solved exactly using the methods employed in the dense case. Instead, we develop

transfer operator techniques to determine the critical behaviour of the dilute loop model, which we

show to be distinct from the dense loop model.

In Chapter 8, we extend the scope of planar-algebraic models beyond statistical mechanics by

showing how such models relate to quantum field theories (QFTs). After defining the relevant class of

QFTs, we introduce Jones’ semicontinuous models as ‘almost’ examples of this class and detail some

recent efforts to endow these models with the properties of actual examples. Within semicontinuous

models, we outline the relevance of the planar-algebraic framework and highlight the central role

played by the single-row transfer operator.

We conclude in Chapter 9, by summarising the main results and by offering some directions for

future study. The Appendix consists of technical details deferred from Chapter 5 and Chapter 6.
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Chapter 2

Planar algebras

In this chapter, we introduce planar algebras and define much of the planar-algebraic machinery used in

subsequent chapters. We begin by defining planar algebras and their shaded incarnation. We follow up

by constructing planar-algebraic versions of familiar linear-algebraic operations such as multiplications,

traces and inner products. By imposing additional structure on shaded planar algebras, we introduce

subfactor planar algebras as a planar-algebraic version of a 𝐶∗-algebra, and present singly generated

and Yang–Baxter relation variants of these. We show that singly generated planar algebras relevant to

our integrability framework (introduced later in Chapter 3) must admit an unshaded description. We

conclude by presenting planar algebras in a categorical setting that will be convenient for describing

models on the cylinder.

2.1 Planar algebras

Informally, an (unshaded) planar algebra is a collection of vector spaces (𝑃𝑛)𝑛∈N0 whose elements

can be combined in the plane such that the resulting object is identified as an element of a given 𝑃𝑘 for

the appropriate 𝑘 ∈ N0. A basis for 𝑃𝑛 consists of a set of disks whose boundary is decorated by 𝑛

connection points or nodes and a marked interval, basis vectors are distinguished by some internal

structure specific to the particular planar algebra. Vectors are combined in the plane by connecting

each available node to a single non-intersecting loop segment defined up to ambient isotopy, that is,

the loop segments can be bent or stretched without affecting the result but cannot be cut or made to

intersect. Planar tangles are the diagrammatic objects that facilitate the combination of vectors, for

example:

input disks

output disk

closed loop

loop segments

marked intervals

(2.1)

17
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Definition 2.1.1. An (unshaded) planar tangle T consists of the following components in R2:

• A disk 𝐷𝑇0 , called the output disk.

• A finite set of non-overlapping disks D𝑇 in the interior of 𝐷𝑇0 , called input disk(s).

• A finite number of non-intersecting loop segments within the output disk and outside of the

input disk(s), connecting pair-wise, distinct points on the boundary of the disks in {𝐷𝑇0 } ∪D𝑇
called nodes, or closing on themselves forming loops. Denote by 𝜂(𝐷) the number of nodes

on the boundary of 𝐷 ∈ {𝐷𝑇0 } ∪D𝑇 . The boundary of each disk is thus composed of nodes and

boundary intervals: the open intervals between the nodes or if there are no nodes, a whole

circle.

• For each disk in {𝐷𝑇0 } ∪D𝑇 , a choice of boundary interval, here marked graphically by a red

rectangle.

Each planar tangle 𝑇 is defined up to ambient isotopy of 𝐷𝑇0 ⊂ R
2.

Remark. One can consider variants of planar algebras by equipping the planar tangles with additional

structure, for example, by assigning each loop segment a label. After introducing the simplest version

here, Section 2.2 is devoted to so-called shaded planar algebras.

There exists a natural product structure among planar tangles known as glueing or composition.

Consider two planar tangles 𝑇 and 𝑆, we say 𝑆 is 𝐷-compatible with 𝑇 if 𝐷 ∈ D𝑇 satisfies 𝜂(𝐷) =
𝜂(𝐷𝑆

0), in this case, it is possible to deform 𝑆 so that it takes the place of 𝐷 in such a way that the

nodes and marking of both are aligned. The image of the product, denoted by 𝑇 ◦𝐷 𝑆, is identified as a

planar tangle by replacing 𝐷 with 𝑆 and by removing both the output disk and associated marking

of 𝑆. If 𝑆 is not 𝐷-compatible, then 𝑇 ◦𝐷 𝑆 = 0. To illustrate, the following quadratic tangle 𝑆 can be

glued inside the cubic tangle 𝑇 :

𝑇 = 𝐷 , 𝑆 = , 𝑇 ◦𝐷 𝑆 = . (2.2)

Definition 2.1.2. The set of planar tangles endowed with compositions is called the planar operad.

Planar tangles also act naturally as multilinear maps on the vector spaces (𝑃𝑛)𝑛∈N0 . To each planar

tangle, we associate the linear |D𝑇 |-ary operator

P𝑇 :
?
𝐷∈D𝑇

𝑃𝜂(𝐷)→ 𝑃𝜂(𝐷𝑇
0 )
, (2.3)

where we note that for D𝑇 = ∅ there is no domain, in which case P𝑇 is a 0-ary operator (or nullary)

and we denote its image by P𝑇 (). The action of P𝑇 is similar to the composition of tangles but at the
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level of vectors. Each input disk 𝐷 of 𝑇 is replaced with elements of the vector space 𝑃𝜂(𝐷) in such a

way that the nodes and the marking of both are aligned, for example:

𝑇 =

1

3
2 , P𝑇 (𝑣1, 𝑣2, 𝑣3) =

𝑣1

𝑣2
𝑣3

∈ 𝑃8. (2.4)

The markings of the input disks are then removed and the resulting vector is identified in 𝑃𝜂(𝐷𝑇
0 )

.

Remark. Unlike in the picture of 𝑇 in (2.4), disks in D𝑇 are not labelled; however, to apply the

ordered-list notation for the vectors in P𝑇 (𝑣1, 𝑣2, 𝑣3), it is convenient to label the disks accordingly.

Once drawn as in the second picture in (2.4), no labelling is needed.

The identification of an appropriate output vector depends on the specific action of the planar tangles

as linear maps, which is specified when defining a particular planar algebra. To illustrate, consider a

planar algebra whose vector spaces (𝑃2𝑛)𝑛∈N0 are spanned by planar tangles with zero input disks, and

take the action of the planar tangles to be the composition of tangles. Revisiting (2.4) with a particular

set of input vectors, we identify the image of P𝑇 in 𝑃8 as

P𝑇
(

, ,
)
= = = . (2.5)

Having defined both the action of planar tangles on themselves and on arbitrary vector spaces, we

now consider their interaction. A basic requirement is that these actions are consistent, that is, for any

tangle 𝑆 that is 𝐷-compatible with 𝑇 , we have

P𝑇◦𝐷𝑆 = P𝑇 ◦𝐷 P𝑆, (2.6)

where the right-hand side is defined concretely after (2.7). The condition (2.6) is known as naturality

and is much akin to a homomorphism property among planar tangles and their associated linear maps.

To specify the action of the right-hand side, we introduce

𝑔 :
( ?
𝑑∈D𝑆

𝑃𝜂(𝑑)

)
×

( ?
𝑑∈D𝑇\{𝐷}

𝑃𝜂(𝑑)

)
→ 𝑃𝜂(𝐷) ×

( ?
𝑑∈D𝑇\{𝐷}

𝑃𝜂(𝑑)

)
, (𝑥, 𝑦) ↦→ (P𝑆 (𝑥), 𝑦). (2.7)

We can now write the right-hand side as P𝑇 ◦𝐷 P𝑆 := P𝑇 ◦𝑔, where here ◦ denotes standard function

composition, and the domain of P𝑇 is ordered such that the input 𝐷 is first, followed by the inputs

D𝑇 \{𝐷}. To illustrate, suppose that the domain of P𝑇◦𝐷𝑆 is ordered such that all of theD𝑆 inputs come

first and are denoted by 𝑣𝑆, followed by the D𝑇 \ {𝐷} inputs denoted by 𝑣𝑇 ′ . For D𝑆,D𝑇 \ {𝐷} ≠ ∅,
we can express the naturality condition as

P𝑇◦𝐷𝑆 (𝑣𝑆, 𝑣𝑇 ′) = P𝑇
(
P𝑆 (𝑣𝑆), 𝑣𝑇 ′). (2.8)
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We also list the exceptional cases

P𝑇◦𝐷𝑆 (𝑣𝑆) = P𝑇
(
P𝑆 (𝑣𝑆)

)
, D𝑆 ≠ ∅, D𝑇 \ {𝐷} = ∅ (2.9)

P𝑇◦𝐷𝑆 (𝑣𝑇 ′) = P𝑇
(
P𝑆 (), 𝑣𝑇 ′), D𝑆 = ∅, D𝑇 \ {𝐷} ≠ ∅ (2.10)

P𝑇◦𝐷𝑆 () = P𝑇
(
P𝑆 ()

)
, D𝑆, D𝑇 \ {𝐷} = ∅ (2.11)

which, together with (2.8), must hold for all 𝑣𝑆 ∈
>

𝑑∈D𝑆
𝑃𝜂(𝑑) and 𝑣𝑇 ′ ∈

>
𝑑∈D𝑇\{𝐷} 𝑃𝜂(𝑑) , and all

tangles 𝑇 and 𝑆.

We now give a precise definition of planar algebras.

Definition 2.1.3. A planar algebra is a collection of complex vector spaces (𝑃𝑛)𝑛∈N0 , together with

the action of each element of the planar operad as a multilinear map, such that naturality is satisfied.

In the following section, we describe a type of planar algebra whose planar tangles (and consequently

vector spaces) are equipped with additional structure.

2.2 Shaded planar algebras

Shaded planar algebras are a simple variant of planar algebras where the planar tangles possess a

‘checker-board’ shading. A planar tangle is shaded if each region (excluding the interior of input disks)

is one of two colours, such that two regions separated by a single loop segment do not possess the

same colour. For a planar tangle to admit a shading, the output disk and each input disk must have an

even number of connection points. Each planar tangle admitting a shading can be shaded in exactly

two ways, for example:

and . (2.12)

Accordingly, each disk in a shaded planar tangle carries both node information and shading infor-

mation. As for planar tangles in Definition 2.1.1, we denote the output disk of the shaded planar

tangle 𝑇 by 𝐷𝑇0 and the set of input disks by D𝑇 . The number of nodes on the (exterior) boundary of

𝐷 ∈ {𝐷𝑇0 } ∪D𝑇 is denoted by 𝜂(𝐷) and is even, while the shading of 𝐷 is denoted by 𝜁 (𝐷) and is +,
respectively −, if the (exterior) marked boundary interval corresponds to a white, respectively blue,

region.

Composition among shaded planar tangles works much in the same way as for planar tangles.

Let 𝑇 and 𝑆 be shaded planar tangles and suppose there exists 𝐷 ∈ D𝑇 satisfying 𝜂(𝐷) = 𝜂(𝐷𝑆
0) and

𝜁 (𝐷) = 𝜁 (𝐷𝑆
0). It is then possible to isotopically deform 𝑆 such that it can take the place of 𝐷, as
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illustrated by

𝑇 = 𝐷 , 𝑆 = , 𝑇 ◦𝐷 𝑆 = . (2.13)

Definition 2.2.1. The set of shaded planar tangles endowed with compositions is called the shaded

planar operad.

To accommodate the presence of shading, the relevant collection of vector spaces is (𝐴𝑛,𝜀)𝜀∈{+,−}𝑛∈N0

which is commonly abbreviated as (𝐴𝑛,±)𝑛∈N0 . A basis for 𝐴𝑛,± consists of disks with 2𝑛 nodes

(connection points) on their boundary, whereby a boundary is composed of nodes and boundary

intervals, and the boundary intervals are labelled alternatingly by + or −. Shaded planar tangles act

naturally as multilinear maps on the vector spaces (𝐴𝑛,±)𝑛∈N0 . To each shaded planar tangle 𝑇 , we

associate the linear |D𝑇 |-ary operator

P𝑇 :
?
𝐷∈D𝑇

𝐴𝜂(𝐷)/2, 𝜁 (𝐷)→ 𝐴𝜂(𝐷𝑇
0 )/2, 𝜁 (𝐷

𝑇
0 )
, (2.14)

where for D𝑇 = ∅, we denote the image by P𝑇 (). The action of P𝑇 is similar to the unshaded case,

each input disk 𝐷 of 𝑇 is replaced with elements of the vector space 𝐴𝜂(𝐷)/2,𝜁 (𝐷) in such a way that

the nodes, the shading, and the marking of both are aligned, for example:

𝑇 =

1

3
2 , P𝑇 (𝑣1, 𝑣2, 𝑣3) =

𝑣1

𝑣2
𝑣3

∈ 𝑃8. (2.15)

The markings of the input disks are then removed and the resulting vector is identified in 𝐴𝜂(𝐷𝑇
0 )/2,𝜁 (𝐷

𝑇
0 )

.

Naturality for shaded planar tangles can be stated as in (2.8) as

P𝑇◦𝐷𝑆 (𝑣𝑆, 𝑣𝑇 ′) = P𝑇
(
P𝑆 (𝑣𝑆), 𝑣𝑇 ′), (2.16)

where 𝑣𝑆 ∈
>

𝑑∈D𝑆
𝐴𝜂(𝑑)/2,𝜁 (𝑑) and 𝑣𝑇 ′ ∈

>
𝑑∈D𝑇\{𝐷} 𝐴𝜂(𝑑)/2,𝜁 (𝑑) . For the exceptional cases, translate

(2.9)–(2.11) accordingly.

We now give a precise definition of shaded planar algebras.

Definition 2.2.2. A shaded planar algebra is a collection of complex vector spaces (𝐴𝑛,±)𝑛∈N0 , together

with the action of each element of the shaded planar operad as a multilinear map, such that naturality

is satisfied.
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The naturality condition is quite restrictive, it allows us, under very mild conditions, to determine

the action of some of the shaded planar tangles. For each 𝑛 ∈ N0, the identity tangles are defined

id𝑛,+ := ..
. , id𝑛,− := ..
. , Pid𝑛,± : 𝐴𝑛,±→ 𝐴𝑛,±, (2.17)

each having 2𝑛 ‘spokes’. We say that a nonzero 𝑣 ∈ 𝐴𝑛,± is a null vector if P𝑇 (𝑣) = 0 for every shaded

planar tangle 𝑇 for which P𝑇 has domain 𝐴𝑛,±. With that, we have the following result.

Proposition 2.2.3. If 𝐴𝑛,± has no null vectors, then Pid𝑛,± is the identity operator.

Proof. Let 𝑣 ∈ 𝐴𝑛,± and 𝑇 be a shaded planar tangle for which P𝑇 has domain 𝐴𝑛,±. By naturality, we

then have

P𝑇◦𝐷 id𝑛,±
(
𝑣) = P𝑇 (Pid𝑛,± (𝑣)), (2.18)

hence

P𝑇
(
𝑣−Pid𝑛,± (𝑣)) = 0, (2.19)

so 𝑣 −Pid𝑛,± (𝑣) ∈ ker(P𝑇 ). Since 𝐴𝑛,± has no null vectors, it follows that Pid𝑛,± (𝑣) = 𝑣 for all 𝑣 ∈
𝐴𝑛,±. □

Remark. An analogous result holds for unshaded planar algebras by considering unshaded planar

tangles and elements of the graded vector space (𝑃𝑛)𝑛∈N0 .

In general, there are no constraints on the dimensions of the vector spaces 𝐴𝑛,±, but a planar algebra

is called evaluable if dim(𝐴0,±) = 1 and dim(𝐴𝑛,±) <∞ for all 𝑛 ∈ N. In that case, the evaluation map

e : 𝐴0,±→ C, (2.20)

which acts by mapping the ‘empty disk’ to the scalar 1, provides an isomorphism, 𝐴0,± � C, for each

shading +/−.

Many familiar linear algebraic operations have counterparts in shaded planar algebras. We proceed

by introducing the shaded planar tangles and corresponding linear maps that implement operations

relevant in forthcoming sections.

Remark. Omitting the subscript indicating the shading of a given shaded tangle, we are referring to

the corresponding unshaded version of the tangle. A similar convention is adopted for vector spaces.

For each 𝑛 ∈ N0, the planar tangles

tr(𝑙)𝑛,+:= . . . , tr(𝑙)𝑛,−:= . . . , tr(𝑟)𝑛,+:= . . . , tr(𝑟)𝑛,−:= . . . ,

(2.21)
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induce notions of left and right traces respectively

Ptr(𝑙)𝑛,±
: 𝐴𝑛,±→ 𝐴0,±(−)𝑛 , Ptr(𝑟 )𝑛,±

: 𝐴𝑛,±→ 𝐴0,±. (2.22)

Remark. If the shading of a region is unspecified, as it may depend on the parity of 𝑛, we use the

banded pattern illustrated in (2.21). For simplicity, the region containing the ‘dots’ is coloured white.

A planar algebra is said to be spherical if

Ptr(𝑙)𝑛,±
= Ptr(𝑟 )𝑛,±

(2.23)

for all 𝑛 ∈ N0. We note that sphericality requires 𝐴0,+ � 𝐴0,−.

Similarly, the partial trace tangles

𝜏
(𝑙)
𝑛,+:=

. . .

. . .

, 𝜏
(𝑙)
𝑛,−:=

. . .

. . .

, 𝜏
(𝑟)
𝑛,+:=

. . .

. . .

, 𝜏
(𝑟)
𝑛,−:=

. . .

. . .

,

(2.24)

induce notions of left- and right-partial traces respectively

P
𝜏
(𝑙)
𝑛,±

: 𝐴𝑛,±→ 𝐴𝑛−1,∓, P
𝜏
(𝑟 )
𝑛,±

: 𝐴𝑛,±→ 𝐴𝑛−1,±, (2.25)

where tr(𝑙)𝑛,± = 𝜏
(𝑙)
1,±(−)𝑛−1 ◦ 𝜏

(𝑙)
2,±(−)𝑛−2 ◦ · · · ◦ 𝜏

(𝑙)
𝑛,± and tr(𝑟)𝑛,± = 𝜏

(𝑟)
1,± ◦ 𝜏

(𝑟)
2,± ◦ · · · ◦ 𝜏

(𝑟)
𝑛,±.

For each 𝑛 ∈ N0, the planar tangles

𝑀𝑛,+ :=
2

1

. . .

. . .

. . .

, 𝑀𝑛,− :=
2

1

. . .

. . .

. . .

, P𝑀𝑛,± : 𝐴𝑛,±× 𝐴𝑛,±→ 𝐴𝑛,±, (2.26)

induce a multiplication on 𝐴𝑛,±, and we write 𝑣𝑤 = P𝑀𝑛,± (𝑣,𝑤) ∈ 𝐴𝑛,± for 𝑣,𝑤 ∈ 𝐴𝑛,±, where 𝑣,

respectively 𝑤, is replacing the lower, respectively upper, disk in 𝑀𝑛,±. Naturality ensures that the

resulting algebra 𝐴𝑛,± is associative, and under mild conditions (see Proposition 2.2.4 below), also

unital, with unit

1𝑛,± := PId𝑛,± (), Id𝑛,+ := . . . , Id𝑛,− := . . . , (2.27)

whose dependence on 𝑛 may be suppressed by writing 1± for 1𝑛,±.

Proposition 2.2.4. If 𝐴𝑛,± has no null vectors, the algebra induced by the multiplication tangle 𝑀𝑛,±

is unital, with unit 1𝑛,±.
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Proof. Observe that naturality implies

P𝑀𝑛,±◦2Id𝑛,± (𝑣) = P𝑀𝑛,±

(
𝑣,1𝑛,±), P𝑀𝑛,±◦1Id𝑛,± (𝑣) = P𝑀𝑛,±

(
1𝑛,±, 𝑣), (2.28)

which can be simplified to

Pid𝑛,± (𝑣) = 𝑣 = 𝑣1𝑛,±, Pid𝑛,± (𝑣) = 𝑣 = 1𝑛,± 𝑣, (2.29)

and holds for all 𝑣 ∈ 𝐴𝑛,±. Note that in the first equality of both expressions, we have applied

Proposition 2.2.3. □

Remark. A zero planar algebra [23], where the vector spaces (𝐴𝑛,±)𝑛∈N0 are arbitrary and all planar

tangles act as the zero map, exclusively contains null vectors. We note (i) that each vector space of a

planar algebra can be extended to include arbitrarily many null vectors, and (ii) for each planar algebra

with null vectors, except for a zero planar algebra, there exists a corresponding planar algebra without

null vectors (obtained by omitting them).

In this section, we have considered shaded planar algebras in a general setting. In the following,

we impose additional structure on the vector spaces and linear maps to define variants of shaded planar

algebras. For us, this will culminate in the definition of Yang–Baxter relation planar algebras. But

first, we meet subfactor planar algebras, which play a significant role in the theory of von Neumann

algebras. For more on this, see [24].

2.3 Subfactor planar algebras

One can endow (shaded) planar algebras with a ∗-algebraic structure by introducing two involutions,

one acting on (shaded) planar tangles and the other acting on vectors. First, let ·† denote the operator

that acts by reflecting a planar tangle about a line perpendicular to the marked exterior boundary

interval, and let ∗ : 𝐴𝑛,±→ 𝐴𝑛,±, 𝑛 ∈ N0, denote a conjugate linear involution. Analogous to naturality,

compatibility between the two maps manifests itself in a simple relation,

P𝑇† (𝑣∗1, . . . , 𝑣
∗
|D𝑇 |) = P𝑇 (𝑣1, . . . , 𝑣 |D𝑇 |)∗, (2.30)

which must hold for all planar tangles 𝑇 and all (𝑣1, . . . , 𝑣 |D𝑇 |) ∈
>

𝐷∈D𝑇
𝐴𝜂(𝐷)/2, 𝜁 (𝐷) . A planar algebra

(𝐴𝑛,±)𝑛∈N0 endowed with the maps ·† and ·∗ satisfying (2.30) is known as involutive. In that case,

PId†𝑛,±
() = PId𝑛,± ()∗, 1𝑛,± = 1

∗
𝑛,±, (2.31)

and for 𝑝 ∈ 𝐴𝑛,±, we have

𝑝2 = 𝑝 =⇒ (𝑝∗)2 = 𝑝∗, (2.32)

with the indicated multiplication induced by 𝑀𝑛,±.

An involutive planar algebra (𝐴𝑛,±)𝑛∈N0 admits the sesquilinear maps

⟨· , ·⟩ (𝑐)𝑛,± : 𝐴𝑛,±× 𝐴𝑛,±→ 𝐴0,±(−)𝑛𝛿𝑐𝑙 , (𝑎, 𝑏) ↦→ Ptr(𝑐)𝑛,±
(𝑎∗𝑏), (2.33)
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labelled by 𝑐 ∈ {𝑙, 𝑟} and known as the left and right trace map for 𝑐 = 𝑙 and 𝑐 = 𝑟 , respectively. Here,

𝛿𝑐𝑙 = 1 for 𝑐 = 𝑙, and 𝛿𝑐𝑙 = 0 for 𝑐 = 𝑟 . Composed with the evaluation map (2.20) for dim 𝐴0,± = 1, we

obtain the sesquilinear trace forms

e◦ ⟨· , ·⟩ (𝑐)𝑛,± : 𝐴𝑛,±× 𝐴𝑛,±→ C. (2.34)

An involutive planar algebra inherits the qualifier positive (semi-)definite if both trace forms enjoy it

for all 𝑛 ∈ N0. If the involutive planar algebra is spherical, then the two trace maps (and hence trace

forms) are identical.

We now give a precise definition of a subfactor planar algebra.

Definition 2.3.1. A subfactor planar algebra is an evaluable, spherical, positive-definite and shaded

planar algebra.

The properties of subfactor planar algebras endow each vector space 𝐴𝑛,± with a unique trace form

(2.34) as an inner product which, together with the corresponding multiplication tangle (2.26), make

each 𝐴𝑛,± a finite-dimensional semisimple algebra, see e.g. [25]. Consequently, each 𝐴𝑛,± is isomorphic,

as an algebra, to a direct sum of matrix algebras, which facilitates the use of linear algebraic techniques

in the analysis of subfactor planar algebras. To this end, we introduce

P′
tr(𝑐)𝑛,±

:= e◦Ptr(𝑐)𝑛,±
(2.35)

and refer to the map

𝐴𝑛,±→ R, 𝑎 ↦→
√︂
P′

tr(𝑐)𝑛,±
(𝑎∗𝑎) , (2.36)

as the trace norm.

As a concrete example, we introduce here the Temperley–Lieb subfactor planar algebra (T𝑛,±)𝑛∈N0 ,

and revisit it later in Section 5.1 and again in Section 6.1. In some respects, this example is the simplest

subfactor planar algebra as it is generated by the intrinsic properties of planar tangles and therefore

requires no external input. To illustrate this point, we define the Temperley–Lieb subfactor planar

algebra in a roundabout way, see Section 5.1 for the standard definition. Let T𝑛,± denote the span of

all planar tangles 𝑇 with zero input disks, and with 𝜂(𝐷𝑇0 ) = 2𝑛 and 𝜁 (𝐷𝑇0 ) = ±. Planar tangles act on

vectors in (T𝑛,±)𝑛∈N0 , as the composition of tangles, see for example (2.5) (but here shaded). Vectors

in (T𝑛,±)𝑛∈N0 , satisfy additional relations making the corresponding planar algebra a subfactor planar

algebra. We proceed by deriving these relations.

Evaluability requires dimT0,± = 1, and consequently, the empty diagram and the diagram with a

closed loop are not linearly independent, so we have

= 𝛿+ , = 𝛿− , (2.37)

where 𝛿± ∈ C is called the shaded loop fugacity. Naturality implies that the appearance of a closed loop

within any vector can always be removed and assigned a weight 𝛿+ or 𝛿−. It follows that dimT𝑛,± <∞
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for all 𝑛 ∈ N. The spherical property follows by enforcing

= , (2.38)

which implies

𝛿+ = 𝛿− and = . (2.39)

To be convinced that sphericality is satisfied, observe that applying either the left or right trace does not

change the number of closed loops formed. From here onward we use 𝛿 to denote 𝛿+ equivalently 𝛿−.

It follows from the closure of shaded planar tangles under the involution ·†, that the Temperley–Lieb

subfactor planar algebra is readily involutive. Deriving relations following from the positive-definite

condition is more involved than the previous conditions. It can be shown that the trace form of the

Temperley–Lieb subfactor planar algebra is positive definite for 𝛿 ∈ { 2cos
(
𝜋
𝑘

)
| 𝑘 = 3,4, . . .} ∪ [2,∞)

[26]. For 𝛿 ∈ { 2cos
(
𝜋
𝑘

)
| 𝑘 = 3,4, . . .}, each T𝑛,± is defined such that a collection of so-called Jones-

Wenzl idempotents are set to zero, while for 𝛿 > 2 no additional relations are imposed [27, 28]. To

illustrate the case 𝛿 > 2, each T𝑛,± is spanned by disks with 2𝑛 nodes, such that each node is connected

to another node via a non-intersecting loop segment – defined up to ambient isotopy, and a ± checker-

board shading. Accordingly, the canonical bases of T1,+, T2,− and T3,+ are given by

{ }
,

{
,

}
and

{
, , , ,

}
, (2.40)

respectively.

It is a remarkable fact that every subfactor planar algebra possesses the Temperley–Lieb subfactor

planar algebra as a planar subalgebra [13, 26]. To define more subfactor planar algebras, it is natural

to supplement the Temperley–Lieb vector spaces with additional vectors. Singly generated planar

algebras (𝐴𝑛,±)𝑛∈N0 are a class of subfactor planar algebras defined accordingly. Here, 𝐴0,± and 𝐴1,±

are defined as in the Temperley–Lieb subfactor planar algebra, while 𝐴2,± has a basis consisting of

the two canonical Temperley–Lieb basis vectors and one additional vector. The remaining vector

spaces 𝐴𝑛,± for 𝑛 > 2, are generated by the action of the planar tangles on 𝐴2,±. The properties of

subfactor planar algebras place constraints on the interaction between the Temperley–Lieb vectors

and the new element. While a general classification of singly generated planar algebras has been

considered unfeasible [13], a program set about by Bisch and Jones has succeeded in classifying

all singly generated planar algebras satisfying the dimensionality constraint dim 𝐴3,± ≤ 14 [29–31].

We will revisit singly generated planar algebras in Section 5.2, where we present a unified algebraic

framework for unshaded singly generated planar algebras. Indeed, one can impose other constraints,

apart from those on dimensionality, that give rise to new planar algebras. To one such class, we devote

the next section.
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2.4 Yang–Baxter relation planar algebras

The Yang–Baxter equation (YBE) [32–34] appears in many contexts in mathematics and physics,

from quantum groups and low dimensional topology to high-energy particle scattering and statistical

mechanics [11, 35–37]. The parameter-dependent form of the YBE is typically presented as(
𝑅(𝑢) ⊗1

) (
1⊗ 𝑅(𝑢 + 𝑣)

) (
𝑅(𝑣) ⊗1

)
=

(
1⊗ 𝑅(𝑣)

) (
𝑅(𝑢 + 𝑣) ⊗1

) (
1⊗ 𝑅(𝑢)

)
(2.41)

where 𝑢, 𝑣 ∈ Ω ⊆ C for some suitable domain Ω, 1 ∈ End(C2) is the identity matrix, and 𝑅(𝑢) ∈
End(C2 ⊗C2) is referred to as the 𝑅-matrix. The corresponding parameter-independent version of the

YBE can be established from (2.41), via a sufficiently well-defined limit, for example, 𝑅 = lim𝑢→0 𝑅(𝑢)
or 𝑅 = lim𝑢→±i∞ 𝑅(𝑢) [38]. The expression (2.41), together with the notation developed in Section

2.1, suggest natural counterparts to the YBE native to shaded planar algebras:

𝑢

𝑣

𝑤 =

𝑣

𝑢

𝑤 ,

𝑢

𝑣

𝑤 =

𝑣

𝑢

𝑤 , 𝑤 = 𝑢 + 𝑣 (2.42)

where 1± ∈ 𝐴1,± are the identity operators, and 𝑅+(𝑢) = 𝑢 ∈ 𝐴2,+ and 𝑅−(𝑢) = 𝑢 ∈ 𝐴2,− are

referred to as 𝑅-operators. A solution to either YBE in (2.42) is considered specious if 𝑅±(𝑢) = 𝑓 (𝑢)𝑎±
for some 𝑎± ∈ 𝐴2,± and some scalar function 𝑓 . Specious solutions are simply a consequence of

𝑎± ∈ 𝐴2,± satisfying the parameter-independent version of the corresponding YBE. Indeed, it need not

be the case that a general planar algebra possesses a non-specious solution to either YBE.

For subfactor planar algebras, there always exists a non-specious solution to both YBEs (2.42),

however, this is true in a rather superficial way. To see this, note that within the Temperley–Lieb

subfactor planar algebra, the following 𝑅-operators are solutions to the YBEs

𝑢 = sin(𝜆−𝑢) + sin(𝑢) , 𝑢 = sin(𝜆−𝑢) + sin(𝑢) , 𝛿 = 2cos(𝜆).

(2.43)

The claim follows from the observation (2.43), together with the fact that every subfactor planar algebra

contains the Temperley–Lieb subfactor planar algebra. To define subfactor planar algebras admitting

new YBE solutions, one approach is to restrict to solutions satisfying span{𝑅±(𝑢) |𝑢 ∈ Ω} = 𝐴2,±.

To this end, we may naively impose the YBEs (2.42) on subfactor planar algebras and use skein

theory to classify the resulting algebras satisfying this condition. Though practical, it is not clear how

one would incorporate the 𝑢 and 𝑣 parameter dependence. Instead, we consider a possibly larger class

of subfactor planar algebras, introduced by Liu [39], satisfying necessary conditions common to those

supporting YBE solutions satisfying span{𝑅±(𝑢) |𝑢 ∈ Ω} = 𝐴2,±. One can then consider whether these

planar algebras admit new YBE solutions.

Let (𝐴𝑛,±)𝑛∈N0 be a shaded planar algebra, with 𝐵𝑛,± denoting a basis for 𝐴𝑛,±. Following [39],

a triple (𝑥, 𝑦, 𝑧) ∈ 𝐴2,− × 𝐴2,+ × 𝐴2,−, respectively (𝑥, 𝑦, 𝑧) ∈ 𝐴2,+ × 𝐴2,− × 𝐴2,+, is said to satisfy a
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Yang–Baxter relation (YBR) if

𝑥

𝑧

𝑦 =
∑︁

𝑎,𝑐∈𝐵2,+
𝑏∈𝐵2,−

𝐶𝑎,𝑏,𝑐𝑥,𝑦,𝑧

𝑎

𝑐

𝑏 ,

𝑥

𝑧

𝑦 =
∑︁

𝑎,𝑐∈𝐵2,−
𝑏∈𝐵2,+

𝐷𝑎,𝑏,𝑐
𝑥,𝑦,𝑧

𝑎

𝑐

𝑏 , (2.44)

respectively, for some 𝐶𝑎,𝑏,𝑐𝑥,𝑦,𝑧 , 𝐷
𝑎,𝑏,𝑐
𝑥,𝑦,𝑧 ∈ C.

Definition 2.4.1. A Yang–Baxter relation planar algebra (𝐴𝑛,±)𝑛∈N0 is a subfactor planar algebra

where every triple of vectors in 𝐴2,−× 𝐴2,+× 𝐴2,− and 𝐴2,+× 𝐴2,−× 𝐴2,+ satisfy a Yang–Baxter relation.

Remark. Although a YBR planar algebra is a subfactor planar algebra, we are suppressing that

qualifier, in line with the convention in [39].

While we adopt the form (2.44) of the YBRs introduced in [39], the characterisation of a planar

algebra as a YBR planar algebra does not depend on the particular choices of input disk markings (and

consequently shadings) in (2.44), on either side of any of the two YBRs. However, we do need a YBR

for each shading of the output disk, as in (2.44).

In Chapter 3, we describe how one can associate a homogeneous Yang–Baxter integrable model

to any planar algebra satisfying a particular set of sufficient conditions, including YBRs. It is thus

natural to expect that YBR planar algebras play an important role in the classification of Yang–Baxter

integrable models. Indeed, we find (Proposition 5.2.3 in Section 5.2.4) that a singly generated planar

algebra that is not a YBR planar algebra does not encode the structure of a homogeneous Yang–Baxter

integrable model.

2.5 Unshaded planar algebras

The shading of a planar algebra (𝐴𝑛,±)𝑛∈N0 need not carry any non-trivial information. In that case, the

shading can be ignored, giving rise to the corresponding unshaded planar algebra (𝐴𝑛)𝑛∈N0 . Consider

the following linear maps that reverse the shading on the vectors in 𝐴𝑛,+ and 𝐴𝑛,−:

𝜄𝑛,+ : 𝐴𝑛,+→ 𝐴𝑛,−, ↦→ ; 𝜄𝑛,− : 𝐴𝑛,−→ 𝐴𝑛,+, ↦→ , (2.45)

here illustrated for 𝑛 = 2. Following [22], there exists an unshaded planar algebra (𝐴𝑛)𝑛∈N0 correspond-

ing to (𝐴𝑛,±)𝑛∈N0 if and only if the map 𝜄𝑛,∓ ◦ 𝜄𝑛,± acts as the identity on 𝐴𝑛,± for all 𝑛 ∈ N0.

A key observation for us is that singly generated planar algebras that do not admit an unshaded

description cannot encode a homogeneous Yang–Baxter integrable model within the algebraic integra-

bility framework developed later in Chapter 3. To see this, let (𝐴𝑛,±)𝑛∈N0 denote a singly generated

planar algebra encoding a homogeneous Yang–Baxter integrable model, and consider the shaded

𝑅-operators of a model defined for each 𝑢 ∈ Ω

𝑅+(𝑢) = 𝑢 ∈ 𝐴2,+, 𝑅−(𝑢) = 𝑢 ∈ 𝐴2,−. (2.46)
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By homogeneity, introduced in Chapter 3, these 𝑅-operators satisfy

𝜄2,± [𝑅±(𝑢)] = 𝑅∓(𝑢), ∀𝑢 ∈ Ω. (2.47)

As the planar algebra encodes the integrability of the model, {𝑅±(𝑢) |𝑢 ∈ Ω} together with the action

of planar tangles, generates the vector space 𝐴2,± (see Section 3.1 for more details). Using (2.47), it

follows that 𝜄2,∓ ◦ 𝜄2,± acts as the identity on 𝐴2,±, so the corresponding singly generated planar algebra

(𝐴𝑛,±)𝑛∈N0 admits an unshaded description.

For our homogeneous Yang–Baxter integrability purposes, it thus suffices to consider unshaded

planar algebras only. We stress that a shaded planar algebra not admitting an unshaded description

could encode the structure of an integrable model; however, the corresponding transfer operator would

necessarily be inhomogeneous, see the Remark following (3.10).

We conclude this chapter by presenting one final planar-algebraic construction. Up to now, the

action of planar tangles on themselves via composition and on the vector spaces as multilinear maps

have been performed within the topology of a disk. The affine category of a planar algebra, provides

a setting whereby planar-algebraic operations can be performed on the annulus, or equivalently, the

cylinder. It is convenient to present this construction for unshaded planar algebras only, the shaded

variant is a straightforward generalisation.

2.6 The affine category of a planar algebra

Affine tangles are the diagrammatic objects, defined up to affine isotopy, that facilitate the combination

of vectors on the annulus. Affine isotopies are a subset of all ambient isotopies that act as the identity

on the boundaries of the annulus. For example, we present two inequivalent affine tangles:

and . (2.48)

The boundaries of affine tangles can be thought of as being ‘rigid’, that is, they cannot be freely rotated

relative to each other.

Definition 2.6.1. An (unshaded) affine tangle 𝑆 consists of the following components in R2:

• An annulus defined by an inner disk 𝐷𝑆
0 and an outer disk 𝐷𝑆

1 , called the output annulus.

• A finite set of non-overlapping disksD𝑆 in the interior of the output annulus, called input disk(s).

• A finite number of non-intersecting loop segments within the output annulus and outside of the

input disk(s), connecting pair-wise, distinct points on the boundary of the disks in {𝐷𝑆
0 , 𝐷

𝑆
1}∪D𝑆

called nodes, or closing on themselves forming loops. Denote by 𝜂(𝐷) the number of nodes
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on the boundary of 𝐷 ∈ {𝐷𝑆
0 , 𝐷

𝑆
1} ∪D𝑆. The boundary of each disk is thus composed of nodes

and boundary intervals: the open intervals between the nodes or if there are no nodes, a whole

circle.

• For each disk in {𝐷𝑆
0 , 𝐷

𝑆
1} ∪D𝑇 a choice of boundary interval, here marked graphically by a

red rectangle.

Each affine tangle 𝑆 is defined up to affine isotopy of 𝐷𝑆
1 \𝐷

𝑆
0 ⊂ R

2.

Remark. As with planar tangles, one can consider variants of affine tangles that have additional

structure, for example, by imposing a checker-board shading.

Annular tangles are affine tangles defined up to ambient isotopy. Accordingly, annular tangles

share all the features of affine tangles. Unlike affine tangles, two annular tangles that differ by a relative

rotation of one’s boundary disks are equivalent. Accordingly, the two tangles in (2.48) are equivalent

as annular tangles.

Remark. As both annular tangles and planar tangles are defined up to ambient isotopy, annular tangles

can be defined as a planar tangle with a distinguished internal disk. This is the definition of annular

tangles presented in [40].

We proceed by presenting the affine case only and note that the annular case can be obtained as a

quotient. An 𝑚-tangle is a planar tangle 𝑇 such that 𝜂(𝐷𝑇0 ) = 𝑚, while an (𝑚,𝑛)-affine tangle is an

affine tangle 𝑇 such that 𝜂(𝐷𝑇0 ) = 𝑚 and 𝜂(𝐷𝑇1 ) = 𝑛. An (𝑚,𝑛)-affine tangle 𝑇 can be composed with

an (𝑙,𝑚)-affine tangle 𝑆 by replacing the inner disk of 𝑇 with 𝑆, removing the shared boundary and

marked interval, and identifying the image, which we denote by 𝑇 ◦ 𝑆, with an (𝑙, 𝑛)-affine tangle. A

tangle, affine or otherwise, is called 𝑃-labelled if each input disk 𝐷 is filled with a vector in 𝑃𝜂(𝐷) .

Remark. While similar, we highlight that a 𝑃-labelled 𝑚-tangle 𝑇 is distinct from the image of the

multilinear map P𝑇 (𝑣1, . . . , 𝑣𝑡) where 𝑣1, . . . , 𝑣𝑡 are the vectors corresponding to the 𝑃-labelling. The

image P𝑇 (𝑣1, . . . , 𝑣𝑡) is the identification of the 𝑃-labelled tangle 𝑇 as an element of the vector space

𝑃𝑚, given the action of 𝑇 . This motivates the following map.

Let T𝑚 (𝑃) denote the vector space spanned by the set of all 𝑃-labelled 𝑚-tangles. For each 𝑚 ∈ N0,

define the linear map

T𝑚 : T𝑚 (𝑃) → 𝑃𝑚, (2.49)

that acts as by identifying each 𝑃-labelled 𝑚-tangle 𝑇 with the image of the map P𝑇 (𝑣1, . . . , 𝑣𝑡) where

𝑣1, . . . , 𝑣𝑡 are the vectors corresponding to the 𝑃-labelling. Let A𝑚,𝑛 (𝑃) denote the vector space

spanned by the set of all 𝑃-labelled (𝑚,𝑛)-affine tangles, and for each 𝑚,𝑛, 𝑜 ∈ N0, define the linear
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map

Ψ
(𝑜)
𝑚,𝑛 : T𝑚+𝑛+2𝑜 (𝑃) → A𝑚,𝑛 (𝑃),

...

...

..
.

..
.𝑣

𝑛

𝑚

𝑜 𝑜 ↦→

𝑣
...

...

..
...
.

. (2.50)

For any 𝑆 ∈ A𝑚,𝑛 (𝑃) there exists an 𝑜 ∈ N0 and a 𝑇 ∈ T𝑚+𝑛+2𝑜 (𝐴) such that 𝑆 = Ψ
(𝑜)
𝑚,𝑛 (𝑇), where the 𝑜

and the 𝑇 are not necessarily unique [41].

We are now in a position to define a vector space, spanned by 𝑃-labelled (𝑚,𝑛)-affine tangles, that

satisfies the relations within the planar algebra 𝑃. In preparation, we define

W𝑚,𝑛 := {𝑎 ∈ A𝑚,𝑛 (𝑃) | 𝑎 = Ψ
(𝑜)
𝑚,𝑛 (𝑏), 𝑏 ∈ Ker(T𝑚+𝑛+2𝑜)} (2.51)

and note thatW𝑚,𝑛 is a vector subspace of A𝑚,𝑛 (𝑃). For each 𝑚,𝑛 ∈ N0, we define

Q𝑃𝑚,𝑛 :=A𝑚,𝑛 (𝑃)/W𝑚,𝑛, (2.52)

and identify Q𝑃𝑚,𝑛 with the vector space of interest.

To each affine tangle 𝑇 , we associate the linear |D𝑇 |-ary operator

P𝑇 :
?
𝐷∈D𝑇

𝑃𝜂(𝐷)→Q𝑃𝜂(𝐷𝑇
0 ), 𝜂(𝐷

𝑇
1 )
, (2.53)

which acts by replacing each of the input disks 𝐷 of 𝑇 with elements from the vector space 𝑃𝜂(𝐷) in

such a way that the nodes and the marking of both are aligned, for example:

𝑇 =

1

3

2 , P𝑇 (𝑣1, 𝑣2, 𝑣3) =

𝑣1

𝑣3

𝑣2
∈ Q𝑃4,8. (2.54)

Analogous to the partial trace tangles (2.24), for each 𝑛 ∈ N0, we introduce the affine partial trace

tangle

𝜏
(𝑎)
𝑛 :=

...

...

, P
𝜏
(𝑎)
𝑛

: 𝑃2𝑛→Q𝑃𝑛−1,𝑛−1. (2.55)

We proceed by defining some categories of interest.

Definition 2.6.2. Denote by Aff (𝑃) the affine category of a planar algebra 𝑃 where

ObjAff (𝑃) = N0, MorAff (𝑃) (𝑚,𝑛) = Q𝑃𝑚,𝑛, (2.56)

for each 𝑚,𝑛 ∈ N0, and the composition of morphisms is defined as the composition of affine tangles.
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Denote by Vect the category of vector spaces.

Definition 2.6.3. An affine representation of a planar algebra 𝑃 is a collection of vector spaces

(𝑉𝑛)𝑛∈N0 and a functor

𝐹 : Aff (𝑃) → Vect, (2.57)

such that 𝐹0(𝑛) = 𝑉𝑛 for all 𝑛 ∈ N0, and 𝐹1(𝑥) ∈MorVect(𝑉𝑚,𝑉𝑛) is a linear map for all 𝑥 ∈ Q𝑃𝑚,𝑛
and all 𝑚,𝑛 ∈ N0.

Each planar algebra 𝑃 admits a ‘trivial’ affine representation induced by itself, where 𝑉𝑛 = 𝑃𝑛 for all

𝑛 ∈ N0, and where

𝐹1(𝑥) :𝑉𝑚→𝑉𝑛, (2.58)

acts by treating the central disk of 𝑥 as an input disk, inputting vectors from 𝑉𝑚 and identifying the

image in 𝑉𝑛, for all 𝑥 ∈ Q𝑃𝑚,𝑛 and all 𝑚,𝑛 ∈ N0. To demonstrate the action of the affine tangles as

linear maps, we present the example

𝐹1(𝑥) (𝑣) = 𝑣4

𝑣1

𝑣3

𝑣2
=

𝑣4

𝑣1

𝑣3

𝑣2
, 𝑥 =

𝑣1

𝑣3

𝑣2
, 𝑣 = 𝑣4

(2.59)

where 𝑥 ∈ Q𝑃4,8 and 𝑣 ∈ 𝑉4. Another representation is induced by the affine tangles themselves.

Define Q𝑃𝑛 :=
⋃
𝑚∈N0 Q𝑃𝑚,𝑛, set 𝑉𝑛 = Q𝑃𝑛 for all 𝑛 ∈ N0, and let 𝐹1(𝑥) act on vectors in 𝑉𝑚 via the

composition of affine tangles for all 𝑥 ∈ Q𝑃𝑚,𝑛. The action of affine tangles as linear maps is inherited

by the composition of tangles, for example

𝐹1(𝑥) (𝑣) =

𝑣1

𝑣2

𝑣3

= 𝛿

𝑣1

𝑣3

𝑣2
, 𝑥 =

𝑣1

, 𝑣 =

𝑣2

𝑣3

(2.60)

where 𝑥 ∈ Q𝑃4,4 and 𝑣 ∈ 𝑉4.

Define the following (𝑛,𝑛)-affine tangles

Ω𝑛 :=

. . .

, Ω0
𝑛 := ..

. , Ω−1
𝑛 :=

. . .

, (2.61)
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each having 𝑛 ‘spokes’, and let Ω±𝑘𝑛 denote the composition of Ω±1
𝑛 with itself 𝑘 times, with 𝑘 ∈ N, it

follows that

Ω𝑘
𝑛 ◦Ω𝑙

𝑛 = Ω𝑘+𝑙
𝑛 , ∀𝑘, 𝑙 ∈ Z. (2.62)

Note that Ω𝑘mod𝑛
𝑛 and Ω𝑘

𝑛 are equivalent as annular tangles. An affine representation of 𝑃 is called

annular if the linear map 𝐹1(Ω𝑛
𝑛) acts as the identity for all 𝑛 ∈ N. Affine tangles within an annular

representation act as if they are annular tangles. It follows from the ambient isotopy of planar algebras

that the trivial representation is annular, while the representation induced by affine tangles is not.

Let 𝑃 be an involutive planar algebra, and denote by ·† the involution that acts on planar tangles,

and by ·∗ the involution that acts on vectors. An equivalent to ·† for affine tangles (which we also

denote by ·†) is defined by reflecting the affine tangle about a circle with the same centre as the annulus

but with a larger radius, for example:

©­­­­­«
ª®®®®®¬

†

= . (2.63)

The involutions ·† and ·∗, induce the involution ★ :A𝑚,𝑛 (𝑃) → A𝑛,𝑚 (𝑃) that acts by ·† on the affine

tangle and by ·∗ on the 𝑃-labels. As 𝑃 is involutive, we have (W𝑚,𝑛)★ =W𝑛,𝑚, the involution passes to

the quotient ★ : Q𝑃𝑚,𝑛→Q𝑃𝑛,𝑚 (𝑃), and it follows that Aff (𝑃) is a ∗-category [41]. By construction,

we have

P𝑇 (𝑣1, . . . , 𝑣 |D𝑇 |)★ = P𝑇† (𝑣∗1, . . . , 𝑣
∗
|D𝑇 |), (2.64)

for all affine tangles 𝑇 , and for all (𝑣1, . . . , 𝑣 |D𝑇 |) ∈
>

𝐷∈D𝑇
𝑃𝜂(𝐷) . Denote by Hilb the category of

Hilbert spaces.

Definition 2.6.4. A Hilbert representation of an involutive planar algebra 𝑃 is a collection of Hilbert

spaces (𝑉𝑛)𝑛∈N0 and a functor

𝐹 : Aff (𝑃) → Hilb, (2.65)

such that 𝐹0(𝑛) =𝑉𝑛 for all 𝑛 ∈ N0, and 𝐹1(𝑥) ∈MorHilb(𝑉𝑚,𝑉𝑛) is a linear map satisfying

⟨𝑣, 𝐹1(𝑥) (𝑤)⟩𝑛 = ⟨𝐹1(𝑥)∗(𝑣),𝑤⟩𝑚, (2.66)

for all 𝑥 ∈ Q𝑃𝑚,𝑛, all 𝑣 ∈ 𝑉𝑛 and 𝑤 ∈ 𝑉𝑚, and all 𝑚,𝑛 ∈ N0.

We note that the trivial representation of a subfactor planar algebra is a Hilbert representation [40, 41].

It will be convenient, when expressing affine tangles diagrammatically, to view them as existing

within the plane. To this end, we define the following procedure to be applied to each affine tangle: cut

from the inner disk marking to the outer disk marking, and orient the diagram such that the inner and
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outer edges are horizontal, remain perpendicular to the cut edges (which are identified), and become

the upper and lower edges respectively. This procedure is best illustrated diagrammatically:

↦→ (2.67)

The composition of affine tangles expressed within the plane amounts to the stacking of diagrams, for

example

◦ ◦ = . (2.68)

Having defined many of the planar-algebraic prerequisites, the following chapter develops the so-called

homogeneous Yang–Baxter integrability framework.
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Chapter 3

Integrable models

In this chapter, we develop a planar-algebraic framework for two-dimensional integrable models

described by a transfer operator. Given the observations of Section 2.5, it suffices to present the

framework for unshaded planar algebras. We begin by defining two types of transfer operators; one

that generates a model on the strip and another that generates a model on the cylinder. A model

described by a transfer operator 𝑇 (𝑢) is integrable if it satisfies [𝑇 (𝑢),𝑇 (𝑣)] = 0 for all 𝑢 and 𝑣 on a

suitable domain. A finite set of sufficient conditions, including generalised Yang–Baxter equations,

is then presented for each of the transfer operators which, if satisfied, implies that the corresponding

model is integrable. We then introduce an identity point as a value of the parameter 𝑢 in which the

transfer operator 𝑇 (𝑢) is proportional to an invertible element of the algebra and perform a power

series expansion of the transfer operator about this point to define the Hamiltonians of the model.

Within this framework, we present a characterisation of the integrals of motion associated with an

integrable model and distinguish these from the aforementioned Hamiltonians. We conclude this

chapter by introducing the notion of polynomial integrability.

3.1 Transfer operators

For the planar-algebraic models considered here, the transfer operator takes a central place. It is the

element of the algebra that generates each configuration of the model and assigns the appropriate

weight. Accordingly, the partition function of the model is a function of the transfer operator, the

details of which depend on the specific boundary conditions. Taking, for example, periodic boundary

conditions, the partition function is the trace of the transfer operator raised to some power. In this case,

a solution of the model amounts to determining the eigenvalues of the transfer operator, from which the

partition function and other useful properties of the model can be determined. In this section, for each

planar algebra, we define two transfer operators: one on the strip called the homogeneous double-row

transfer operator and one on the cylinder called the homogeneous single-row transfer operator.
37
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For each 𝑛 ∈ N, we define the transfer tangle and the affine transfer tangle as

𝑇
(𝑑)
𝑛 :=

. . .

. . .

, 𝑇
(𝑠)
𝑛 := ..

.

..
. , (3.1)

respectively. We also introduce the embedding tangles

𝐸
(1)
𝑛, 𝑗

:= . . . . . .

1

𝑗

𝑛

, 𝐸
(2)
𝑛,𝑖

:= . . . . . .

1

𝑖

𝑛

, (3.2)

where 𝑗 = 1, . . . , 𝑛 and 𝑖 = 1, . . . , 𝑛−1, respectively, and denote by 𝐵𝑛 a basis for 𝑃2𝑛. Define the 𝐾-

and 𝑅-operators as the parameterised elements

𝐾 (𝑢) :=
∑︁
𝑎∈𝐵1

𝑘𝑎 (𝑢) 𝑎, 𝑅(𝑢) :=
∑︁
𝑎∈𝐵2

𝑟𝑎 (𝑢) 𝑎, 𝐾 (𝑢) :=
∑︁
𝑎∈𝐵1

𝑘𝑎 (𝑢) 𝑎, (3.3)

where 𝑘𝑎, 𝑟𝑎, 𝑘𝑎 : Ω→ C. We refer to 𝑢 parameterising the operators in (3.3), as the corresponding

spectral parameter.

Remark. The set Ω indicates a domain over which 𝑅(𝑢), 𝐾 (𝑢), and 𝐾 (𝑢) are well-defined. Typically,

Ω contains an open set in C, allowing power-series expansions of 𝑅(𝑢), 𝐾 (𝑢), and 𝐾 (𝑢).

We now define the homogeneous double-row and homogeneous single-row transfer operators as

𝑇
(𝑑)
𝑛 (𝑢) := P

𝑇
(𝑑)
𝑛

(
𝐾 (𝑢), 𝑅(𝑢), . . . , 𝑅(𝑢),𝐾 (𝑢)

)
, 𝑇

(𝑠)
𝑛 (𝑢) := P

𝑇
(𝑠)
𝑛

(
𝑅(𝑢), . . . , 𝑅(𝑢)

)
, (3.4)

respectively, where for the homogeneous double-row transfer operator, 𝐾 (𝑢) is placed in the left-

most disk and 𝐾 (𝑢) is placed in the right-most disk of the transfer tangle. Accordingly, we identify

𝑇
(𝑑)
𝑛 (𝑢) as an element of 𝑃2𝑛, and 𝑇 (𝑠)𝑛 (𝑢) as an element of Q𝑃𝑛,𝑛. Expressing the 𝐾- and 𝑅-operators

diagrammatically as

𝐾 (𝑢) = 𝑢 , 𝑅(𝑢) = 𝑢 , 𝐾 (𝑢) = 𝑢 , (3.5)
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the homogeneous double-row transfer operator takes the diagrammatic form

𝑇
(𝑑)
𝑛 (𝑢) := . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑢 𝑢 = . . .

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢

𝑢 , (3.6)

which is suggestive of the familiar partial-trace expression

𝑇
(𝑑)
𝑛 (𝑢) = P

𝜏
(𝑙)
𝑛+1

(
𝑅1(𝑢) · · ·𝑅𝑛 (𝑢)𝐾𝑛+1(𝑢)𝑅𝑛 (𝑢) · · ·𝑅1(𝑢)𝐾1(𝑢)

)
, (3.7)

where

𝐾1(𝑢) := P
𝐸
(1)
𝑛+1,1
(𝐾 (𝑢)), 𝑅𝑖 (𝑢) := P

𝐸
(2)
𝑛+1,𝑖
(𝑅(𝑢)), 𝐾𝑛+1(𝑢) := P

𝐸
(1)
𝑛+1,𝑛+1

(𝐾 (𝑢)). (3.8)

A similar diagrammatic expression exists for the homogeneous single-row transfer operator

𝑇
(𝑠)
𝑛 (𝑢) := 𝑢 𝑢 𝑢 =

𝑢

𝑢

𝑢

, (3.9)

where we have mapped to the plane using the procedure presented in (2.67), which again, suggests the

familiar partial-trace expression

𝑇
(𝑠)
𝑛 (𝑢) = P

𝜏
(𝑎)
𝑛+1

(
𝑅1(𝑢) · · ·𝑅𝑛 (𝑢)

)
. (3.10)

We highlight that the product of 𝑚 homogeneous double-row transfer operators 𝑇 (𝑑)𝑛 (𝑢)𝑚 generates

a 2𝑚× 𝑛 square lattice on the strip with reflection boundary conditions, similarly, the product of 𝑚

homogeneous single-row transfer operators 𝑇 (𝑠)𝑛 (𝑢)𝑚 generates a 𝑚×𝑛 square lattice on the cylinder.

Remark. In (3.5) and throughout, operators with different colours indicate that the associated

parameterisations are distinct. More general transfer operators may be constructed, for example

by including ‘inhomogeneities’ at the level of the 𝑅-operator. Spectral inhomogeneities are thus

introduced by varying the spectral parameter of the 𝑅-operator depending on its position within the

transfer tangle, while algebraic inhomogeneities are introduced by varying the parameterisation in

the construction of the 𝑅-operator (as an element of 𝐴2) depending on its position within the transfer

tangle, thereby introducing more than one 𝑅-operator. We refer to transfer operators with any of these

features as inhomogeneous. However, as we will exclusively consider homogeneous transfer operators

(consisting of a single 𝑢-parameterised 𝑅-operator), we often omit the qualifier “homogeneous”.
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For each 𝑛 ∈ N, the basic rotation tangles are introduced as

𝑟𝑛,1 :=

. . .

, 𝑟𝑛,−1 :=

. . .

, (3.11)

each having 𝑛 ‘spokes’, while 𝑟𝑛,±𝑘 denotes the composition of 𝑟𝑛,±1 with itself 𝑘 times, with 𝑘 ∈ N, so

𝑟𝑛,𝑘 ◦ 𝑟𝑛,𝑙 = 𝑟𝑛,𝑘+𝑙 , ∀𝑘, 𝑙 ∈ Z. (3.12)

Here, 𝑟𝑛,0 denotes the unshaded identity tangle, see (2.17). We note that if 𝑃𝑛 has no null vectors, it

follows from Proposition 2.2.3 that P𝑟𝑛,0 acts as the identity and that P𝑟𝑛,±𝑘 is invertible for all 𝑘 ∈ N.

Using (3.11), the 𝑅- and 𝐾-operators (3.3) are said to be crossing symmetric if

P𝑟2,1 (𝐾 (𝑢)) = 𝑐𝐾 (𝑢)𝐾 (𝑐𝐾 (𝑢)), P𝑟4,1 (𝑅(𝑢)) = 𝑐𝑅 (𝑢)𝑅(𝑐𝑅 (𝑢)), P𝑟2,1 (𝐾 (𝑢)) = 𝑐𝐾 (𝑢)𝐾 (𝑐𝐾 (𝑢))
(3.13)

for some scalar functions 𝑐𝐾 , 𝑐𝐾 , 𝑐𝑅, 𝑐𝑅, 𝑐𝐾 , 𝑐𝐾 : Ω→ C such that P𝑟2,2 (𝐾 (𝑢)) = 𝐾 (𝑢), P𝑟4,4 (𝑅(𝑢)) =
𝑅(𝑢) and P𝑟2,2 (𝐾 (𝑢)) = 𝐾 (𝑢). The point 𝑢𝑖𝑠𝑜 ∈ Ω is an isotropic point if

P𝑟2,1 (𝐾 (𝑢𝑖𝑠𝑜)) = 𝐾 (𝑢𝑖𝑠𝑜), P𝑟4,1 (𝑅(𝑢𝑖𝑠𝑜)) = 𝑅(𝑢𝑖𝑠𝑜), P𝑟2,1 (𝐾 (𝑢𝑖𝑠𝑜)) = 𝐾 (𝑢𝑖𝑠𝑜). (3.14)

In the following, suppose that (𝑃𝑛)𝑛∈N0 is an involutive planar algebra with ·† and ·∗ defined as in

Section 2.3. The 𝐾- and 𝑅-operators are self-adjoint if

𝐾 (𝑢)∗ = 𝐾 (𝑢), 𝑅(𝑢)∗ = 𝑅(𝑢), 𝐾 (𝑢)∗ = 𝐾 (𝑢). (3.15)

The self-adjointness of the constituent 𝐾- and 𝑅-operators extends to the double-row transfer operator

itself, as detailed in the following.

Proposition 3.1.1. If the 𝑅- and 𝐾-operators are self-adjoint with respect to the involution ·∗, then so

is the transfer operator 𝑇 (𝑑)𝑛 (𝑢) for each 𝑛 ∈ N.

Proof. Using (2.30), we have

𝑇
(𝑑)
𝑛 (𝑢)∗ = P(𝑇 (𝑑)𝑛 )†

(
𝐾 (𝑢)∗, 𝑅(𝑢)∗, . . . , 𝑅(𝑢)∗,𝐾 (𝑢)∗

)
= 𝑇
(𝑑)
𝑛 (𝑢), (3.16)

where the second equality follows from (𝑇 (𝑑)𝑛 )† = 𝑇 (𝑑)𝑛 and the self-adjointness of the 𝑅- and 𝐾-

operators. □

We denote the regular representation of 𝑃2𝑛 by

𝜌𝑛 : 𝑃2𝑛→ End(𝑃2𝑛). (3.17)

Corollary 3.1.2. Let (𝑃𝑛)𝑛∈N0 be an unshaded subfactor planar algebra, and suppose the 𝑅- and

𝐾-operators are self-adjoint with respect to the involution ·∗. Then, 𝜌𝑛 (𝑇 (𝑑)𝑛 (𝑢)) is diagonalisable for

all 𝑛 ∈ N.
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Proof. Proposition 3.1.1 and the self-adjointness of the 𝑅- and 𝐾-operators imply that 𝑇 (𝑑)𝑛 (𝑢) is

self-adjoint. By the spectral theorem, 𝜌𝑛 (𝑇 (𝑑)𝑛 (𝑢)) is therefore diagonalisable. □

A similar argument can be made for the single-row transfer operator by requiring the 𝑅-operator to

be both self-adjoint and possess a particular form of crossing symmetry.

Proposition 3.1.3. If the 𝑅-operator is self-adjoint and satisfies P𝑟4,1 (𝑅(𝑢)) = 𝑅(𝑢), then 𝑇 (𝑠)𝑛 (𝑢) is

self-adjoint for all 𝑛 ∈ N.

Proof. Using (2.64), we have

𝑇
(𝑠)
𝑛 (𝑢)★ = P(𝑇 (𝑠)𝑛 )†

(
𝑅(𝑢)∗, . . . , 𝑅(𝑢)∗

)
= P(𝑇 (𝑠)𝑛 )†

(
𝑅(𝑢), . . . , 𝑅(𝑢)

)
= 𝑢 𝑢 𝑢 (3.18)

where the second equality follows from the self-adjointness of the 𝑅-operator. Applying the crossing

symmetry, we have

𝑇
(𝑠)
𝑛 (𝑢)★ = 𝑢 𝑢 𝑢 = 𝑇

(𝑠)
𝑛 (𝑢). (3.19)

□

We denote the regular representation of 𝑉𝑛 by

𝜌𝑛 :𝑉𝑛→ End(𝑉𝑛). (3.20)

Corollary 3.1.4. Let (𝑉𝑛)𝑛∈N0 be a Hilbert representation of an involutive planar algebra, and suppose

the 𝑅-operator is self-adjoint and satisfies P𝑟4,1 (𝑅(𝑢)) = 𝑅(𝑢). Then, 𝜌𝑛 (𝑇 (𝑠)𝑛 (𝑢)) is diagonalisable

for all 𝑛 ∈ N.

Remark. When referring to a transfer operator in general i.e. not specifically 𝑇 (𝑑)𝑛 (𝑢) or 𝑇 (𝑠)𝑛 (𝑢), we

will omit the superscript and simply write 𝑇𝑛 (𝑢).

3.2 Baxterisation and integrability

Having introduced planar-algebraic models generally, the remainder of this chapter is devoted to

analysing models whose transfer operator is an element of a unital associative algebra. In light of

Proposition 2.2.3, we restrict to planar algebras (𝑃𝑛)𝑛∈N0 where 𝑃2𝑛−1 = {0} for all 𝑛 ∈ N, and where

𝑃2𝑛 has no null vectors for all 𝑛 ∈ N0. To distinguish such a planar algebra from the general discussion

above, we will use the notation (𝐴𝑛)𝑛∈N0 , where 𝐴𝑛 ≡ 𝑃2𝑛. Denote by 𝐵𝑛 a basis for 𝐴𝑛, without loss

of generality, we may assume that 1𝑛 ∈ 𝐵𝑛 (which is the unshaded version of (2.27)), and for later

convenience we introduce

𝐵′𝑛 := 𝐵𝑛 \ {1𝑛}. (3.21)

A model described by the transfer operator 𝑇𝑛 (𝑢) is integrable on Ω if

[𝑇𝑛 (𝑢),𝑇𝑛 (𝑣)] = 0, ∀ 𝑢, 𝑣 ∈ Ω, (3.22)
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where Ω ⊆ C is a suitable domain. A common strategy in endowing a model with integrability is to

parameterise the corresponding transfer operator to satisfy a set of local relations that imply (3.22).

For the case of the transfer operators 𝑇 (𝑑)𝑛 (𝑢) and 𝑇 (𝑠)𝑛 (𝑢), this involves fixing the parameterisations of

the constituent 𝑅- and 𝐾-operators such that a set of sufficient conditions is satisfied, which in some

instances, include a Yang–Baxter equation (YBE).

For the set of sufficient conditions considered below, the set implying the commutativity of 𝑇 (𝑠)𝑛 (𝑢)
is often a subset of those implying the commutativity of 𝑇 (𝑑)𝑛 (𝑢). In either case, we allow for the 𝑅-

operator in the centre of the YBE to be parameterised differently from the two peripheral 𝑅-operators.

This is more general than what is typically presented in the literature, where the peripheral 𝑅-operators

𝑅(𝑢) and 𝑅(𝑣), have the same parameterisation as the central operator 𝑅(𝑢+𝑣), see for example (2.41)

and (2.42). We will refer to the central 𝑅-operator in a Yang–Baxter equation as the auxiliary operator.

The relations in Proposition 3.2.1 and Proposition 3.2.2 are formulated diagrammatically, but are

readily recast in the language of planar algebras. Importantly, each of the relations in (3.25)–(3.26) and

(3.30)–(3.32) is local in the sense that there exists an ambient disk with a suitable marking, relative to

which it holds. In fact, the invertibility of the linear maps P𝑟𝑛,±𝑘 associated with the rotation tangles

(3.11), implies that the specific marking of the ambient planar tangle is immaterial. To illustrate

𝑎 ..
. = 𝑏 ..
. ⇐⇒ 𝑎 ..
. = 𝑏 ..
. (3.23)

where 𝑎, 𝑏 ∈ 𝐴𝑛, with the equalities statements in 𝐴𝑛.

Proposition 3.2.1. Let the 𝑅-operator parameterisation in (3.3) be given, and suppose there exist

:=
∑︁
𝑎∈𝐵2

𝑦𝑎 (𝑢, 𝑣) 𝑎, :=
∑︁
𝑎∈𝐵2

𝑦𝑎 (𝑢, 𝑣) 𝑎, (3.24)

where 𝑦𝑎 and 𝑦𝑎 are scalar functions defined for all 𝑢, 𝑣 ∈ Ω ⊆ C, such that the following two sets of

relations are satisfied:

• Inversion identities (Inv)

= = (3.25)

• Yang–Baxter equation (YBE)

𝑢

𝑣

=
𝑣

𝑢

(3.26)

Then, [𝑇 (𝑠)𝑛 (𝑢),𝑇 (𝑠)𝑛 (𝑣)] = 0 for all 𝑢, 𝑣 ∈ Ω.
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Proof. Using the following diagrammatic relations

𝑇
(𝑠)
𝑛 (𝑢)𝑇 (𝑠)𝑛 (𝑣)

(Inv)
= . . .

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣
(YBE)
= . . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

(3.27)

= . . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢
(Inv)
= . . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

= 𝑇
(𝑠)
𝑛 (𝑣)𝑇 (𝑠)𝑛 (𝑢), (3.28)

we arrive at the desired result. □

Now, the corresponding result for the double-row transfer operator.

Proposition 3.2.2. Let the parameterisations in (3.3) be given, and suppose there exist

𝑖 :=
∑︁
𝑎∈𝐵2

𝑦
(𝑖)
𝑎 (𝑢, 𝑣) 𝑎, 𝑖 :=

∑︁
𝑎∈𝐵2

𝑦
(𝑖)
𝑎 (𝑢, 𝑣) 𝑎, (3.29)

where 𝑦 (𝑖)𝑎 and 𝑦
(𝑖)
𝑎 , 𝑖 = 1,2,3, are scalar functions defined for all 𝑢, 𝑣 ∈ Ω ⊆ C, such that the following

three sets of relations are satisfied:

• Inversion identities (Inv1 - Inv3)

𝑖𝑖 = (𝑖 = 1,2,3) (3.30)

• Yang–Baxter equations (YBE1 - YBE3)

𝑢

𝑣

1 =
𝑣

𝑢

1
𝑢

𝑣

2 =
𝑣

𝑢

2
𝑢

𝑣

3 =
𝑣

𝑢

3

(3.31)

• Boundary Yang–Baxter equations (BYBEs)

2

1

𝑢

𝑣

=

𝑣

4

𝑢 3

𝑢2

1

𝑣

=

𝑣

4

3 𝑢

(3.32)

where

4 =
∑︁
𝑎∈𝐵2

𝑦
(1)
𝑎 (𝑣,𝑢) 𝑎, 4 =

∑︁
𝑎∈𝐵2

𝑦
(1)
𝑎 (𝑣,𝑢) 𝑎. (3.33)

Then, [𝑇 (𝑑)𝑛 (𝑢),𝑇 (𝑑)𝑛 (𝑣)] = 0 for all 𝑢, 𝑣 ∈ Ω.
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Proof. Using the following familiar manipulations [42],

𝑇
(𝑑)
𝑛 (𝑢)𝑇 (𝑑)𝑛 (𝑣) =

. . .

. . .

. . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑣 𝑣 𝑣

𝑢 𝑢

𝑣 𝑣

(Inv1)
=

. . .

. . .

. . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑣 𝑣 𝑣

𝑢 𝑢

11

𝑣 𝑣

(YBE1)
=

. . .

. . .

. . .

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑢 𝑢

𝑣 𝑣

1 1

(Inv2)
=

. . .

. . .

. . .

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

22𝑢 𝑢

1 1

𝑣 𝑣

(YBE2)
=

. . .

. . .

. . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

2𝑢 𝑢2

1 1

𝑣 𝑣

(BYBEs)
=

. . .

. . .

. . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑣 𝑣

4 4

𝑢 33 𝑢

(YBE3)
=

. . .

. . .

. . .

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑣 𝑣

4 4

𝑢 33 𝑢

(Inv3+YBE4)
=

. . .

. . .

. . .

𝑣 𝑣 𝑣

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣

4

𝑢

4

𝑢

(Inv4)
=

. . .

. . .

. . .

𝑣 𝑣 𝑣

𝑣 𝑣 𝑣

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑣 𝑣

𝑢 𝑢

= 𝑇
(𝑑)
𝑛 (𝑣)𝑇 (𝑑)𝑛 (𝑢), (3.34)

we arrive at the desired result. In (3.34), YBE4 and Inv4 refer respectively to YBE1 and Inv1 with 𝑢

and 𝑣 interchanged and 1 replaced by 4, c.f. (3.33). □

Remark. We denote the ‘auxiliary’ 𝑅-operators in (3.29) by

𝑌𝑖 (𝑢, 𝑣) =
∑︁
𝑎∈𝐵2

𝑦
(𝑖)
𝑎 (𝑢, 𝑣) 𝑎, 𝑌𝑖 (𝑢, 𝑣) =

∑︁
𝑎∈𝐵2

𝑦
(𝑖)
𝑎 (𝑢, 𝑣) 𝑎, (3.35)

and refer to them as 𝑌 -operators, as short for ‘YBE operators’. The 𝑌 -operators in (3.24) are identified

with 𝑌2(𝑢, 𝑣) and 𝑌2(𝑢, 𝑣), respectively. Since the 𝑌 -operators need not be expressible in terms of

the 𝑅-operators themselves, we refer to the YBEs (3.26) and (3.31), and boundary YBEs (3.32) as

generalised. Moreover, we stress that the auxiliary operators do not necessarily appear in either of
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the transfer operators. In many ways, the auxiliary operators are a means to an end in establishing

commutativity. We refer to YBE1 under the specialisation 𝑌1(𝑢, 𝑣) = 𝑅(𝑢𝑣) as the standard YBE.

Traditionally, a model is Yang–Baxter integrable if the 𝑅- and 𝐾-operators satisfy a set of local

relations, including a YBE, that imply (3.22). Proposition 3.2.1 and Proposition 3.2.2 offer a proto-

typical set of such relations for the homogeneous single-row transfer operator and the homogeneous

double-row transfer operator, respectively. We accordingly refer to the ensuing integrability as homo-

geneous Yang–Baxter integrability. Generalising a notion introduced in [38], the 𝑅- and 𝐾-operators

are said to provide a Baxterisation if they give rise to a Yang–Baxter integrable model. In our case, we

refer to a homogeneous Baxterisation as one in which the 𝑅- and 𝐾-operators satisfy the local relations

in Proposition 3.2.2. Under mild conditions, a homogeneous Baxterisation will also satisfy the local

relations of Proposition 3.2.1, and the corresponding parameterisations of the 𝑅- and 𝐾-operators give

rise to two integrable models, one described by 𝑇 (𝑑)𝑛 (𝑢) and another by 𝑇 (𝑠)𝑛 (𝑢).
We view a Baxterisation as specious if

𝐾 (𝑢) = 𝑘 (𝑢)𝑎1, 𝑅(𝑢) = 𝑟 (𝑢)𝑎2, 𝐾 (𝑢) = 𝑘 (𝑢)𝑎1, (3.36)

where 𝑎1, 𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2 and 𝑘,𝑟, 𝑘 : Ω→ C, because, in that case, we have

𝑇
(𝑑)
𝑛 (𝑢) = 𝑘 (𝑢)𝑘 (𝑢)𝑟2𝑛 (𝑢)𝑎, 𝑎 = P

𝑇
(𝑑)
𝑛

(
𝑎1, 𝑎2, . . . , 𝑎2, 𝑎1

)
∈ 𝐴𝑛, (3.37)

𝑇
(𝑠)
𝑛 (𝑢) = 𝑟𝑛 (𝑢)𝑎, 𝑎 = P

𝑇
(𝑠)
𝑛

(
𝑎2, . . . , 𝑎2

)
∈ Q𝐴𝑛,𝑛, (3.38)

from which (3.22) trivially follows for both 𝑇 (𝑑)𝑛 (𝑢) and 𝑇 (𝑠)𝑛 (𝑢). In the following, we will disre-

gard specious Baxterisations. We also say that a planar algebra (𝐴𝑛)𝑛∈N0 encodes the Yang–Baxter

integrability if no proper planar subalgebra can take its place.

We say that a planar algebra (𝐴𝑛)𝑛∈N0 encodes the homogeneous Yang–Baxter integrability of

(i) a model described by the double-row transfer operator if {𝐾 (𝑢), 𝐾 (𝑢) |𝑢 ∈ Ω} and {𝑅(𝑢) |𝑢 ∈ Ω}
together with the action of planar tangles generate the full vector spaces 𝐴1 and 𝐴2, respectively, and

(ii) a model described by the single-row transfer operator if {𝑅(𝑢) |𝑢 ∈ Ω} together with the action of

planar tangles generate the full vector space 𝐴2.

3.3 Sklyanin’s formulation

The partial traces in (3.7) and (3.10) are diagrammatic in origin, accordingly, there is not necessarily a

vector space over which the trace is being performed. This is contrasted with the standard formulation

of both single-row and double-row transfer operators [43–45], whereby there is a natural tensorial

decomposition of the constituent 𝑅-operators, which facilitates the identification of an auxiliary space

over which the trace acts. Under particular circumstances, one can identify the auxiliary vector space.
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For each 𝑚,𝑛 ∈ N0, the quadratic tangle

𝐾𝑚,𝑛 :=

. . .

. . .

. . .

. . .

21 , P𝐾𝑚,𝑛
: 𝐴𝑚 × 𝐴𝑛→ 𝐴𝑚+𝑛, (3.39)

induces a tensor product between 𝐴𝑚 and 𝐴𝑛 within 𝐴𝑚+𝑛. For ease of notation, for 𝑢 ∈ 𝐴𝑚 and 𝑣 ∈ 𝐴𝑛,
we write 𝑢 ⊗ 𝑣 = P𝐾𝑚,𝑛

(𝑢, 𝑣) ∈ 𝐴𝑚+𝑛. An 𝑅-operator is called separable if it can be decomposed as an

element of 𝐴1 ⊗ 𝐴1, diagrammatically, we have

𝑅(𝑢) = 𝑢 =
∑︁

𝑎1,𝑎2∈𝐵1

𝑅𝑎1,𝑎2 (𝑢) 𝑎1 𝑎2 . (3.40)

In this case, the auxiliary vector space of the double-row transfer operator is thus given by the left-most

channel, here coloured blue

𝑇
(𝑑)
𝑛 (𝑢) = . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

𝑢 𝑢 . (3.41)

For the single-row transfer operator with 𝑅-operator as in (3.40), there exists no such identification of

the auxiliary channel.

A planar algebra is called braided, respectively symmetric if each vector space 𝐴𝑛 admits of

a representation of the 𝑛-strand braid, respectively symmetric, group algebra. Specialising to the

symmetric case and applying the permutation operator to the 𝑅-operator, we define

𝑅̌(𝑢) = 𝑢̌ :=
∑︁

𝑎1,𝑎2∈𝐵1

𝑅𝑎1,𝑎2 (𝑢) 𝑎1 𝑎2
. (3.42)

Taking 𝑅̌(𝑢) as the 𝑅-operator for both transfer operators, we have

𝑇
(𝑑)
𝑛 (𝑢) = . . .

𝑢̌ 𝑢̌ 𝑢̌

𝑢̌ 𝑢̌ 𝑢̌

𝑢 𝑢 , 𝑇
(𝑠)
𝑛 (𝑢) = 𝑢̌ 𝑢̌ 𝑢̌ , (3.43)

where the auxiliary vector space is threaded through the transfer operator in each case – reminiscent of

the standard formulation [43, 44]. In fact, for the double-row transfer operator, by combining both

(3.40) and (3.42), the auxiliary space can be threaded through any of the intermediate channels

. . .

𝑢̌ 𝑢̌ 𝑢̌ 𝑢

𝑢̌ 𝑢̌ 𝑢̌ 𝑢

𝑢 𝑢 , . . . , . . .

𝑢̌ 𝑢 𝑢 𝑢

𝑢̌ 𝑢 𝑢 𝑢

𝑢 𝑢 . (3.44)

Note that the commutativity of the operator in (3.41), likewise of the double-row transfer operator in

(3.43), do not necessarily imply the commutativity of any of the intermediate operators in (3.44).
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3.4 Hamiltonian limits

A point 𝑢∗ ∈ C is called an identity point of 𝑇𝑛 (𝑢) if 𝑇𝑛 (𝑢∗) is proportional to a left- or right-invertible

element in 𝐴𝑛. About each identity point for which the proportionality is nonzero, we perform a power

series expansion of the transfer operator to define the associated Hamiltonian operators. As will be

clear in the following, two distinct identity points from the same transfer operator may give rise to two

different sets of Hamiltonian operators.

Here, we present two sets of sufficient conditions to identify identity points, one for each of the

transfer operators 𝑇 (𝑑)𝑛 (𝑢) and 𝑇 (𝑠)𝑛 (𝑢). In preparation, we define

𝑔 : Ω→ 𝐴0, 𝑢 ↦→ 𝑢 𝑢 , (3.45)

where Ω ⊆ C is a suitable domain, and we have expressed the image in our standard diagrammatic

representation cf. (3.5). Equivalently, we may write

𝑔(𝑢) = Ptr1◦𝑀1

(
𝐾 (𝑢),𝐾 (𝑢)

)
= Ptr1◦𝑀1

(
𝐾 (𝑢),𝐾 (𝑢)

)
. (3.46)

Composing 𝑔 with the evaluation map (2.20), we define the scalar function

𝑔̂ := e◦𝑔 : Ω→ C. (3.47)

We now present sufficient conditions for the double-row transfer operator.

Proposition 3.4.1. Let 𝑢∗ ∈ Ω and suppose there exist 𝑙𝑢∗ , 𝑟𝑢∗ ∈ C such that

𝑢∗

𝑢∗
𝑢∗ = 𝑙𝑢∗ 𝑢∗ or

𝑢∗

𝑢∗
𝑢∗ = 𝑟𝑢∗ 𝑢∗ . (3.48)

Then, 𝑢∗ is an identity point, with 𝑇 (𝑑)𝑛 (𝑢∗) = 𝑙𝑛𝑢∗ 𝑔̂(𝑢∗)1𝑛 or 𝑇 (𝑑)𝑛 (𝑢∗) = 𝑟𝑛𝑢∗ 𝑔̂(𝑢∗)1𝑛, respectively.

Proof. Suppose the left relation in (3.48) holds, then

𝑇
(𝑑)
𝑛 (𝑢∗) = . . .

𝑢∗ 𝑢∗ 𝑢∗

𝑢∗ 𝑢∗ 𝑢∗
𝑢∗ 𝑢∗ = 𝑙𝑢∗

. . .

𝑢∗ 𝑢∗

𝑢∗ 𝑢∗
𝑢∗ 𝑢∗ = 𝑙𝑛𝑢∗

. . . 𝑢∗ 𝑢∗ = 𝑙𝑛𝑢∗ 𝑔̂(𝑢∗)1𝑛.

(3.49)

A similar argument applies if the right relation holds. □

Remark. If both relations in (3.48) are true and if 𝑔̂(𝑢∗) ≠ 0, then 𝑙𝑛−𝑘𝑢∗ 𝑟
𝑘
𝑢∗ = 𝑙

𝑛−𝑘 ′
𝑢∗ 𝑟 𝑘

′
𝑢∗ for all 𝑘, 𝑘′ ∈

{0,1, . . . , 𝑛}, hence 𝑙𝑢∗ = 𝑟𝑢∗ .

The sufficient conditions for the single-row transfer operator are as follows.
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Proposition 3.4.2. Let 𝑢∗ ∈ Ω and suppose there exist 𝑚𝑢∗ , 𝑝𝑢∗ ∈ C such that

𝑢∗ = 𝑚𝑢∗ or 𝑢∗ = 𝑝𝑢∗ . (3.50)

Then, 𝑢∗ is an identity point, with 𝑇 (𝑠)𝑛 (𝑢∗) = 𝑚𝑛𝑢∗Ω
−1
𝑛 or 𝑇 (𝑠)𝑛 (𝑢∗) = 𝑝𝑛𝑢∗Ω𝑛, respectively.

Proof. Suppose the left relation in (3.50) holds, then

𝑇
(𝑠)
𝑛 (𝑢∗) = 𝑢∗ 𝑢∗ 𝑢∗ = 𝑚𝑛𝑢∗

. . .

. . . = 𝑚𝑛𝑢∗Ω
−1
𝑛 . (3.51)

Similar arguments apply if the right relation holds. □

Now suppose 𝑢∗ is an identity point of the transfer operator 𝑇𝑛 (𝑢) where 𝑇𝑛 (𝑢) ∉ C1𝑛, and that Ω

contains an open subset of C containing 𝑢∗. It follows that there exists a 𝑘 ∈ N and a 𝐻𝑛,𝑢∗ ∉ C1𝑛 such

that

𝑇𝑛 (𝑢∗ + 𝜖) = 𝑇𝑛 (𝑢∗)
(
𝑝𝑘−1(𝜖)1𝑛 + 𝜖 𝑘𝐻𝑛,𝑢∗ +O(𝜖 𝑘+1)

)
, (3.52)

where 𝑝𝑘−1 is a polynomial of degree at most 𝑘 −1 with 𝑝𝑘−1(0) = 1, and we have assumed 𝑇𝑛 (𝑢∗)
has a right-inverse, if 𝑇𝑛 (𝑢∗) has a left-inverse only, we can rewrite (3.52) by factoring 𝑇𝑛 (𝑢∗) from

the right. The element 𝐻𝑛,𝑢∗ is considered a Hamiltonian associated with the identity point 𝑢∗ and the

corresponding transfer operator. We note that this Hamiltonian can be expressed alternatively as

𝐻𝑛,𝑢∗ =
1

𝑇𝑛 (𝑢)
1
𝑘!

𝜕𝑘

𝜕𝑢𝑘
𝑇𝑛 (𝑢)

���
𝑢=𝑢∗

(3.53)

where again, we have assumed that 𝑇𝑛 (𝑢∗) has a right-inverse if this is not valid, write (3.53) with the

inverse transfer operator to the right of the derivative. In any case, there exists a 𝑠𝑘 ∈ C and a nonzero

ℎ𝑛,𝑢∗ ∈ spanC(𝐵′𝑛) such that

𝐻𝑛,𝑢∗ := 𝑠𝑘1𝑛 + ℎ𝑛,𝑢∗ . (3.54)

Absorbing the identity term of the Hamiltonian in (3.52), we define

𝑝𝑘 (𝜖) := 𝑝𝑘−1(𝜖) + 𝑠𝑘𝜖 𝑘 , (3.55)

and can write (3.52) as

𝑇𝑛 (𝑢∗ + 𝜖) = 𝑇𝑛 (𝑢∗)
(
𝑝𝑘 (𝜖)1𝑛 + 𝜖 𝑘ℎ𝑛,𝑢∗ +O(𝜖 𝑘+1)

)
, (3.56)

where 𝑝𝑘 is a polynomial with degree at most 𝑘 . Up to rescaling, we refer to the element ℎ𝑛,𝑢∗ as the

principal Hamiltonian associated with the identity point 𝑢∗ and the corresponding transfer operator.

When unlikely to cause confusion, we may choose to omit one of the subscripts and write ℎ𝑛 or ℎ𝑢∗
instead of ℎ𝑛,𝑢∗ . Note that distinct identity points of the same transfer operator may completely change

the terms appearing in the power series expansion, which in turn, may give rise to distinct principal
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Hamiltonians. Likewise, transfer operators parameterised by different 𝑅-operators may also give rise

to distinct identity points and principal Hamiltonians.

Remark. In the case of the double-row transfer operator, if either relation in (3.48) holds and

𝑇
(𝑑)
𝑛 (𝑢∗) = 0, the original transfer operator may be renormalised such that the limit 𝑢→ 𝑢∗ yields a

nonzero scalar multiple of the identity. This was illustrated in [46] and will be revisited in Section 6.1.

If the transfer operator 𝑇𝑛 (𝑢) describes an integrable model for 𝑢 ∈ Ω, then we have the familiar

commutation relations

[ℎ𝑛,𝑢∗ ,𝑇𝑛 (𝑢)] = [𝐻𝑛,𝑢∗ ,𝑇𝑛 (𝑢)] = 0, ∀ 𝑢∗, 𝑢 ∈ Ω. (3.57)

3.5 Hamiltonians and integrals of motion

Consider a model whose underlying algebraic structure is given by an associative algebra A with a

basis B, and denote by 𝑇 (𝑢) ∈ A the transfer operator describing a model for all 𝑢 ∈ Ω where Ω ⊆ C
is a suitable domain. Expressing the transfer operator in terms of elements in the basis B, we have

𝑇 (𝑢) =
∑︁
𝑎∈B

𝑡𝑎 (𝑢)𝑎, (3.58)

where 𝑡𝑎 : Ω→ C for each 𝑎 ∈ B. Define the space of scalar functions

F := spanC{𝑡𝑎 : Ω→ C | 𝑎 ∈ B} (3.59)

and denote by B𝑇 a basis for F . As an alternative to (3.58), we can express the transfer operator in

terms of elements from the basis B𝑇

𝑇 (𝑢) =
∑︁
𝑓 ∈B𝑇

𝑓 (𝑢)𝑎 𝑓 , (3.60)

where 𝑎 𝑓 ∈ A for each 𝑓 ∈ B𝑇 . Introducing the space of Hamiltonians and corresponding the A-

subalgebra

H𝑇 := spanC{𝑎 𝑓 | 𝑓 ∈ B𝑇 }, A𝑇 := ⟨H𝑇 ⟩A , (3.61)

where we note that dimH𝑇 ≤ dimF and 𝑇 (𝑢)𝑛 ∈ A𝑇 for all 𝑛 ∈ N.

Each nonzero element ℎ ∈ H𝑇 that is not simply proportional to the identity (for A unital) could

conceivably be considered as the Hamiltonian of the model, while physical considerations may guide

the selection. Accordingly, we refer to elements of H𝑇 as Hamiltonians and preferred choices, for

example, ℎ𝑛,𝑢∗ in (3.54), as principal Hamiltonians.

In general, we denote the centraliser of 𝑎 in A by CA (𝑎). For a Hamiltonian ℎ ∈ H𝑇 , we view

CA (ℎ) as the subalgebra of all ℎ-conserved quantities of the model. If the model is integrable in the

sense that

[𝑇 (𝑢),𝑇 (𝑣)] = 0, ∀ 𝑢, 𝑣 ∈ Ω, (3.62)
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it follows that A𝑇 is commutative, and given a choice of ℎ, every Hamiltonian is a ℎ-conserved

quantity. In general, the space of all ℎ-conserved quantities is larger than the space of Hamiltonians

as we have the inclusionH𝑇 ⊆ CA (ℎ). Finally, we consider the centre of CA (H𝑇 ), which we denote

byZ(CA (H𝑇 )), and refer to it as the subalgebra of the integrals of motion (IOM) of the model. To

summarise, we have the following sequence of algebras relevant to the integrable model

A𝑇 ⊆ Z(CA (H𝑇 )) ⊆ CA (H𝑇 ) ⊆ CA (ℎ) ⊆ A. (3.63)

Let us take a moment to unpack the terminology of IOM. Typically the transfer operator corre-

sponding to an integrable model is considered the generating function of the IOM of the model. In

this case, the space of IOM is restricted toH𝑇 . In our construction, the algebra A endows the model

with algebraic structure, it is thus natural to extend the notion of IOM beyond those generated by the

transfer operator, to all elements of the algebra A commuting with all of the HamiltoniansH𝑇 , that

themselves all mutually commute. In the following, we consider a situation where there exists a single,

algebraically independent Hamiltonian.

3.6 Polynomial integrability

Let A denote an associative algebra and {𝑇 (𝑢) ∈ A |𝑢 ∈ Ω} a one parameter family of operators,

where Ω ⊆ C. If there exists a 𝑏 ∈ A such that

𝑇 (𝑢) ∈ C[𝑏], ∀ 𝑢 ∈ Ω, (3.64)

then [𝑇 (𝑢),𝑇 (𝑣)] = 0 trivially follows for all 𝑢, 𝑣 ∈ Ω. Suppose the family corresponds to the transfer

operator of a model, for example, {𝑇𝑛 (𝑢) ∈ 𝐴𝑛 |𝑢 ∈ Ω} in the planar-algebraic setting defined above. If

there exists some 𝑏𝑛 ∈ 𝐴𝑛 such that 𝑇𝑛 (𝑢) satisfies (3.64), we say that the transfer operator is polyno-

mialisable, the model is polynomially integrable and that 𝑏𝑛 generates the polynomial integrability.

From an algebraic perspective, a polynomially integrable model may thus be considered as trivially

integrable.

It may seem unreasonable to suppose that there exist physically relevant models exhibiting polyno-

mial integrability. However, this is exactly what we find. In fact, for the models that we analyse see

Chapter 6, it is the Hamiltonian elements defined in Section 3.4 that play the role of 𝑏, in which case

the transfer operator is polynomial in the Hamiltonian.

In preparation for this analysis, we devote the following chapter. The main result (Proposition

4.2.2) is a classification of commuting one parameter families {𝑇 (𝑢) ∈ A |𝑢 ∈ Ω} that satisfy (3.64)

with A a semisimple algebra. A simple corollary of this classification (Corollary 4.2.3) serves to

indicate the ubiquity of polynomial integrability among integrable models.
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Chapter 4

Algebraic integrability

In this chapter, we characterise polynomial integrability in a general algebraic setting. We begin by

presenting necessary and sufficient conditions for a parameter-dependent element of a matrix algebra to

be expressible as a polynomial in another parameter-independent element. This result is then extended

to elements within semisimple algebras. We then consider spectral properties of parameter-dependent

linear operators, in particular, we introduce a notion of spurious degeneracies and show that there can

only exist finitely many of these. Finally, we review some basic properties of cellular algebras, which

we cast in a diagrammatic representation.

4.1 Block Toeplitz

We begin this section by introducing some notations. Denote byM𝑛 (R) the set of all 𝑛×𝑛 matrices

whose entries are elements of the set R. For 𝑧 ∈M𝑛 (C), the centraliser of 𝑧 inM𝑛 (C) is denoted by

C(𝑧). We denote by R[𝑥] the set of polynomials in 𝑥 with coefficients in the set R, similarly, we denote

by R(𝑥) the set of rational functions in 𝑥. For us, 𝑥 may be an indeterminate or an algebraic element,

for example, 𝑥 ∈ M𝑛 (C) implies that C[𝑥] and C(𝑥) are algebras that admit a finite-dimensional basis.

Let 𝑐𝑧 and 𝑚𝑧 denote the characteristic and minimal polynomials of 𝑧 ∈M𝑛 (C) respectively, and note

that [47]

𝑐𝑧 = 𝑚𝑧 ⇐⇒ C(𝑧) = C[𝑧] . (4.1)

A 𝑧 ∈ M𝑛 (C) is called non-derogatory if it satisfies the equivalent conditions above. Each of the

equivalent statements (4.1) is basis independent, it follows that any matrix similar to a non-derogatory

matrix is itself non-derogatory. This notion naturally extends to linear operators on C𝑛, such an operator

is non-derogatory if there exists a basis with respect to which the corresponding matrix representation

is non-derogatory.

A matrix 𝐽 is in Jordan canonical form (JCF) if it is block-diagonal with Jordan blocks along the
53
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diagonal, i.e. 𝐽 = diag
(
𝐽𝑟1 (𝜆1), . . . , 𝐽𝑟𝑠 (𝜆𝑠)

)
, where a Jordan block is given by

𝐽𝑟 (𝜆) :=



𝜆 1 0 . . . 0

0 𝜆 1 . . .
...

...
. . .

. . .
. . . 0

0 . . . 0 𝜆 1
0 . . . 0 0 𝜆


∈M𝑟 (R). (4.2)

For an analytic function 𝑓 , taking 𝐽 as the argument, we have 𝑓 (𝐽) = diag
(
𝑓
(
𝐽𝑟1 (𝜆1)

)
, . . . , 𝑓

(
𝐽𝑟𝑠 (𝜆𝑠)

) )
,

where

𝑓 (𝐽𝑟 (𝜆)) =



𝑓 (𝜆) 𝑓 ′(𝜆) 𝑓 ′′ (𝜆)
2 . . .

𝑓 (𝑟−1) (𝜆)
(𝑟−1)!

0 𝑓 (𝜆) 𝑓 ′(𝜆) . . .
...

...
. . .

. . .
. . . 𝑓 ′′ (𝜆)

2

0 . . . 0 𝑓 (𝜆) 𝑓 ′(𝜆)
0 . . . 0 0 𝑓 (𝜆)


. (4.3)

An upper-triangular Toeplitz matrix can be characterised by the tuple a𝑟 = (𝑎1, 𝑎2, . . . , 𝑎𝑟) in R×𝑟 ,
and is given by

𝑇 (a𝑟) =


𝑎1 𝑎2 . . . 𝑎𝑟

0 𝑎1
. . .

...
...

. . .
. . . 𝑎2

0 . . . 0 𝑎1

 . (4.4)

Accordingly, a block-diagonal upper-triangular Toeplitz matrix (BT), it given by diag
(
𝑇 (a[1]𝑟1 ), . . . ,𝑇 (a

[𝑠]
𝑟𝑠 )

)
,

and we say that it has a block partitioning of 𝑟1, . . . , 𝑟𝑠. Indeed, the block partitioning of a given BT

matrix is not unique, for our purposes it is often sufficient that there exists a block partitioning.

Lemma 4.1.1. There exists a 𝑏 ∈ M𝑛 (C) in JCF such that 𝐵(𝑥) ∈ C(𝑥) [𝑏] if and only if 𝐵(𝑥) ∈
M𝑛 (C(𝑥)) is BT.

Proof. First “⇒”. There exists an 𝑥-dependent polynomial 𝑝𝑥 , such that 𝐵(𝑥) = 𝑝𝑥 (𝑏). As 𝑏 is in JCF

it follows from (4.3) that 𝐵(𝑥) is BT.

Now “⇐”. Suppose a block partitioning of 𝐵(𝑥) is given by 𝑟1, . . . , 𝑟𝑠, let

𝑏 = diag
(
𝐽𝑟1 (𝜆1), . . . , 𝐽𝑟𝑠 (𝜆𝑠)

)
(4.5)

where 𝜆1, . . .𝜆𝑠 ∈ C are all distinct. By construction 𝑏 is non-derogatory and satisfies [𝑏, 𝐵(𝑥)] = 0. It

follows from (4.1) that 𝐵(𝑥) ∈ C(𝑥) [𝑏]. □

Proposition 4.1.2. Suppose 𝐵(𝑥) ∈ M𝑛 (C(𝑥)). There exists a 𝑏 ∈M𝑛 (C) such that 𝐵(𝑥) ∈ C(𝑥) [𝑏]
if and only if there exists a 𝑆 ∈M𝑛 (C) such that 𝑆−1𝐵(𝑥)𝑆 is BT.
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Proof. First “⇒”. There exists an 𝑥-dependent polynomial 𝑝𝑥 such that 𝐵(𝑥) = 𝑝𝑥 (𝑏). Denote by

𝑆 ∈M𝑛 (C) the similarity matrix such that 𝑆−1𝑏𝑆 is in JCF. Then 𝑆−1𝐵(𝑥)𝑆 = 𝑆−1𝑝𝑥 (𝑏)𝑆 = 𝑝𝑥 (𝑆−1𝑏𝑆),
and it follows from Lemma 4.1.1 that 𝑆−1𝐵(𝑥)𝑆 is BT.

Now “⇐”. We have 𝑆−1𝐵(𝑥)𝑆 BT. From Lemma 4.1.1, 𝑆−1𝐵(𝑥)𝑆 ∈ C(𝑥) [𝑏] for some 𝑏 in JCF.

Then 𝐵(𝑥) ∈ C(𝑥) [𝑏], where 𝑏 = 𝑆𝑏𝑆−1. □

Corollary 4.1.3. Let Ω ⊆ C and suppose {𝐶 (𝑥) ∈ M𝑛 (C) | 𝑥 ∈ Ω} is a commutative subset ofM𝑛 (C),
where each element is diagonalisable. There exists a 𝑏 ∈M𝑛 (C) such that 𝐶 (𝑥) ∈ C[𝑏] for all 𝑥 ∈ Ω.

Proof. As each 𝐶 (𝑥) is diagonalisable and pairwise commuting, there exists an 𝑥-independent basis in

C𝑛 with respect to which all 𝐶 (𝑥) are diagonal, see for example [48]. As diagonal matrices are BT, the

result follows from Proposition 4.1.2. □

Remark. Corollary 4.1.3 implies that any integrable model described by a family of pairwise

commuting and diagonalisable matrices is polynomially integrable.

This result illustrates the ubiquity of polynomial integrability among integrable models. For the

reader in a hurry, we present a self-contained proof of Corollary 4.1.3, independent of the details of

this chapter: As each 𝐶 (𝑥) is diagonalisable and pairwise commuting, there exists an 𝑥-independent

𝑆 ∈M𝑛 (C) such that 𝑆−1𝐶 (𝑥)𝑆 = diag(𝛾1(𝑥), . . . , 𝛾𝑛 (𝑥)). Construct a 𝑏 = diag(𝜆1, . . . ,𝜆𝑛) where each

𝜆1, . . .𝜆𝑛 ∈ C are distinct, and fix the coefficients 𝑎0(𝑥), . . . , 𝑎𝑛−1(𝑥) ∈ C of the polynomial

𝑝𝑥 (𝑦) =
𝑛−1∑︁
𝑗=0
𝑎 𝑗 (𝑥)𝑦 𝑗 , (4.6)

such that 𝑝𝑥 (𝜆𝑖) = 𝛾𝑖 (𝑥) for all 𝑖 = 0, . . . , 𝑛−1 and 𝑥 ∈ Ω. As 𝜆1, . . .𝜆𝑛 are all distinct, one can always

do this. It follows that 𝐶 (𝑥) = 𝑝𝑥 (𝑏) where 𝑏 = 𝑆𝑏𝑆−1.

The following section is devoted to elevating Proposition 4.1.2 and Corollary 4.1.3 such that they

apply to elements of semisimple algebras.

4.2 Semisimple algebras

Let A be a finite-dimensional unital associative algebra over C. Motivated by the discussion of

matrices presented in Section 4.1, we generalise the notion of non-derogatory elements to those 𝑏 ∈ A
satisfying

CA (𝑏) = C[𝑏] . (4.7)

In this case, we say that 𝑏 generates its own centraliser. For 𝑏 non-derogatory it follows that each

𝑐 ∈ CA (𝑏) can be expressed as a polynomial in 𝑏, that is

𝑐 =

𝑑−1∑︁
𝑖=0
𝑐𝑖𝑏

𝑖, 𝑑 = dimC[𝑏] (4.8)
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where 𝑐0, . . . , 𝑐𝑑−1 ∈ C.

Let us now recall some general results about the structure ofA. Up to isomorphism,A has finitely

many irreducible modules here denoted by 𝐿1, . . . , 𝐿𝑟 , each of which are finite-dimensional and satisfy

A/rad(A) �
𝑟⊕
𝑖=1

End(𝐿𝑖), (4.9)

where rad(A) denotes the Jacobson radical [49]. Letting 𝜌𝑖 denote the representation corresponding

to the module 𝐿𝑖 for each 𝑖 = 1, . . . , 𝑟, the homomorphism

𝜌 :=
𝑟⊕
𝑖=1

𝜌𝑖 :A→
𝑟⊕
𝑖=1

End(𝐿𝑖) (4.10)

is surjective with kernel given by rad(A).
An algebra A is semisimple if its regular representation is completely reducible [49]. Equivalently,

A is semisimple under the following statements

rad(A) = {0} ⇐⇒ A �
𝑟⊕
𝑖=1
(dim𝐿𝑖) 𝐿𝑖 ⇐⇒ dimA =

𝑟∑︁
𝑖=1
(dim𝐿𝑖)2. (4.11)

It follows that for A semisimple, 𝜌 is an isomorphism.

Lemma 4.2.1. Let A be a semisimple algebra, and suppose 𝑏 ∈ A. Then, 𝑏 is non-derogatory if and

only if 𝜌(𝑏) is non-derogatory.

Proof. First “⇒”. We have 𝑏 ∈A non-derogatory. Consider 𝜓 ∈ End(𝐿) satisfying 𝜓◦𝜌(𝑏) = 𝜌(𝑏) ◦𝜓.

As A is semisimple, 𝜌 is an isomorphism, and we can therefore write 𝜌−1(𝜓)𝑏 = 𝑏𝜌−1(𝜓). It follows

from 𝑏 being non-derogatory that 𝜌−1(𝜓) ∈ C[𝑏] hence 𝜓 ∈ C[𝜌(𝑏)], so 𝜌(𝑏) is non-derogatory.

Now “⇐”. We have 𝜌(𝑏) ∈ End(𝐿) non-derogatory. Consider 𝑐 ∈ A satisfying 𝑐𝑏 = 𝑏𝑐. As 𝜌 is

a homomorphism, we have 𝜌(𝑐)𝜌(𝑏) = 𝜌(𝑏)𝜌(𝑐). It follows from 𝜌(𝑏) being non-derogatory that

𝜌(𝑐) ∈ C[𝜌(𝑏)] hence 𝑐 ∈ C[𝑏], so 𝑏 is non-derogatory. □

The following is an algebraic version of Proposition 4.1.2.

Proposition 4.2.2. Let A be a semisimple algebra, and suppose 𝑈 (𝑥) ∈ A. There exists an 𝑥-

independent 𝑏 ∈ A such that𝑈 (𝑥) ∈ C(𝑥) [𝑏] if and only if there exists a 𝑥-independent 𝐿-basis such

that the matrix representation of 𝜌(𝑈 (𝑥)) is BT.

Proof. First “⇒”. We have𝑈 (𝑥) ∈ C(𝑥) [𝑏] where 𝑏 ∈ A is 𝑥-independent. As 𝜌 is a homomorphism,

we have 𝜌(𝑈 (𝑥)) ∈ C(𝑥) [𝜌(𝑏)]. As 𝜌(𝑏) is 𝑥-independent, there exists an 𝑥-independent 𝐿-basis with

respect to which the corresponding matrix representation of 𝜌(𝑏) is in JCF. It follows from Lemma

4.1.1 that the matrix representation of 𝜌(𝑈 (𝑥)) with respect to this basis is BT.

Now “⇐”. Denote by 𝐵 the 𝐿-basis with respect to which the matrix representation, U(𝑥), of

𝜌(𝑈 (𝑥)) is BT. Construct a 𝜓 ∈ End(𝐿) such that the matrix representation, 𝑃, with respect to 𝐵 is in

JCF with a block partitioning matching U(𝑥), and with each block having a unique eigenvalue. By
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construction 𝑃 is non-derogatory and by Lemma 4.2.1, so to is 𝑏 := 𝜌−1(𝜓). We also note that U(𝑥)𝑃 =

𝑃U(𝑥), hence 𝜌(𝑈 (𝑥)) ◦𝜓 = 𝜓 ◦ 𝜌(𝑈 (𝑥)). As 𝜌 is an isomorphism, we arrive at𝑈 (𝑥)𝑏 = 𝑏𝑈 (𝑥) from

which it follows that𝑈 (𝑥) ∈ C(𝑥) [𝑏]. □

We also have the algebraic counterpart to Corollary 4.1.3.

Corollary 4.2.3. Let A be a semisimple algebra, Ω ⊆ C, and suppose {𝐶 (𝑥) ∈ A | 𝑥 ∈ Ω} is a

commutative subset of A such that there exists an 𝐿-basis relative to which the matrix representation

𝜌(𝐶 (𝑥)) is diagonal. There exists 𝑏 ∈ A such that 𝐶 (𝑥) ∈ C[𝑏] for every 𝑥 ∈ Ω.

Remark. Yang–Baxter relation subfactor planar algebras offer themselves as prototypical algebras

endowing models with polynomial integrable structure. They are (i) semisimple and therefore admit to

the previous classification, (ii) possess an inner product, with respect to which the diagonalisability

of the transfer operator can be established, and (iii) have a natural Yang–Baxter integrable structure.

These features together translate the global property of polynomial integrability into local properties

satisfied by the constituent 𝐾- and 𝑅-operators of a given transfer operator. For 𝑇 (𝑑)𝑛 (𝑢) these are

YBEs, BYBEs, inversion identities, and self-adjointness. While for 𝑇 (𝑠)𝑛 (𝑢) the BYBEs are replaced

by 𝑅-operator crossing symmetry. We return to these observations in Chapter 5.

4.3 Spectral degeneracies

Let 𝐴(𝑥) : C𝑛→ C𝑛 [𝑥] be an 𝑥-dependent linear map such that, with respect to a particular basis, each

element of the corresponding matrix representation is polynomial in 𝑥. Denote the corresponding

characteristic polynomial by

𝑐(𝑥,𝜆) := det
(
𝜆 id− 𝐴(𝑥)

)
, (4.12)

where id denotes the identity matrix. By construction 𝑐(𝑥,𝜆) is a polynomial in both 𝑥 and 𝜆, whose

degree in 𝜆 is 𝑛. Indeed, determining the zeros of (4.12) in terms of 𝜆 gives the 𝑛 eigenvalues of 𝐴(𝑥),
which, in general, will depend on 𝑥. If, for 𝑥 an indeterminate, there are less than 𝑛 distinct eigenvalues,

we say there exists permanent degeneracies in the spectrum of 𝐴(𝑥). Suppose the spectrum of 𝐴(𝑥)
possesses 𝑙 distinct eigenvalues for 𝑥 an indeterminate (where of course 𝑙 ≤ 𝑛). If, for a given 𝑥0 ∈ C, the

spectrum of 𝐴(𝑥0) possesses less than 𝑙 distinct eigenvalues, we say there exist spurious degeneracies

in the spectrum of 𝐴(𝑥) at the point 𝑥0. As we will see in Proposition 4.3.1 below, for our particular

operator 𝐴(𝑥), there are finitely many 𝑥0-values for which spurious degeneracies arise.

To this end, we note that a polynomial 𝑓 (𝑥, 𝑦) is irreducible if it cannot be written as a product

of two non-constant polynomial factors. The function 𝑦(𝑥) that satisfies 𝑓 (𝑥, 𝑦(𝑥)) = 0, is called an

algebraic function, and we recall that these functions possess finitely many branch points and at most

algebraic singularities [50]. Also, two polynomials 𝑓 (𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are relatively prime if they

share no non-constant factors. In this case, there are finitely many 𝑥0 ∈ C for which 𝑓 (𝑥0, 𝑦) and

𝑔(𝑥0, 𝑦) share the same root 𝑦(𝑥0), see for example Theorem 3 on page 300 of [50].
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Proposition 4.3.1. The spectrum of 𝐴(𝑥) is spurious for finitely many 𝑥-values in C.

Proof. The characteristic polynomial of 𝐴(𝑥) admits the following decomposition

𝑐(𝑥,𝜆) :=
𝑡∏
𝑖=1
𝑐𝑖 (𝑥,𝜆), (4.13)

where 𝑐𝑖 (𝑥,𝜆) ∈ C[𝑥,𝜆] is irreducible for all 𝑖 = 1, . . . , 𝑡 and 1 ≤ 𝑡 ≤ 𝑛. There are two possible

sources of spurious degeneracies, the first are those arising from each individual 𝑐𝑖 (𝑥,𝜆). As 𝑐𝑖 (𝑥,𝜆)
is an irreducible polynomial, it only contributes spurious degeneracies at values 𝑥0 ∈ C for which

𝑐𝑖 (𝑥0,𝜆) ∈ C[𝜆] becomes reducible, there are finitely many such 𝑥-values. The second possible source

is from each pair 𝑐𝑖 (𝑥,𝜆) and 𝑐 𝑗 (𝑥,𝜆) such that 𝑖 ≠ 𝑗 , which are either relatively prime or equal up to

a scalar multiple. In the latter case, the pair contributes permanent degeneracies to the spectrum of

𝐴(𝑥), while in the former case, the pair contributes spurious degeneracies for finitely many 𝑥-values.

Together with the previous observations and the fact that there are finitely many irreducible factors in

(4.13), the result follows. □

4.4 Cellular algebras

In this section, we define cellular algebras, their simple modules and give a criterion for semisimplicity.

Before establishing these results explicitly, we outline key aspects with reference to their appearance

below. A cellular algebra A is defined with respect to a collection of cell datum (Λ, 𝑀,𝐶,∗), where

Λ is partially ordered set, 𝑀 (𝜆) for each 𝜆 ∈ Λ is a finite set, 𝐶 is an injective map and ∗ is an

anti-involution. This data, presented in Definition 4.4.1, equip the algebra with the following features:

(C1) the existence of a basis, endowed from 𝐶, whose elements can be split into two components

each sharing a common label 𝜆 ∈ Λ; (C2) an anti-involution ∗, that facilitates the exchange of the two

components; (C3) a product between an element of the algebra and a basis element with an index 𝜆,

such that the result is a linear combination of elements, each with an index less than or equal to 𝜆.

The partitioning of basis elements into two components, endowed from (C1), suggests a diagram-

matic representation whereby each basis element is expressed as a rectangle with a distinct bottom

and top component accompanied by an index 𝜆, see (4.16). In this representation, the product (C3)
amounts to stacking diagrams where 𝑎𝑏 corresponds to 𝑏 atop 𝑎, and suggests a natural collection of

left modules 𝑊 (𝜆) for each 𝜆 ∈ Λ, with a basis consisting of the lower component of the algebraic

basis elements labelled by 𝜆, see equations (4.21) and (4.22). Similarly one can construct a right

module𝑊 (𝜆)∗ whose basis consists of the upper component of the algebraic elements labelled by 𝜆.

Each 𝑊 (𝜆) is equipped with a natural bilinear form 𝜙𝜆, endowed from the product (C3), see (4.24)

and (4.25). This bilinear form is shown, in Proposition 4.4.2, to encode the irreducibility of the module

𝑊 (𝜆), i.e., when the radical of 𝜙𝜆 is trivial the module is simple. Finally, if the collection of radicals

of 𝜙𝜆 for all 𝜆 ∈ Λ is trivial, it follows that the algebra decomposes as a direct sum of simple modules.
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We now proceed in greater detail, the presentation closely resembles the original [51]. Most proofs

are omitted. Care is taken to cast key results in the aforementioned diagrammatic representation. Let

R denote a commutative ring with identity.

Definition 4.4.1. A cellular algebra over R is an associative unital algebra A, together with cell

datum (Λ, 𝑀,𝐶,∗) where

(C1) Λ is a partially ordered set and for each 𝜆 ∈ Λ, 𝑀 (𝜆) is a finite set such that

𝐶 :
⊔
𝜆∈Λ

𝑀 (𝜆) ×𝑀 (𝜆) → A, (4.14)

is an injective map with image an R-basis of A.

(C2) If 𝜆 ∈ Λ and 𝑆,𝑇 ∈ 𝑀 (𝜆), write 𝐶 (𝑆,𝑇) = 𝐶𝜆
𝑆,𝑇
∈ A. Then ∗ is an R-linear anti-involution of A

such that (𝐶𝜆
𝑆,𝑇
)∗ = 𝐶𝜆

𝑇,𝑆
.

(C3) If 𝜆 ∈ Λ and 𝑆,𝑇 ∈ 𝑀 (𝜆) then for any element 𝑎 ∈ A we have

𝑎𝐶𝜆𝑆,𝑇 ≡
∑︁

𝑆′∈𝑀 (𝜆)
𝑟𝑎 (𝑆′, 𝑆)𝐶𝜆𝑆′,𝑇 (modA(< 𝜆)), (4.15)

where 𝑟𝑎 (𝑆′, 𝑆) ∈ R is independent of 𝑇 and where A(< 𝜆) is the R-submodule of A generated

by {𝐶𝜇
𝑆′′,𝑇 ′′ | 𝜇 < 𝜆; 𝑆′′,𝑇 ′′ ∈ 𝑀 (𝜇)}.

The image under the map defined in (C1) here denoted 𝐶𝜆
𝑆,𝑇

, and its image under the anti-involution ∗
defined in (C2) admit the diagrammatic representations

𝐶𝜆𝑆,𝑇 = 𝜆
𝑆

𝑇
, (𝐶𝜆𝑆,𝑇 )

∗ = 𝜆
𝑇

𝑆
, (4.16)

respectively. Similarly, casting the product (C3) diagrammatically, we have

𝜆
𝑆

𝑇

𝑎

=
∑︁
𝜆′∈Λ

𝑆′,𝑇 ′∈𝑀 (𝜆)

𝑘𝜆′ (𝑆′,𝑇 ′)
𝜆

𝜆′

𝑆

𝑇

𝑆′

𝑇 ′
≡
∑︁

𝑆′∈𝑀 (𝜆)
𝑟𝑎 (𝑆′, 𝑆) 𝜆

𝑆′

𝑇
(modA(< 𝜆)), (4.17)

where 𝑎, expressed in terms of the basis afforded by (C1), and 𝑟𝑎 (𝑆′, 𝑆) are given by

𝑎 =
∑︁
𝜆′∈Λ

𝑆′,𝑇 ′∈𝑀 (𝜆)

𝑘𝜆′ (𝑆′,𝑇 ′) 𝜆′
𝑆′

𝑇 ′
, 𝑟𝑎 (𝑆′, 𝑆) =

∑︁
𝑇 ′∈𝑀 (𝜆)

𝑘𝜆 (𝑆′,𝑇 ′) 𝜆
𝑇 ′

𝑆
. (4.18)

For each 𝜆 ∈ Λ, define

A({𝜆}) := ⟨𝐶𝜆𝑆,𝑇 | 𝑆,𝑇 ∈ 𝑀 (𝜆)⟩R (4.19)
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and note that A �
⊕

𝜆∈ΛA({𝜆}) as R-modules. It follows from (C3) that for each 𝑆1, 𝑆2,𝑇1,𝑇2 ∈
𝑀 (𝜆), we have

𝐶𝜆𝑆1,𝑇1
𝐶𝜆𝑆2,𝑇2

≡ 𝜓(𝑇1, 𝑆2)𝐶𝜆𝑆1,𝑇2
(modA(< 𝜆)), (4.20)

where 𝜓(𝑇1, 𝑆2) ∈ R, readily extends to the bilinear map 𝜓 : 𝑀 (𝜆) ×𝑀 (𝜆) → R.

Let the left, respectively right,A-modules𝑊 (𝜆) and𝑊 (𝜆)∗ be defined as the free R-modules with

the common basis {𝐶𝑆 | 𝑆 ∈ 𝑀 (𝜆)}, yet distinct A-actions

𝑎𝐶𝑆 =
∑︁

𝑆′∈𝑀 (𝜆)
𝑟𝑎 (𝑆′, 𝑆)𝐶𝑆′ , 𝐶𝑆𝑎 =

∑︁
𝑆′∈𝑀 (𝜆)

𝑟𝑎∗ (𝑆′, 𝑆)𝐶𝑆′ , 𝑎 ∈ A. (4.21)

The corresponding diagrammatic representation of a left, respectively right, module basis element is

given by

𝐶𝑆 =
𝜆

𝑆 , 𝐶𝑇 =
𝜆

𝑇 , (4.22)

where 𝐶𝑆 ∈𝑊 (𝜆) and 𝐶𝑇 ∈𝑊 (𝜆)∗, and whose action (4.21) interpreted diagrammatically is consistent

with (4.17). We have the natural R-module isomorphism

𝐶𝜆 :𝑊 (𝜆) ⊗R𝑊 (𝜆) → 𝐴({𝜆}), 𝐶𝑆 ⊗𝐶𝑇 ↦→ 𝐶𝜆𝑆,𝑇 , (4.23)

and the bilinear form

𝜙𝜆 :𝑊 (𝜆) ×𝑊 (𝜆) → R, (𝐶𝑆,𝐶𝑇 ) ↦→ 𝜓(𝑆,𝑇), (4.24)

both of which can be expressed diagrammatically as

𝐶𝜆 (𝐶𝑆 ⊗𝐶𝑇 ) = 𝜆
𝑆

𝑇
, 𝜙𝜆 (𝐶𝑆,𝐶𝑇 ) = 𝜆

𝑆

𝑇
. (4.25)

We note that the form 𝜙𝜆 is symmetric 𝜙𝜆 (𝑢, 𝑣) = 𝜙𝜆 (𝑣,𝑢), invariant under the involution 𝜙𝜆 (𝑎∗𝑢, 𝑣) =
𝜙𝜆 (𝑢, 𝑎𝑣), and satisfies 𝐶𝜆 (𝑢 ⊗ 𝑣)𝑤 = 𝜙𝜆 (𝑣,𝑤)𝑢 for all 𝑢, 𝑣,𝑤 ∈𝑊 (𝜆) and all 𝑎 ∈ A({𝜆}).

The radical of 𝜙𝜆 is defined

rad𝜙𝜆 := {𝑢 ∈𝑊 (𝜆) | 𝜙𝜆 (𝑢, 𝑣) = 0 for all 𝑣 ∈𝑊 (𝜆)}. (4.26)

Letting {𝐶𝑆1 , . . . ,𝐶𝑆𝑑𝜆 } be an ordered basis for𝑊 (𝜆), such that 𝑆1, . . . , 𝑆𝑑𝜆 ∈ 𝑀 (𝜆). Then the matrix

𝐺𝜆 :=



𝜙𝜆 (𝐶𝑆1 ,𝐶𝑆1) 𝜙𝜆 (𝐶𝑆1 ,𝐶𝑆2) . . . 𝜙𝜆 (𝐶𝑆1 ,𝐶𝑆𝑑𝜆 )
𝜙𝜆 (𝐶𝑆2 ,𝐶𝑆1) 𝜙𝜆 (𝐶𝑆2 ,𝐶𝑆2) . . . 𝜙𝜆 (𝐶𝑆2 ,𝐶𝑆𝑑𝜆 )

...
...

. . .
...

𝜙𝜆 (𝐶𝑆𝑑𝜆 ,𝐶𝑆1) 𝜙𝜆 (𝐶𝑆𝑑𝜆 ,𝐶𝑆2) . . . 𝜙𝜆 (𝐶𝑆𝑑𝜆 ,𝐶𝑆𝑑𝜆 )


(4.27)

is symmetric, and is referred to as the Gram matrix. We conclude by establishing the following.
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Proposition 4.4.2. The following statement holds

det𝐺𝜆 ≠ 0 ⇐⇒ rad𝜙𝜆 = {0} ⇐⇒ {𝑎𝜆 ∈ A({𝜆}) | 𝑎𝜆𝑣 = 0 for all 𝑣 ∈𝑊 (𝜆)} = {0}. (4.28)

Proof. First “1⇔ 2 ”. Observe ker𝐺𝜆 = rad𝜙𝜆, and note ker𝐺𝜆 = {0} ⇔ det𝐺𝜆 ≠ 0.

Now “1⇔ 3 ”. As above, let {𝐶𝑆1 , . . . ,𝐶𝑆𝑑𝜆 } be an ordered basis for 𝑊 (𝜆), and construct an

arbitrary element of A({𝜆}) via the isomorphism (4.23)

𝑎𝜆 =

𝑑𝜆∑︁
𝑖, 𝑗=1

𝑐
(𝜆)
𝑖 𝑗
𝐶𝜆 (𝑆𝑖 ⊗𝑅 𝑆 𝑗 ) =

𝑑𝜆∑︁
𝑖, 𝑗=1

𝑐
(𝜆)
𝑖 𝑗
𝐶𝜆𝑆𝑖 ,𝑆 𝑗

, (4.29)

where each 𝑐(𝜆)
𝑖 𝑗
∈ R. Acting an arbitrary basis vector 𝐶𝑆𝑘 ∈𝑊 (𝜆) on 𝑎𝜆, we have

𝑎𝜆𝐶𝑆𝑘 =
©­«
𝑑𝜆∑︁
𝑖, 𝑗=1

𝑐
(𝜆)
𝑖 𝑗
𝐶𝜆𝑆𝑖 ,𝑆 𝑗

ª®¬𝐶𝑆𝑘 =
𝑑𝜆∑︁
𝑖, 𝑗=1

𝑐
(𝜆)
𝑖 𝑗
𝜙𝜆 (𝐶𝑆 𝑗

,𝐶𝑆𝑘 )𝐶𝑆𝑖 =
𝑑𝜆∑︁
𝑖=1

©­«
𝑑𝜆∑︁
𝑗=1
𝑐
(𝜆)
𝑖 𝑗
𝜙𝜆 (𝐶𝑆 𝑗

,𝐶𝑆𝑘 )
ª®¬𝐶𝑆𝑖 . (4.30)

As each 𝐶𝑆𝑖 are linearly independent, the statement 𝑎𝜆𝐶𝑆𝑘 = 0 for all 𝑘 = 1, . . . , 𝑑𝜆, is equivalent to

𝑑𝜆∑︁
𝑗=1
𝑐
(𝜆)
𝑖 𝑗
𝜙𝜆 (𝐶𝑆 𝑗

,𝐶𝑆𝑘 ) = 0. (4.31)

This set of homogeneous equations can be expressed as the matrix equation

𝐺𝜆c(𝜆)𝑖 = 0, c(𝜆)
𝑖

=


𝑐
(𝜆)
𝑖1
𝑐
(𝜆)
𝑖2

..
.

𝑐
(𝜆)
𝑖 𝑑𝜆


, (4.32)

for 𝑖 = 1, . . . , 𝑑𝜆. The set of homogeneous matrix equations (4.32) have a non-trivial solution if and

only if det𝐺𝜆 = 0. □

It follows that the representation

𝜌 :=
⊕
𝜆∈Λ

𝜌𝜆 : A→
⊕
𝜆∈Λ

End(𝑊 (𝜆)) (4.33)

is faithful if and only if det𝐺𝜆 ≠ 0 for all 𝜆 ∈ Λ.
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Chapter 5

Yang–Baxter relation planar algebras

In this chapter, we apply the algebraic integrability framework to subfactor planar algebras. We begin

with the simplest algebra of this class – the Temperley–Lieb subfactor planar algebra and recover the

well-known Baxterisation within our framework. We then consider singly generated planar algebras

and find that the only such planar algebras underlying homogeneous Yang–Baxter integrable models

are the so-called Yang–Baxter relation planar algebras. According to a result of Liu, there are three

such planar algebras: the well-known Fuss–Catalan and Birman–Wenzl–Murakami planar algebras,

in addition to one more which we refer to as the Liu planar algebra. The Fuss–Catalan and Birman–

Wenzl–Murakami algebras are known to underlie homogeneous Yang–Baxter integrable models, and

we show that the Liu algebra likewise admit a Baxterisation. We also show that the double-row transfer

operator describing a homogeneous Yang–Baxter integrable model underlied by the Temperley–Lieb

subfactor planar algebra or one of the singly generated Yang–Baxter relation (YBR) planar algebras

is polynomialisable. Using terminology established in Chapter 3, our findings for singly generated

planar algebras may now be summarised as follows.

Theorem 5.0.1. Let 𝐴 be a singly generated planar algebra. Then, there exists (i) a single-row transfer

operator and (ii) a double-row transfer operator; each describing a homogeneous Yang–Baxter

integrable model encoded by 𝐴 if and only if 𝐴 is a Yang–Baxter relation planar algebra.

Theorem 5.0.2. Let the homogeneous Yang–Baxter integrability of a model be encoded by a singly

generated Yang–Baxter relation planar algebra. Then, there exist algebra-parameter choices and a

suitable 𝑢-domain such that the corresponding double-row transfer operator is polynomialisable.

As a unifying framework for describing the singly generated YBR planar algebras, inspired by the

series of works [29–31, 39], we find it convenient to introduce the (unshaded) proto-singly-generated

planar algebra (PS𝑛)𝑛∈N0 . Although PS𝑛 is infinite-dimensional for 𝑛 ≥ 3 and does not encode a

homogeneous Yang–Baxter integrable model, we demonstrate that it serves as an ‘ambient’ algebra

admitting quotients isomorphic to the FC, BMW, and Liu algebras.

Given our focus on the Temperley–Lieb planar algebra and singly generated planar algebras, where

dim 𝐴1 = |𝐵1 | = 1, we may accordingly normalise the 𝐾-operators in (3.3) so that they equal the identity
63
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element,

𝐾 (𝑢) = 𝐾 (𝑢) = 11. (5.1)

We also note that for the Temperley–Lieb planar algebra and singly generated planar algebras, 𝐴2

is commutative. It follows that the set of local relations in Proposition 3.2.1 is a subset of those in

Proposition 3.2.2. Accordingly, for these algebras, a homogeneous Baxterisation gives rise to two

homogeneous Yang–Baxter integrable models; one described by the double-row transfer operator

𝑇
(𝑑)
𝑛 (𝑢) and another described by the single-row transfer operator 𝑇 (𝑠)𝑛 (𝑢).

5.1 Temperley–Lieb planar algebra

5.1.1 Planar algebra

Let T𝑛,± denote the complex vector space spanned by disks with 2𝑛 nodes such that each node is

connected to another node via a non-intersecting loop segment – defined up to ambient isotopy, and a

± checker-board shading (see Section 2.2). Examples of Temperley–Lieb disks are

∈ T2,−, ∈ T3,+, ∈ T5,−. (5.2)

The dimension of T𝑛,± is given by a Catalan number

dimT𝑛,± =
1

𝑛+1

(
2𝑛
𝑛

)
. (5.3)

The Temperley–Lieb (TL) planar algebra TL(𝛿) is the graded vector space (T𝑛,±)𝑛∈N0 , together

with the natural diagrammatic action of shaded planar tangles, with each loop replaced by a factor of

the parameter 𝛿 ∈ C. To illustrate, we present the example

𝑇 =

1

2

, P𝑇
(

,
)
= = 𝛿 . (5.4)

From [13], we know that TL(𝛿) is spherical and involutive, with the involution ·∗ defined as the

conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked

boundary interval.

Let T denote the set of all 𝛿-values such that the planar algebra TL(𝛿) is positive semi-definite.

For each 𝛿 ∈ T , the TL subfactor planar algebra TL(𝛿) is then defined as the quotient of TL(𝛿) by the

kernel of the trace norm (2.36). The complete details of the set T were established in [26], where

T = { 2cos
(
𝜋
𝑘

)
| 𝑘 = 3,4, . . .} ∪ [2,∞). (5.5)

For 𝛿 in { 2cos
(
𝜋
𝑘

)
| 𝑘 = 3,4, . . .}, the kernel of the traces norm is non-trivial hence TL(𝛿) and TL(𝛿)

are not isomorphic, while for 𝛿 > 2, TL(𝛿) is positive definite, in which case TL(𝛿) � TL(𝛿).
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Remark. Here and throughout, the sans-serif font distinguishes a subfactor planar algebra, such as

TL(𝛿), from the corresponding (not necessarily subfactor) planar algebra, here TL(𝛿).

Remark. Recall the collection of vector spaces (T𝑛,±)𝑛,± defined in Section 2.3. For 𝛿 > 2, we note

that T𝑛,± = T𝑛,± for all 𝑛 ∈ N0.

It follows from Section 2.5 that planar algebras giving rise to Yang–Baxter integrable models

admit an unshaded description. For the remainder of this section, we will therefore consider the

corresponding unshaded TL planar algebra (T𝑛)𝑛∈N0 where we ignore the shading on both vectors and

tangles. For brevity, we omit the ‘unshaded’ qualifier and refer to this planar algebra as TL.

5.1.2 Presentation

For each 𝑛 ∈ N, the TL algebra TL𝑛 (𝛿) is defined by endowing the vector space T𝑛 with the multiplica-

tion induced by the unshaded planar tangle 𝑀𝑛 following from (2.26). We note that the TL algebra is

both unital (with unit denoted by 1) and associative, and that it is a ∗-algebra with involution inherited

from the TL planar algebra. As is well-known [15], the generators of TL𝑛 (𝛿) can be expressed

diagrammatically as

1 ↔ . . .

1 𝑛

, 𝑒𝑖 ↔ . . . . . .

1 𝑖 𝑖+1 𝑛

(𝑖 = 1, . . . , 𝑛−1). (5.6)

The TL algebra TL𝑛 (𝛿) admits a presentation

TL𝑛 (𝛿) � ⟨𝑒1, . . . , 𝑒𝑛−1⟩, (5.7)

with the relations

𝑒2
𝑖 = 𝛿𝑒𝑖, (5.8)

𝑒 𝑗𝑒𝑖𝑒 𝑗 = 𝑒 𝑗 , |𝑖− 𝑗 | = 1, (5.9)

𝑒𝑖𝑒 𝑗 = 𝑒 𝑗𝑒𝑖, |𝑖− 𝑗 | > 1. (5.10)

For each 𝑛 ∈ N, there exists a unique w𝑛 ∈ TL𝑛 (𝛿) such that

w2
𝑛 = w𝑛, 𝑒𝑖w𝑛 = w𝑛𝑒𝑖 = 0, 𝑖 = 1, . . . , 𝑛−1. (5.11)

We will have more to say about this Jones-Wenzl idempotent [52] in Section 6.1.4.

Let T𝑛 denote the set of all 𝛿 such that the trace form (2.34) is positive semi-definite on T𝑛, noting

that T ⊆ T𝑛 for all 𝑛 ∈ N0. For each 𝛿 ∈ T𝑛, the TL subfactor algebra TL𝑛 (𝛿) is then defined as the

quotient of TL𝑛 (𝛿) by the kernel of the trace norm. As for the corresponding planar algebras, we have

TL𝑛 (𝛿) � TL𝑛 (𝛿) for 𝛿 generic i.e. for 𝛿 > 2.
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5.1.3 Baxterisation

Relative to the canonical T2-basis {12, 𝑒}, we introduce the parameterised 𝑅-operator as

𝑅(𝑢) = 𝑟1(𝑢)12 + 𝑟𝑒 (𝑢)𝑒, 𝑢 = 𝑟1(𝑢) + 𝑟𝑒 (𝑢) , (5.12)

with 𝑟1, 𝑟𝑒 : Ω→ C.

Remark. For the 𝑅-operator to be non-specious, the functions 𝑟1 and 𝑟𝑒 are required to be nonzero

when exploring homogeneous integrability encoded by TL𝑛 (𝛿).

It is known [11], that TL𝑛 (𝛿) admits a Baxterisation of the form (5.12). Within the integrability

framework developed in Chapter 3, we have the following.

Proposition 5.1.1. The 𝑅-operator

𝑅(𝑢) = 12 +𝑢 𝑒 (5.13)

provides a homogeneous Baxterisation of TL𝑛 (𝛿), with

𝑌1(𝑢, 𝑣) = 𝑅
(𝑢 + 𝑣 + 𝛿𝑢𝑣

1−𝑢𝑣

)
, 𝑌1(𝑢, 𝑣) =

−(1−𝑢𝑣)2
(𝑢 + 𝑣 + 𝛿) (𝑢 + 𝑣 + 𝛿𝑢𝑣) 𝑅

(𝑢 + 𝑣 + 𝛿
𝑢𝑣−1

)
, (5.14)

and (for 𝑖 = 2,3)

𝑌𝑖 (𝑢, 𝑣) = 𝑌1( 1𝑢 , 𝑣), 𝑌𝑖 (𝑢, 𝑣) = 𝑌1( 1𝑢 , 𝑣). (5.15)

Proof. We first observe that the 𝑅-operator (5.13) satisfies the following crossing symmetries

𝑢 = 𝑢 1/𝑢 , 𝑢 = 𝑢 . (5.16)

The BYBEs (3.32) are satisfied by applying the crossing symmetries, observing that TL2 is a commu-

tative algebra, and noting that 𝑌1(𝑢, 𝑣) and 𝑌1(𝑢, 𝑣) are symmetric in 𝑢 and 𝑣.

Applying the crossing symmetries (5.16) for 𝑢 ≠ 0, we can express the YBEs (3.31) as

𝑢

𝑣

1 =
𝑣

𝑢

1
1/𝑢

𝑣

2 =
𝑣

1/𝑢

2
𝑣

1/𝑢

3 =
1/𝑢

𝑣

3 .

(5.17)

It follows that 𝑌 𝑖 (𝑢, 𝑣) and 𝑌𝑖 (𝑢, 𝑣) for each 𝑖 = 2,3 can be expressed in terms of 𝑌1(𝑢, 𝑣) and 𝑌1(𝑢, 𝑣)
respectively, as

𝑌2(𝑢, 𝑣) = 𝑌1( 1𝑢 , 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 1
𝑢
), 𝑌2(𝑢, 𝑣) = 𝑌1( 1𝑢 , 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 1

𝑢
). (5.18)

It remains to verify that (5.13) and (5.14) provide a solution to Inv1 (3.30) and YBE1 (3.31), see

Appendix A.1 for details. □
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Relative to the involution ·∗ on the TL algebra, the 𝑅-operator (5.13) is self-adjoint for all 𝑢 ∈ R.

Remark. We have verified that, up to a normalising factor, the generalised Yang–Baxter framework

of Proposition 3.2.2 does not admit any other non-specious solution of the form (5.12), than the one

presented in Proposition 5.1.1.

Note that by setting 𝛿 = 2cos(𝜆), and by rescaling and reparameterising the 𝑅-operator (5.13) as

𝑅(𝑢) = sin(𝜆−𝑢)12 + sin(𝑢)𝑒 = sin(𝜆−𝑢)𝑅(𝜙(𝑢)), 𝜙(𝑢) :=
sin(𝑢)

sin(𝜆−𝑢) , (5.19)

we recover the familiar Baxterisation of TL𝑛 (𝛿) presented in (2.43).

5.2 Proto-singly-generated algebra

Every subfactor planar algebra has a planar subalgebra isomorphic to the Temperley–Lieb subfactor

planar algebra, see e.g. [29]. Accordingly, 𝐴2,± of a subfactor planar algebra (𝐴𝑛,±)𝑛∈N0 contains the

two Temperley–Lieb vectors

12,± = PId2,± (), 𝑒± := PE± (), (5.20)

where

Id2,+ = , Id2,− = , E+ := , E− := , (5.21)

with Id2,± a special case of (2.27). In all but the degenerate case (see Remark after (5.28)), which

we exclude in the following, the vectors in (5.20) are linearly independent so dim 𝐴2,± ≥ 2, while the

Temperley–Lieb subfactor planar algebra itself has dim 𝐴2,± = 2.

For a singly generated subfactor planar algebra, dim 𝐴1,± = 1 and dim 𝐴2,± = 3, so 𝐴2,± has a basis

consisting of the two Temperley–Lieb vectors (5.20) and one additional vector, hence the terminology.

Moreover, the vector spaces 𝐴𝑛,± for 𝑛 > 2 are generated by the action of planar tangles on vectors in

𝐴2,±.

Remark. Although a singly generated planar algebra is a subfactor planar algebra, we are suppressing

that qualifier, in line with the convention in [29].

It follows from Section 2.5 that a singly generated planar algebra giving rise to a Yang–Baxter

integrable model can be replaced by the corresponding unshaded planar algebra. Accordingly, we will

henceforth restrict to the class of unshaded singly generated planar algebras. About these, we have the

following key result involving the proto-singly-generated planar algebra PS(𝜖) (𝛼, 𝛿) constructed in

Section 5.2.1 and Section 5.2.2 below.

Proposition 5.2.1. An unshaded singly generated planar algebra is a quotient of PS(𝜖) (𝛼, 𝛿) for some

𝜖,𝛼, 𝛿.
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Indeed, PS(𝜖) (𝛼, 𝛿) is defined in terms of relations that, for some 𝜖,𝛼, 𝛿, are satisfied by any given

unshaded singly generated planar algebra. Here, 𝛿 is the loop weight arising in

𝑒2 = 𝛿𝑒, (5.22)

where

𝑒 := PE (), E := , (5.23)

is the unshaded Temperley–Lieb generator. We note that 𝑒∗ = 𝑒.

5.2.1 Planar algebra

We now introduce a planar algebra whose vector spaces are spanned by planar tangles with labelled

disks, and where planar tangles act on these vector spaces in the natural diagrammatic way. For each

𝑛 ∈N0, let 𝑆𝑛 denote a set whose elements label disks with 2𝑛 nodes. With 𝑆 :=
⊔
𝑛∈N0 𝑆𝑛, an 𝑆-labelled

tangle is thus a planar tangle whose input disks each have been labelled by an element of 𝑆. For such a

label set 𝑆, the unshaded universal planar algebra consists of the vector spaces (𝐴𝑛 (𝑆))𝑛∈N0 where,

for each 𝑛, 𝐴𝑛 (𝑆) is spanned by all 𝑆-labelled tangles with 2𝑛 nodes on their output disk, together with

the planar-tangle action colloquially named ‘what you see is what you get’, illustrated in (5.50) below,

see also [13, 53]. We note that the elements of 𝑆 have no additional structure. Accordingly, the list of

cardinalities, |𝑆0 |, |𝑆1 |, |𝑆2 |, . . ., characterises a universal planar algebra.

A universal planar algebra is infinite-dimensional. Indeed, even if 𝑆𝑘 = ∅ for all 𝑘 ∈ N0, then

each 𝐴𝑛 (𝑆) is spanned by the corresponding set of Temperley–Lieb vectors, together with those same

vectors but with all possible combinations of closed loops. To tame the dimensionality of a universal

planar algebra, relations are imposed on (𝐴𝑛 (𝑆))𝑛∈N0 . For any set 𝐶 of vectors in (𝐴𝑛 (𝑆))𝑛∈N0 , we

thus let 𝐼 (𝐶) denote the planar ideal generated by 𝐶, and (𝐴𝑛 (𝑆,𝐶))𝑛∈N0 the corresponding quotient

planar algebra.

We refer to a (universal) quotient planar algebra (𝐴𝑛 (𝑆,𝐶))𝑛∈N0 as a proto-singly-generated (PSG)

planar algebra if 𝑆 and 𝐶 satisfy

dim 𝐴0(𝑆,𝐶) = dim 𝐴1(𝑆,𝐶) = 1, dim 𝐴2(𝑆,𝐶) = 3, |𝑆𝑛 | = 𝛿𝑛,2, (5.24)

and such that 𝐴0(𝑆,𝐶), 𝐴1(𝑆,𝐶), and 𝐴2(𝑆,𝐶) are as in an unshaded singly generated planar algebra.

Accordingly, these vector spaces are (i) ‘spherical’: satisfying (2.23) for 𝑛 = 0,1,2; (ii) ‘involutive’:

closed under ·∗, satisfying (2.30) for all planar tangles 𝑇 with 𝜂(𝐷) ∈ {0,2,4} for all 𝐷 ∈ D𝑇 ∪ {𝐷𝑇0 };
and (iii) ‘positive-definite’: the trace form (2.34) being positive-definite for 𝑛 = 0,1,2. The PSG planar

algebra is otherwise generated by the action of the planar tangles, with no further relations imposed.

Remark. A PSG planar algebra is not evaluable (since dim 𝐴𝑛 (𝑆,𝐶) =∞ for 𝑛 > 2) nor necessarily

having a positive-definite trace form for each 𝑛. It follows that additional structure must be imposed

on 𝐴𝑛 (𝑆,𝐶) for 𝑛 > 2 to obtain a singly generated planar algebra.

Since 𝐴1(𝑆,𝐶) is positive-definite, we have

0 < P′tr1 (1
∗
111) = 𝛿. (5.25)
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With that, the positive-definiteness of 𝐴2(𝑆,𝐶) similarly implies that

0 < P′tr2

(
[12− 1

𝛿
𝑒]∗ [12− 1

𝛿
𝑒]

)
= 𝛿2−1, (5.26)

from which it then follows that

𝛿 > 1. (5.27)

The evaluations in (5.25) and (5.26) involve the Jones-Wenzl idempotent 𝜔𝑛 [52] for 𝑛 = 1 and 𝑛 = 2,

respectively. For general 𝑛 ∈ N, we have 𝜔∗𝑛 = 𝜔𝑛 and

P′tr𝑛 (𝜔
∗
𝑛𝜔𝑛) = P′tr𝑛 (𝜔𝑛) =𝑈𝑛

(
𝛿
2
)
=

𝑛∏
𝑘=1

(
𝛿−2cos

𝑘𝜋

𝑛+1

)
, (5.28)

where𝑈𝑛 is the 𝑛th Chebyshev polynomial of the second kind.

Remark. If 𝐴2(𝑆,𝐶) is positive semi-definite for a given value of 𝛿, then one obtains a well-defined

subfactor planar algebra by quotienting out the ideal generated by all the vectors 𝑎 ∈ 𝐴2(𝑆,𝐶) for which

P′tr2
(𝑎∗𝑎) = 0. In the degenerate case 𝛿 = 1, for example, the Temperley–Lieb planar subalgebra is

trivialised by quotienting out the ideal generated by 12− 1
𝛿
𝑒 appearing in (5.26), whereby dim 𝐴2(𝑆,𝐶)

reduces to 2, c.f. (5.24).

The conditions 𝐶 are determined in Section 5.2.2 below, where we find that the PSG planar algebra

is unique, up to the specification of parameters, including the loop weight 𝛿. From here onward, we

accordingly opt for the abridged notation PS𝑛 ≡ 𝐴𝑛 (𝑆,𝐶), 𝑛 ∈ N0, with 𝑆 and 𝐶 as above.

5.2.2 Defining relations

Here, we determine the relations satisfied by the vectors in a distinguished PS2-basis of the form

{12, 𝑒, 𝑠}. Taking inspiration from the classification approach in [39], selecting 𝑠 as conveniently as

possible is key in the following. For later convenience, we establish the result below.

Lemma 5.2.2. Let (𝐴𝑛,±)𝑛∈N0 be a subfactor planar algebra and {𝑝1, . . . , 𝑝𝑘 } a basis for 𝐴𝑛,± for some

𝑛 and shading +/−, and suppose {𝑝1, . . . , 𝑝𝑘 } is a complete set of mutually orthogonal idempotents.

Then, P′tr𝑛,± (𝑝𝑖) > 0 and 𝑝∗
𝑖
= 𝑝𝑖 for all 𝑖 = 1, . . . , 𝑘 .

Proof. By construction,

𝑝∗𝑖 =
𝑘∑︁
𝑗=1
𝑐𝑖 𝑗 𝑝 𝑗 , 𝑖 = 1, . . . , 𝑘, (5.29)

for some scalars 𝑐𝑖 𝑗 , where, by (2.32),

𝑐𝑖 𝑗 ∈ {0,1}, ∀ 𝑖, 𝑗 ∈ {1, . . . , 𝑘}, (5.30)

while the positive-definiteness implies that

0 < P′tr𝑛,± (𝑝
∗
𝑖 𝑝𝑖) = 𝑐𝑖𝑖P′tr𝑛,± (𝑝𝑖), 𝑖 = 1, . . . , 𝑘, (5.31)
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so 𝑐11 = · · · = 𝑐𝑘𝑘 = 1 and

P′tr𝑛,± (𝑝𝑖) > 0, 𝑖 = 1, . . . , 𝑘 . (5.32)

From

0 = 1∗𝑛,±−1𝑛,± =
𝑘∑︁

𝑖, 𝑗=1
𝑐𝑖 𝑗 𝑝 𝑗 −

𝑘∑︁
𝑗=1

𝑝 𝑗 , (5.33)

it then follows that 𝑐𝑖 𝑗 = 𝛿𝑖 𝑗 , hence 𝑝∗
𝑖
= 𝑝𝑖 for all 𝑖 = 1, . . . , 𝑘 . □

First, let PS2 be endowed with the multiplication induced by the unshaded companion to (2.26).

Since dimPS0 = 1, the idempotent P0 := 1
𝛿
𝑒 satisfies dim(P0PS2P0) = 1 and is therefore primitive. By

assumption, PS2 is positive-definite, hence semisimple, and because {12,P0} ⊂ PS2 and dimPS1 = 1, it

follows that PS2 is commutative, see e.g. [23]. The set {P0} ⊂ PS2 can thus be extended to a PS2-basis,

{P0,P1,P2}, consisting of a complete set of mutually orthogonal (and primitive) idempotents, where

we note that

𝛿2 = P′tr2 (12) = 1+P′tr2 (P1) +P′tr2 (P2). (5.34)

By Lemma 5.2.2, the positive-definiteness of PS2 implies that

0 < P′tr2 (P
∗
ℓPℓ) = P′tr2 (Pℓ), ℓ = 1,2. (5.35)

We now introduce

𝑠 := 𝑝1P1 + 𝑝2P2, (5.36)

where 𝑝1, 𝑝2 ∈ C, and for {12, 𝑒, 𝑠} to be a basis for PS2, it must hold that 𝑝1 ≠ 𝑝2. It follows that

𝑒𝑠 = 0 = 𝑠𝑒, 𝑠2 = (𝑝1 + 𝑝2)𝑠− 𝑝1𝑝2
(
12− 1

𝛿
𝑒
)
, (5.37)

hence P2
𝑟4,1 (𝑠)𝑒 = 0, and that

Ptr2 (𝑠) = 𝑝1Ptr2 (P1) + 𝑝2Ptr2 (P2). (5.38)

For convenience, we choose 𝑝1, 𝑝2 such that

Ptr2 (𝑠) = 0, (5.39)

noting that (5.35) then ensures that 𝑝1 ≠ 𝑝2 (as required) and implies that 𝑝1, 𝑝2 ≠ 0. Without loss of

generality, we may further choose the normalisation of 𝑠 such that 𝑝1𝑝2 = −1, thereby obtaining

𝑠2 = 12− 1
𝛿
𝑒 +𝛼𝑠, (5.40)

where 𝛼 := 𝑝1 + 𝑝2, noting that 𝛼 can take any value in C \ {−2i,2i}.
By construction

P𝑟4,1 (𝑠) = 𝜖112 + 𝜖𝑒𝑒 + 𝜖 𝑠, (5.41)
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for some 𝜖1, 𝜖𝑠, 𝜖 ∈ C, while (5.39) implies that

P𝑟4,1 (𝑠)𝑒 = 0 (5.42)

(since 𝛿 ≠ 0) and, by sphericality, that P3
𝑟4,1 (𝑠)𝑒 = 0. Using P4

𝑟4,1 = id and 𝛿2 ≠ 1, it follows that

𝜖1 = 𝜖𝑒 = 0, 𝜖4 = 1. (5.43)

Subsequently, recalling that P𝑟4,2 = P2
𝑟4,1 , the relations P𝑟4,2 (12) = 12 and P𝑟4,2 (𝑒) = 𝑒 imply that

0 = P𝑟4,2 (𝑠2) −P𝑟4,2 (𝑠)P𝑟4,2 (𝑠) = 𝛼(𝜖2−1)𝑠, (5.44)

so we must have 𝛼 = 0 if 𝜖2 = −1. This requirement may be implemented by setting

𝛼 = (1+ 𝜖2)𝛼̂, (5.45)

where 𝛼̂ ∈ C \ {−i, i}.
Under the conjugate-linear involution ·∗, we have

1∗2 = 12, 𝑒∗ = 𝑒, 𝑠∗ =
𝑝1𝑝2− 𝑝1𝑝2
𝑝1− 𝑝2

(
12− 1

𝛿
𝑒
)
+ 𝑝1− 𝑝2
𝑝1− 𝑝2

𝑠, (5.46)

where 𝑝 denotes the complex conjugate to the scalar 𝑝. Using 𝑝1𝑝2 = −1, it follows that, for 𝛼 ∈ R,

we have 𝑝1, 𝑝2 ∈ R, hence 𝑠∗ = 𝑠.

Expressing 𝑠 diagrammatically as

𝑠 = , (5.47)

the analysis above implies that

= − 1
𝛿

+𝛼 , = 𝜖 , 𝜖 ∈ {−1,1,−i, i}. (5.48)

For each (𝛼, 𝜖) and 𝛿 > 1, where (𝛼, 𝜖) ∈
(
C \ {−2i,2i}

)
× {−1,1} or (𝛼, 𝜖) ∈ {0} × {−i, i}, we thus

have a PSG planar algebra (PS𝑛)𝑛∈N0 , where a basis for PS2 is given diagrammatically by

𝐵2 =
{

, ,

}
. (5.49)

To illustrate the corresponding action of planar tangles, we have

𝑇 =

3

1
2 , P𝑇

(
, ,

)
= = 𝛿 . (5.50)

We note that the conditions

Pℓ𝑟4,1 (𝑠)𝑒 = 0, ℓ = 0,1,2,3, (5.51)

where P0
𝑟4,1 is the identity map on PS2, correspond to the diagrammatic relations
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= = = = 0. (5.52)

In fact, this ‘uncapability’ of 𝑠 was a motivating factor behind imposing (5.39). Moreover, the

tracelessness of 𝑠 allows us to represent the trace-form inner product relative to the ordered basis

{12, 𝑒, 𝑠} as ©­­­«
𝛿2 𝛿 0
𝛿 𝛿2 0
0 0 𝛿2−1

ª®®®¬ , (5.53)

confirming the positive-definiteness of PS2 for 𝛿 > 1, c.f. (5.27).

To summarise, the PSG planar algebra PS(𝜖) (𝛼, 𝛿) is the quotient planar algebra (𝐴𝑛 (𝑆,𝐶 (𝜖) (𝛼, 𝛿)))𝑛∈N0 ,

where

𝑆 =
⊔
𝑛∈N0

𝑆𝑛, 𝑆2 = { }, 𝑆𝑘 = ∅, ∀𝑘 ≠ 2, (5.54)

and

𝐶 (𝜖) (𝛼, 𝛿) =
{

− 𝛿 , , − 𝜖 , − + 1
𝛿

−𝛼
}
, (5.55)

with 𝛿 > 1, and (𝛼, 𝜖) ∈
(
C \ {−2i,2i}

)
× {−1,1} or (𝛼, 𝜖) ∈ {0} × {−i, i}.

With the parameters as above, PS(𝜖) (𝛼, 𝛿) is the unique planar algebra satisfying the conditions

outlined in the paragraph containing (5.24). It follows that any unshaded singly generated planar

algebra can be obtained by specialising the parameters 𝜖,𝛼, 𝛿 and by taking a quotient in such a way

that each PS𝑛, 𝑛 ∈ {3,4, . . .}, is spherical, involutive and positive-definite. These observations conclude

the proof of Proposition 5.2.1.

5.2.3 Presentation

We proceed to describe the algebra that arises when endowing the vector space PS𝑛 with the mul-

tiplication induced by the unshaded companion to (2.26). For each 𝑛 ∈ N, 𝛿 > 1, and each pair

(𝛼, 𝜖) ∈
(
C \ {−2i,2i}

)
× {−1,1} or (𝛼, 𝜖) ∈ {0} × {−i, i}, the PSG algebra PS(𝜖)𝑛 (𝛼, 𝛿) is thus defined

as the unital associative algebra ⟨𝑒𝑖, 𝑠𝑖 | 𝑖 = 1, . . . , 𝑛−1⟩ subject to the relations

𝑠2
𝑖
= 1− 1

𝛿
𝑒𝑖 +𝛼𝑠𝑖, 𝑒𝑖𝑠𝑖 = 𝑠𝑖𝑒𝑖 = 0, 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖, |𝑖− 𝑗 | > 1,

𝑒𝑖𝑒𝑖±1𝑒𝑖 = 𝑒𝑖, 𝑒𝑖𝑒𝑖±1𝑠𝑖 = 𝜖
±1𝑒𝑖𝑠𝑖±1, 𝑠𝑖𝑒𝑖±1𝑒𝑖 = 𝜖

∓1𝑠𝑖±1𝑒𝑖,
(5.56)

with 1 denoting the unit. Following from (5.56), we also have the relations

𝑒2
𝑖 = 𝛿𝑒𝑖, 𝑒𝑖𝑒 𝑗 = 𝑒 𝑗𝑒𝑖, 𝑒𝑖𝑠 𝑗 = 𝑠 𝑗𝑒𝑖, |𝑖− 𝑗 | > 1, (5.57)

𝑒𝑖𝑠𝑖±1𝑠𝑖 = 𝑒𝑖
(
𝜖∓1(𝑒𝑖±1− 1

𝛿
1) +𝛼𝑠𝑖±1

)
, 𝑠𝑖𝑠𝑖±1𝑒𝑖 =

(
𝜖±1(𝑒𝑖±1− 1

𝛿
1) +𝛼𝑠𝑖±1

)
𝑒𝑖, (5.58)

and

𝑒𝑖𝑠𝑖±1𝑒𝑖 = 0, 𝑠𝑖𝑒𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑒𝑖𝑠𝑖+1. (5.59)

We note that it suffices to list one of the two relations 𝑒𝑖𝑠𝑖 = 0 or 𝑠𝑖𝑒𝑖 = 0 in (5.56).
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The generators of PS(𝜖)𝑛 (𝛼, 𝛿) are represented diagrammatically as

1 ↔ . . .

1 𝑛

, 𝑒𝑖 ↔ . . . . . .

1 𝑖 𝑖+1 𝑛

, 𝑠𝑖 ↔ . . . . . .

1 𝑖 𝑖+1 𝑛

, (5.60)

with the marked boundary interval linking the two horizontal edges via an invisible arc on the left.

Multiplication is then implemented by vertical concatenation, where the diagram representing the

product 𝑎𝑏 is obtained by placing the diagram representing 𝑏 atop the one representing 𝑎.

Remark. The PSG planar algebra ‘includes’ the PSG algebras but not the other way around. A planar

algebra (𝐴𝑛)𝑛∈N0 offers a consistent way to define operations that are not accessible to the individual

algebras 𝐴𝑛 themselves, such as (unshaded versions of) the traces (2.21) and rotations (3.11).

We stress that there are no non-trivial relations involving 𝑠𝑖𝑠𝑖±1𝑠𝑖 without also involving terms with

four or more 𝑠-factors. Accordingly, for 𝑛 = 3, there are infinitely many linearly independent vectors

of the form (𝑠1𝑠2)𝑘 , hence dimPS3 =∞, manifesting the non-evaluability of the planar algebra.

5.2.4 Baxterisability

Concerning the notion of homogeneous Yang–Baxter integrability outlined in Section 3.2, including the

definition of homogeneous double- and single-row transfer operators and non-specious Baxterisations,

we have the following result.

Proposition 5.2.3. Singly generated planar algebras that encode homogeneous Yang–Baxter integrable

models on the strip or on the cylinder must be YBR.

Proof. Since singly generated planar algebras that do not admit an unshaded description cannot encode

a homogeneous Yang–Baxter integrable model within our algebraic integrability framework (see

Section 2.5), Proposition 5.2.1 allows us to focus on the PSG planar algebra and its quotients. It thus

suffices to show that if one does not impose conditions turning the PSG planar algebra into a YBR

planar algebra, then there exist no 𝑅- and 𝑌 -operators such that (i) the YBE

𝑢

𝑣

=
𝑣

𝑢

(5.61)

is satisfied, and (ii) the 𝑌 -operator is ‘horizontally invertible’, i.e. it satisfies (3.30) with some

companion element of 𝐴2. Note that we have selected (i) and (ii) as they are common to the sets of

homogeneous Yang–Baxter integrability sufficient conditions for models on the cylinder (Proposition

3.2.1) and models on the strip (Proposition 3.2.2).

Relative to the 𝐴2-basis {12, 𝑒, 𝑠}, we introduce

𝑅(𝑢) = 𝑟1(𝑢)12 + 𝑟𝑒 (𝑢)𝑒 + 𝑟𝑠 (𝑢)𝑠, 𝑌 (𝑢, 𝑣) = 𝑦1(𝑢, 𝑣)12 + 𝑦𝑒 (𝑢, 𝑣)𝑒 + 𝑦𝑠 (𝑢, 𝑣)𝑠, (5.62)
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which can be expressed diagrammatically as

𝑢 = 𝑟1(𝑢) + 𝑟𝑒 (𝑢) + 𝑟𝑠 (𝑢) , = 𝑦1(𝑢, 𝑣) + 𝑦𝑒 (𝑢, 𝑣) + 𝑦𝑠 (𝑢, 𝑣) ,

(5.63)

where 𝑟1, 𝑟𝑒, 𝑟𝑠 : Ω→ C and 𝑦1, 𝑦𝑒, 𝑦𝑠 : Ω×Ω→ C.

Remark. If 𝑟𝑠 is the zero function, then the attempted Baxterisation is, in fact, encoded by the

Temperley–Lieb planar algebra, and not by a singly generated planar algebra, hence it is not of

relevance here.

From (5.61), we get

0 =

𝑣

𝑢

−
𝑢

𝑣

=

{[
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝑟1(𝑢)𝑟1(𝑣) + 𝛿𝑟1(𝑢)𝑟𝑒 (𝑣) − 1

𝛿𝜖
𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦1(𝑢, 𝑣)

−
[
𝑟𝑒 (𝑢)𝑟1(𝑣) − 𝑟1(𝑢)𝑟𝑒 (𝑣)

]
𝑦𝑒 (𝑢, 𝑣) − 1

𝛿

[
𝜖 𝑟1(𝑢)𝑟𝑠 (𝑣) + 1

𝜖2 𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)
]
𝑦𝑠 (𝑢, 𝑣)

}
(𝑒1− 𝑒2)

+
{[
𝑟𝑒 (𝑢)𝑟𝑠 (𝑣) + 1

𝜖
𝑟𝑠 (𝑢)𝑟1(𝑣) + 𝛼𝜖 𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦1(𝑢, 𝑣) − 𝑟𝑒 (𝑢)𝑟1(𝑣)𝑦𝑠 (𝑢, 𝑣)

}
(𝑠1− 𝑠2)

+
{[
𝑟𝑒 (𝑢)𝑟𝑠 (𝑣) − 𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)

]
𝑦𝑒 (𝑢, 𝑣) −

[
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝛼𝜖 𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)

]
𝑦𝑠 (𝑢, 𝑣)

}
(𝑠1𝑒2− 𝑒1𝑠2)

+
{

1
𝜖

[
𝑟1(𝑢)𝑟𝑠 (𝑣) − 𝑟𝑠 (𝑢)𝑟1(𝑣)

]
𝑦𝑒 (𝑢, 𝑣) +

[
𝑟1(𝑢)𝑟1(𝑣) +𝛼𝑟1(𝑢)𝑟𝑠 (𝑣)

]
𝑦𝑠 (𝑢, 𝑣)

}
(𝑠2𝑒1− 𝑒2𝑠1)

+
{ 1
𝜖
𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)𝑦𝑠 (𝑢, 𝑣)

}
(𝑠1𝑠2𝑠1− 𝑠2𝑠1𝑠2), (5.64)

where

𝑒1 = , 𝑠1 = , 𝑒2 = , 𝑠2 = . (5.65)

First, suppose (𝑠1𝑠2𝑠1− 𝑠2𝑠1𝑠2) is linearly independent of the other algebra elements in (5.64). Then,

for the corresponding term to vanish, 𝑟𝑠 or 𝑦𝑠 must be zero, with the observation following (5.63)

subsequently implying that the function 𝑦𝑠 must be zero. As 𝑟𝑠 ≠ 0 and 𝑦𝑠 = 0, the the vanishing of the

(𝑠1𝑒2− 𝑒1𝑠2)-term and the (𝑠2𝑒1− 𝑒2𝑠1)-term in (5.64) implies that[
𝑟𝑒 (𝑢)𝑟𝑠 (𝑣) − 𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)

]
𝑦𝑒 (𝑢, 𝑣) = 0 and

[
𝑟1(𝑢)𝑟𝑠 (𝑣) − 𝑟𝑠 (𝑢)𝑟1(𝑣)

]
𝑦𝑒 (𝑢, 𝑣) = 0. (5.66)

Since 𝑦𝑠 = 0, the horizontal invertibility of the 𝑌 -operator implies that 𝑦𝑒 ≠ 0, so

𝑟𝑒 (𝑢)
𝑟𝑠 (𝑢)

=
𝑟𝑒 (𝑣)
𝑟𝑠 (𝑣)

and
𝑟1(𝑢)
𝑟𝑠 (𝑢)

=
𝑟1(𝑣)
𝑟𝑠 (𝑣)

, (5.67)

correspond to two 𝑢, 𝑣-independent constants. It follows that the 𝑅-operator is of the form in (3.36), so

the Baxterisation is specious.

Finally, if (𝑠1𝑠2𝑠1− 𝑠2𝑠1𝑠2) can be expressed as a linear combination of other terms in (5.64), then

we are in a quotient of the PSG planar algebra that is YBR. □
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Section 5.3, Section 5.4, and Section 5.5 offer concrete examples of YBR planar algebras encoding

homogeneous Yang–Baxter integrability, thereby establishing the existence of planar algebras satisfying

the necessary condition provided by Proposition 5.2.3. Indeed, we use Liu’s classification in Theorem

5.2.4 below to show that, for every singly generated YBR planar algebra, there exists a corresponding

homogeneous Baxterisation, which gives rise to a homogeneous Yang–Baxter integrable model on the

strip and on the cylinder.

Theorem 5.2.4 (Liu [39]). A singly generated YBR planar algebra is isomorphic to a quotient of an

FC, BMW, or Liu planar algebra.

The planar algebras listed in Theorem 5.2.4 are recalled in Section 5.3, Section 5.4, and Section 5.5,

respectively. In Section 5.6, we supplement these findings by showing that each model defined on the

strip is also polynomially integrable. Theorem 5.0.1 and Theorem 5.0.2 summarise these key findings.

Remark. If the FC, BMW, or Liu planar algebra in Theorem 5.2.4 is positive semi-definite, then

its quotient by the kernel of the trace norm (that is, the quotient by the ideal generated by all 𝑣 for

which Ptr𝑛 (𝑣∗𝑣) = 0 for some 𝑛) is isomorphic to the corresponding YBR planar algebra. However, to

keep dim 𝐴2(𝑆,𝐶) = 3 in (5.24), we will only apply this quotient operation for 𝑛 > 2, c.f. the Remark

following (5.28).

5.3 Fuss–Catalan algebra

5.3.1 Planar algebra

Let 𝐹 (𝑘)𝑛,± denote the complex vector space spanned by disks with 2𝑘𝑛 nodes such that (i) each node is

labelled by one of the 𝑘 colours 𝑐1, . . . , 𝑐𝑘 , (ii) clockwise from the marked interval, nodes are assigned

colours according to

(𝑐1, . . . , 𝑐𝑘 ), (𝑐𝑘 , . . . , 𝑐1), (𝑐1, . . . , 𝑐𝑘 ), . . . , (𝑐𝑘 , . . . , 𝑐1)︸                                                                ︷︷                                                                ︸
#(...)=2𝑛

for disks in 𝐹 (𝑘)𝑛,+ , (5.68)

(𝑐𝑘 , . . . , 𝑐1), (𝑐1, . . . , 𝑐𝑘 ), (𝑐𝑘 , . . . , 𝑐1), . . . , (𝑐1, . . . , 𝑐𝑘 )︸                                                                ︷︷                                                                ︸
#(...)=2𝑛

for disks in 𝐹 (𝑘)𝑛,− , (5.69)

and (iii) every node is connected to another node with the same colour, using a non-intersecting loop

segment defined up to ambient isotopy. Examples of such Fuss–Catalan disks are

𝑐1
𝑐2
𝑐3

𝑐1
𝑐2

𝑐3

𝑐1
𝑐2

𝑐3

𝑐1
𝑐2
𝑐3

,
𝑐1
𝑐2
𝑐3

𝑐1
𝑐2

𝑐3

𝑐1
𝑐2

𝑐3

𝑐1
𝑐2
𝑐3

∈ 𝐹 (3)2,+ ,
𝑐2
𝑐1

𝑐2𝑐1

𝑐1
𝑐2

𝑐1
𝑐2

𝑐1 𝑐2

𝑐2
𝑐1

,

𝑐2
𝑐1

𝑐2𝑐1

𝑐1
𝑐2

𝑐1
𝑐2

𝑐1 𝑐2

𝑐2
𝑐1

∈ 𝐹 (2)3,− . (5.70)

The vector-space dimensions are given by Fuss–Catalan numbers, as

dim𝐹
(𝑘)
𝑛,± =

1
𝑘𝑛+1

(
𝑘𝑛+𝑛
𝑛

)
. (5.71)
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The 𝑘-coloured Fuss–Catalan planar algebra FC(𝑘) (𝛾1, . . . , 𝛾𝑘 ) is the collection of vector spaces

(𝐹 (𝑘)𝑛,± )𝑛∈N0 together with the following action of shaded planar tangles [23]: (i) for each string within a

shaded planar tangle, draw 𝑘 −1 parallel strings in the adjacent unshaded region and assign each a

label 𝑐𝑘 . . . , 𝑐1 starting from the original string (for 𝑘 > 1, the tangle shading is thus encoded in the

string labels and can thereafter be omitted), (ii) if a loop is formed with the colour 𝑐𝑙 , it is removed

and replaced by the scalar weight 𝛾𝑙 , and (iii) the output vector is given by the output disk with the

given colour labels and ensuing string connections. To illustrate, we have

𝑇 =

1

2

, P𝑇
(

,
)
= = 𝛾1 , (5.72)

where 𝑐1 and 𝑐2 correspond to the colours cyan and black, respectively. If 𝛾1 = · · · = 𝛾𝑚, then the colours

of the strings are immaterial and the corresponding planar algebra admits an unshaded description.

As we are concerned with unshaded singly generated planar algebras, we denote by FC(𝛾) the

unshaded planar algebra corresponding to FC(2) (𝛾, 𝛾), and refer to it simply as Fuss–Catalan (FC).

From [54], we know that FC(𝛾) is spherical and involutive, with the involution ·∗ defined as the

conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked

boundary interval.

Let F denote the set of all 𝛾 such that FC(𝛾) is positive semi-definite. For each 𝛾 ∈ F , the FC

subfactor planar algebra FC(𝛾) is then defined as the quotient of FC(𝛾) by the kernel of the trace

norm. Details of the set F are presented in [54], including { 2cos
(
𝜋
𝑘

)
| 𝑘 = 3,4, . . .} ⊂ F . For 𝛾 in that

discrete subset, FC(𝛾) is positive semi-definite, while for 𝛾 > 2, FC(𝛾) is positive-definite, in which

case FC(𝛾) � FC(𝛾).

5.3.2 Presentation

For each 𝑛 ∈ N, the FC algebra FC𝑛 (𝛾) is defined by endowing the (unshaded) vector space 𝐹 (2)𝑛 with

the multiplication induced by the unshaded planar tangle 𝑀𝑛 following from (2.26). We note that

the FC algebra is both unital (with unit denoted by 1) and associative, and that it is a ∗-algebra with

involution inherited from the FC planar algebra. Using a diagrammatic representation similar to the

one in (5.60), FC𝑛 (𝛾) is generated by the following algebra elements:

1↔ . . .

1 𝑛

, 𝑃𝑖↔ . . . . . .

1 𝑖 𝑖+1 𝑛

, 𝐸𝑖↔ . . . . . .

1 𝑖 𝑖+1 𝑛

(5.73)

where each label below a diagram labels a pair of string endpoints.

For 𝛾 ≠ 0, the FC algebra admits [54] a presentation

FC𝑛 (𝛾) � ⟨𝐸𝑖, 𝑃𝑖 | 𝑖 = 1, . . . , 𝑛−1⟩, (5.74)
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with relations

𝐸2
𝑖
= 𝛾2𝐸𝑖, 𝑃𝑖𝐸𝑖 = 𝐸𝑖𝑃𝑖 = 𝛾𝐸𝑖, 𝑃2

𝑖
= 𝛾𝑃𝑖,

𝐸𝑖𝐸𝑖±1𝐸𝑖 = 𝐸𝑖, 𝑃𝑖𝐸𝑖±1𝑃𝑖 = 𝑃𝑖𝑃𝑖±1 = 𝑃𝑖±1𝑃𝑖, 𝐸𝑖𝑃𝑖±1𝐸𝑖 = 𝛾𝐸𝑖,

𝐸𝑖𝐸 𝑗 = 𝐸 𝑗𝐸𝑖, 𝐸𝑖𝑃 𝑗 = 𝑃 𝑗𝐸𝑖, 𝑃𝑖𝑃 𝑗 = 𝑃 𝑗𝑃𝑖, |𝑖− 𝑗 | > 1.

(5.75)

Following from (5.75), we also have the relations

𝑃𝑖𝑃𝑖±1𝐸𝑖 = 𝛾𝑃𝑖±1𝐸𝑖, 𝐸𝑖𝑃𝑖±1𝑃𝑖 = 𝛾𝐸𝑖𝑃𝑖±1, 𝑃𝑖𝑃𝑖±1𝑃𝑖 = 𝛾𝑃𝑖𝑃𝑖±1, (5.76)

and

𝐸𝑖𝐸𝑖±1𝑃𝑖 = 𝐸𝑖𝑃𝑖±1, 𝑃𝑖𝐸𝑖±1𝐸𝑖 = 𝑃𝑖±1𝐸𝑖 . (5.77)

For 𝛾 = 0, the relations (5.75), (5.76) and (5.77) still hold, but the relations in (5.77) do not all follow

from the relations in (5.75), and should be imposed separately.

Remark. The Temperley–Lieb subalgebra ⟨𝐸1, . . . , 𝐸𝑛−1⟩ ⊂ FC𝑛 (𝛾) has loop fugacity 𝛿 = 𝛾2.

We let F𝑛 denote the set of all 𝛾 such that the trace form (2.34) is positive semi-definite on 𝐹 (2)𝑛 ,

noting that F ⊆ F𝑛 for all 𝑛 ∈ N0. For each 𝛾 ∈ F𝑛, FC𝑛 (𝛾) is then defined as the quotient of FC𝑛 (𝛾)
by the kernel of the trace norm. As for the corresponding planar algebras, we have FC𝑛 (𝛾) � FC𝑛 (𝛾)
for 𝛾 generic i.e. for 𝛾 > 2.

5.3.3 Quotient description

Proposition 5.3.1. For 𝛾2 > 1 and each 𝜇 ∈ {−1,1}, we have

FC𝑛 (𝛾) � PS(1)𝑛 (𝜇(𝛾−𝛾−1), 𝛾2)
/〈
𝜄𝑖, 𝑗 | |𝑖− 𝑗 | = 1; 𝑖, 𝑗 ∈ {1, . . . , 𝑛−1}

〉
, (5.78)

where

𝜄𝑖, 𝑗 = 𝑠𝑖𝑒 𝑗 𝑠𝑖 − 𝑠𝑖𝑠 𝑗 + 𝑠 𝑗𝑒𝑖 + 𝑒 𝑗 𝑠𝑖 + 𝑒 𝑗𝑒𝑖 − 𝑠𝑖 − 𝑠 𝑗 −1, (5.79)

with 𝑠𝑖 = 𝜇𝛾𝑠𝑖.

Proof. The proposed algebra isomorphism sets

𝐸𝑖 = 𝑒𝑖, 𝑃𝑖 =
1

𝛾 +𝛾−1
(
1+ 𝑒𝑖 + 𝑠𝑖

)
, (5.80)

or equivalently,

𝑒𝑖 = 𝐸𝑖, 𝑠𝑖 = −1−𝐸𝑖 + (𝛾 +𝛾−1)𝑃𝑖 . (5.81)

With this, one verifies that the relations (5.75) imply the relations (5.56) and the vanishing of (5.79),

and that the relations (5.56) together with the vanishing of (5.79) imply the relations (5.75). □

Remark. By renormalising the 𝑃𝑖 generators, introducing 𝑃̂𝑖 := 𝑃𝑖/𝛾, the relations (5.75)–(5.77) only

depend on the loop weight through 𝛿 = 𝛾2, as we then have

𝐸2
𝑖
= 𝛿𝐸𝑖, 𝑃̂𝑖𝐸𝑖 = 𝐸𝑖 𝑃̂𝑖 = 𝐸𝑖, 𝑃̂2

𝑖
= 𝑃̂𝑖,

𝐸𝑖𝐸𝑖±1𝐸𝑖 = 𝐸𝑖, 𝑃̂𝑖𝐸𝑖±1𝑃̂𝑖 = 𝑃̂𝑖 𝑃̂𝑖±1 = 𝑃̂𝑖±1𝑃̂𝑖, 𝐸𝑖 𝑃̂𝑖±1𝐸𝑖 = 𝐸𝑖,

𝐸𝑖𝐸 𝑗 = 𝐸 𝑗𝐸𝑖, 𝐸𝑖 𝑃̂ 𝑗 = 𝑃̂ 𝑗𝐸𝑖, 𝑃̂𝑖 𝑃̂ 𝑗 = 𝑃̂ 𝑗 𝑃̂𝑖, |𝑖− 𝑗 | > 1,

(5.82)
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and

𝑃̂𝑖 𝑃̂𝑖±1𝐸𝑖 = 𝑃̂𝑖±1𝐸𝑖, 𝐸𝑖 𝑃̂𝑖±1𝑃̂𝑖 = 𝐸𝑖 𝑃̂𝑖±1, 𝑃̂𝑖 𝑃̂𝑖±1𝑃̂𝑖 = 𝑃̂𝑖 𝑃̂𝑖±1, (5.83)

𝐸𝑖𝐸𝑖±1𝑃̂𝑖 = 𝐸𝑖 𝑃̂𝑖±1, 𝑃̂𝑖𝐸𝑖±1𝐸𝑖 = 𝑃̂𝑖±1𝐸𝑖 . (5.84)

5.3.4 Baxterisation

Relative to the canonical 𝐹 (2)2 -basis {12, 𝐸, 𝑃}, we introduce the parameterised 𝑅-operator as

𝑅(𝑢) = 𝑟1(𝑢)12 + 𝑟𝐸 (𝑢)𝐸 + 𝑟𝑃 (𝑢)𝑃, 𝑢 = 𝑟1(𝑢) + 𝑟𝐸 (𝑢) + 𝑟𝑃 (𝑢) , (5.85)

with 𝑟1, 𝑟𝐸 , 𝑟𝑃 : Ω→ C.

Remark. Although ⟨𝐸1, . . . , 𝐸𝑛−1⟩ and ⟨𝑃1, . . . , 𝑃𝑛−1⟩ are subalgebras of FC𝑛 (𝛾), the 𝑃 generators

do not form a planar subalgebra of FC(𝛾). It follows that only 𝑟𝑃 is required to be nonzero when

exploring homogeneous integrability encoded by FC𝑛 (𝛾).

It is known [55] that FC𝑛 (𝛾) admits a Baxterisation. Within the integrability framework developed in

Section 3.2, we have the following.

Proposition 5.3.2. The 𝑅-operator

𝑅(𝑢) = 12 +
𝑢(𝑢−1)
𝛿−1−𝑢𝐸 + (𝑢−1)𝑃̂, (5.86)

provides a homogeneous Baxterisation of FC𝑛 (𝛾), with

𝑌1(𝑢, 𝑣) = 𝑅(𝑢𝑣), 𝑌1(𝑢, 𝑣) = −
(𝛿−1−𝑢𝑣)2

(𝛿−1) (𝑢𝑣−1)
(
(𝛿−1)2−𝑢𝑣

) 𝑅 ( (𝛿−1)2
𝑢𝑣

)
, (5.87)

and (for 𝑖 = 2,3)

𝑌𝑖 (𝑢, 𝑣) = 𝑌1( 𝛿−1
𝑢
, 𝑣), 𝑌𝑖 (𝑢, 𝑣) = 𝑌1( 𝛿−1

𝑢
, 𝑣). (5.88)

Proof. We first observe that the 𝑅-operator (5.13) satisfies the following crossing symmetries

𝑢 =
𝑢(𝑢−1)
𝛿−1−𝑢

𝛿−1
𝑢 , 𝑢 = 𝑢 . (5.89)

The BYBEs (3.32) are satisfied by applying the crossing symmetries, observing FC2 is a commutative

algebra, and noting that 𝑌1(𝑢, 𝑣) and 𝑌1(𝑢, 𝑣) are symmetric in 𝑢 and 𝑣.

Applying the crossing symmetries (5.89) for 𝑢 ≠ 0, it follows, as in Proposition 5.1.1, that the

𝑌 -operators can be expressed as

𝑌2(𝑢, 𝑣) = 𝑌1( 𝛿−1
𝑢
, 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 𝛿−1

𝑢
), 𝑌2(𝑢, 𝑣) = 𝑌1( 𝛿−1

𝑢
, 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 𝛿−1

𝑢
).

(5.90)

It remains to verify that (5.86) and (5.87) provide a solution to Inv1 (3.30) and YBE1 (3.31), see

Appendix A.2 for details. □
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It follows from the crossing symmetries (5.89) that conditions (3.30) and (3.31) reduce to the single

inversion identity and the single standard YBE

1
𝑤

𝑤 = ,
𝑢

𝑣

𝑢𝑣 =
𝑣

𝑢

𝑢𝑣 . (5.91)

Relative to the involution ·∗ on the FC algebra, the 𝑅-operator (5.86) is self-adjoint for all 𝑢 ∈R\{𝛿−1}.

Remark. We have verified that, up to a normalising factor, the generalised Yang–Baxter framework of

Proposition 3.2.2 does not admit any other non-specious solution of the form (5.85), with 𝑟𝑃 nonzero,

than the one presented in Proposition 5.3.2.

5.4 Birman–Wenzl–Murakami algebra

5.4.1 Planar algebra

Let𝑊𝑛 denote the complex vector space spanned by disks with 2𝑛 nodes such that, within each disk,

(i) the nodes are connected pairwise by strings, defined up to regular isotopy, (ii) strings may intersect

but not self-intersect, (iii) two strings cannot intersect one another more than once, and (iv) strings

cannot form closed loops. To illustrate, we present the following examples and non-examples:

, , and , , . (5.92)

The dimension of𝑊𝑛 is given by

dim𝑊𝑛 = (2𝑛−1)!!. (5.93)

For each pair of scalars 𝜏 ≠ 0 and 𝑞 ∉ {−1,0,1}, the Birman–Wenzl–Murakami (BMW) planar

algebra BMW(𝜏, 𝑞) is the collection of vector spaces (𝑊𝑛)𝑛∈N0 together with the natural diagrammatic

action of planar tangles, defined up to regular isotopy and subject to the relations

= 𝛿 , = 𝜏 , = 𝜏−1 , (5.94)

− =𝑄

[
−

]
, (5.95)

where

𝛿 = 1+ 𝜏− 𝜏
−1

𝑄
, 𝑄 = 𝑞− 𝑞−1 (5.96)

Remark. Self-intersecting or loop-forming strings may arise as the result of a planar tangle acting on

vectors in (𝑊𝑛)𝑛∈N0 , hence the relevance of relations like (5.94).

The planar algebra BMW(𝜏, 𝑞) is spherical and, for |𝜏 | = |𝑞 | = 1 or 𝜏, 𝑞 ∈ R, involutive [31, 56]. In

these cases, the involution ·∗ is defined as the conjugate-linear map that acts by ‘reflecting’ respectively
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‘flipping’ every disk about a line perpendicular to its marked boundary interval, as indicated by

( )∗
= ,

( )∗
= ,

( )∗
=


, |𝜏 | = |𝑞 | = 1,

, 𝜏, 𝑞 ∈ R,
(5.97)

recalling that 𝑞 ≠ ±1.

We let B denote the set of all (𝜏, 𝑞) such that BMW(𝜏, 𝑞) is positive semi-definite. For each (𝜏, 𝑞) ∈
B, the BMW subfactor planar algebra BMW(𝜏, 𝑞) is then defined as the quotient of BMW(𝜏, 𝑞) by

the kernel of the trace norm. Details of the set B are presented in [31].

5.4.2 Presentation

For each 𝑛 ∈ N, the BMW algebra BMW𝑛 (𝜏, 𝑞) is defined by endowing the vector space𝑊𝑛 with the

multiplication induced by the unshaded planar tangle 𝑀𝑛 following from (2.26). We note that the BMW

algebra is both unital (with unit denoted by 1) and associative, and that, for |𝜏 | = |𝑞 | = 1 or 𝜏, 𝑞 ∈ R, it

is a ∗-algebra with involution inherited from the BMW planar algebra. As is well-known [15, 57, 58],

the generators of BMW𝑛 (𝜏, 𝑞) can be represented diagrammatically as

1↔ . . .

1 𝑛

, 𝑔𝑖↔ . . . . . .

1 𝑖 𝑖+1 𝑛

, 𝑔−1
𝑖 ↔ . . . . . .

1 𝑖 𝑖+1 𝑛

, 𝑒𝑖↔ . . . . . .

1 𝑖 𝑖+1 𝑛

. (5.98)

The algebra BMW𝑛 (𝜏, 𝑞) admits [56] a presentation

BMW𝑛 (𝜏, 𝑞) � ⟨𝑒𝑖, 𝑔𝑖, 𝑔−1
𝑖 | 𝑖 = 1, . . . , 𝑛−1⟩, (5.99)

with relations

𝑔𝑖𝑔𝑖±1𝑔𝑖 = 𝑔𝑖±1𝑔𝑖𝑔𝑖±1, 𝑔𝑖 −𝑔−1
𝑖

=𝑄(1− 𝑒𝑖),

𝑔𝑖𝑒𝑖±1𝑔𝑖 = 𝑔
−1
𝑖±1𝑒𝑖𝑔

−1
𝑖±1, 𝑔𝑖𝑒𝑖 = 𝑒𝑖𝑔𝑖 = 𝜏

−1𝑒𝑖,

𝑒𝑖𝑔𝑖±1𝑔𝑖 = 𝑔𝑖±1𝑔𝑖𝑒𝑖±1 = 𝑒𝑖𝑒𝑖±1, 𝑔𝑖𝑔 𝑗 = 𝑔 𝑗𝑔𝑖, |𝑖− 𝑗 | > 1.

(5.100)

It follows from these relations that

𝑒2
𝑖 = 𝛿𝑒𝑖, 𝑒𝑖𝑒𝑖±1𝑒𝑖 = 𝑒𝑖, 𝑔𝑖𝑒 𝑗 = 𝑒 𝑗𝑔𝑖, 𝑒𝑖𝑒 𝑗 = 𝑒 𝑗𝑒𝑖, |𝑖− 𝑗 | > 1, (5.101)

with 𝛿 as in (5.96), and that

𝑔𝑖𝑒𝑖±1𝑒𝑖 = 𝑔
−1
𝑖±1𝑒𝑖, 𝑒𝑖𝑒𝑖±1𝑔𝑖 = 𝑒𝑖𝑔

−1
𝑖±1, 𝑒𝑖𝑔𝑖±1𝑒𝑖 = 𝜏𝑒𝑖 . (5.102)

We note that it suffices to list one of the two relations 𝑔𝑖𝑒𝑖 = 𝜏−1𝑒𝑖 or 𝑒𝑖𝑔𝑖 = 𝜏−1𝑒𝑖 in (5.100).

We let B𝑛 denote the set of all (𝜏, 𝑞) such that the trace form (2.34) is positive semi-definite on𝑊𝑛,

noting that B ⊆ B𝑛 for all 𝑛 ∈ N0. For each (𝜏, 𝑞) ∈ B𝑛, the BMW subfactor algebra BMW𝑛 (𝜏, 𝑞) is

then defined as the quotient of BMW𝑛 (𝜏, 𝑞) by the kernel of the trace norm.
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5.4.3 Quotient description

Let

Γ := (𝜏2 +𝑄𝜏−1) (𝜏2 +𝑄(𝑄2 +3)𝜏−1) = (𝜏 + 𝑞) (𝜏− 𝑞−1) (𝜏 + 𝑞3) (𝜏− 𝑞−3), (5.103)

where the rewriting uses (5.96).

Proposition 5.4.1. For 𝛿 > 1, with 𝛿 parametrised as in (5.96), and for each 𝜇 ∈ {−1,1}, we have

BMW𝑛 (𝜏, 𝑞) � PS(1)𝑛
( 𝜇𝑄(𝜏2 +1)
√
Γ

,1+ 𝜏− 𝜏
−1

𝑄

)/〈
𝜄1. . . . , 𝜄𝑛−2

〉
, (5.104)

where

𝜄𝑖 = 𝑠𝑖𝑠𝑖+1𝑠𝑖 − 𝑠𝑖+1𝑠𝑖𝑠𝑖+1+𝑄2𝜏
{
(𝜏2 +1) (𝜏2 +𝑄(𝑄2 +3)𝜏−1) [𝑒𝑖 − 𝑒𝑖+1]

− (𝑄 + 𝜏) (1−𝑄𝜏) [𝑠𝑖 − 𝑠𝑖+1 + 𝑒𝑖𝑠𝑖+1− 𝑒𝑖+1𝑠𝑖 + 𝑠𝑖+1𝑒𝑖 − 𝑠𝑖𝑒𝑖+1]
}

(5.105)

with 𝑠𝑖 = 𝜇
√
Γ 𝑠𝑖.

Proof. The proposed algebra isomorphism uses the same notation, 𝑒𝑖, for the Temperley–Lieb genera-

tors, and sets

𝑠𝑖 =
𝜇
√
Γ

[
𝑄𝜏(𝑄 + 𝜏)1+𝑄(1−𝑄𝜏)𝑒𝑖 − (𝜏2 +2𝑄𝜏−1)𝑔𝑖

]
, (5.106)

or equivalently,

𝑔𝑖 =
1

𝜏2 +2𝑄𝜏−1
[
𝑄𝜏(𝑄 + 𝜏)1+𝑄(1−𝑄𝜏)𝑒𝑖 − 𝜇

√
Γ 𝑠𝑖

]
. (5.107)

With this, one verifies that the relations (5.100) imply the relations (5.56) and the vanishing of (5.105).

Likewise, the relations (5.56) together with the vanishing of (5.105) are seen to imply the relations

(5.100). □

Remark. For 𝜖 = 1, 𝑠 ∈𝑊2 is invariant under P𝑟4,1 , as becomes evident when rewriting (5.106) as

𝑠𝑖 =
𝜇𝑄(𝜏2 +1)

2
√
Γ

(1+ 𝑒𝑖) −
𝜇(𝜏2 +2𝑄𝜏−1)

2
√
Γ

(𝑔𝑖 +𝑔−1
𝑖 ), (5.108)

since

P𝑟4,1 (12) = 𝑒, P𝑟4,1 (𝑒) = 12, P𝑟4,1 (𝑔±1) = 𝑔∓1. (5.109)

Remark. The algebra BMW𝑛 (𝜏, 𝑞) is occasionally referred to as Kauffman’s Dubrovnik version [58].

It differs from the one in [59], which is based on

𝑔𝑖 +𝑔−1
𝑖 =𝑄0(1+ 𝑒𝑖), 𝑒2

𝑖 = 𝛿0𝑒𝑖, 𝛿0 = −1+ 𝜏 + 𝜏
−1

𝑄0
, 𝑄0 = 𝑞 + 𝑞−1, (5.110)

and consequently admits a description as a quotient of PS(𝜖)𝑛 similar to the one in Proposition 5.4.1,

but for 𝜖 = −1. The two possible imaginary values, 𝜖 = i and 𝜖 = −i, enter similar quotient descriptions

of the Liu algebra in Section 5.5.2.
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5.4.4 Baxterisation

Relative to the canonical𝑊2-basis {12, 𝑒, 𝑔}, we introduce the parameterised 𝑅-operator as

𝑅(𝑢) = 𝑟1(𝑢)12 + 𝑟𝑒 (𝑢)𝑒 + 𝑟𝑔 (𝑢)𝑔, 𝑢 = 𝑟1(𝑢) + 𝑟𝑒 (𝑢) + 𝑟𝑔 (𝑢) , (5.111)

with 𝑟1, 𝑟𝑒, 𝑟𝑔 : Ω→ C.

Remark. Since 𝑒𝑖 is quadratic in 𝑔𝑖, the function 𝑟𝑔 is required to be nonzero when exploring

homogeneous integrability encoded by BMW𝑛 (𝜏, 𝑞).

It is known [60], see also [61], that BMW𝑛 (𝜏, 𝑞) admits a Baxterisation. Within the integrability

framework developed in Section 3.2, we have the following.

Proposition 5.4.2. Let 𝑄 = 𝑞− 𝑞−1 and 𝜔 ∈ {−𝜏𝑞, 𝜏𝑞−1}, the 𝑅-operator

𝑅(𝑢) = 𝑞
2−1
𝑞2−𝑢

[
12 +

1−𝑢
𝑢−𝜔 𝑒 +

1−𝑢
𝑄𝑢

𝑔

]
(5.112)

provides a homogeneous Baxterisation of BMW𝑛 (𝜏, 𝑞), with

𝑌1(𝑢, 𝑣) = 𝑅(𝑢𝑣), 𝑌1(𝑢, 𝑣) =
𝑄2𝜔2𝑢𝑣(𝑢𝑣−𝜔)2

(1−𝑢𝑣) (𝑢𝑣−𝜔2) (𝑢𝑣−𝜔𝑞2) (𝑢𝑣−𝜔𝑞−2)
𝑅

(𝜔2

𝑢𝑣

)
, (5.113)

and (for 𝑖 = 2,3)

𝑌𝑖 (𝑢, 𝑣) = 𝑌1(𝜔𝑢 , 𝑣), 𝑌𝑖 (𝑢, 𝑣) = 𝑌1(𝜔𝑢 , 𝑣). (5.114)

Proof. We first observe that the 𝑅-operator (5.13) satisfies the following crossing symmetries

𝑢 =
𝜔(1−𝑢) (𝑞2−𝜔/𝑢)
𝑢(𝑢−𝜔) (𝑞2−𝑢)

𝜔
𝑢 , 𝑢 = 𝑢 . (5.115)

The BYBEs (3.32) are satisfied by applying the crossing symmetries, observing BMW2 is a commuta-

tive algebra, and noting that 𝑌1(𝑢, 𝑣) and 𝑌1(𝑢, 𝑣) are symmetric in 𝑢 and 𝑣.

Applying the crossing symmetries (5.115) for 𝑢 ≠ 0, it follows, as in Proposition 5.1.1, that the

𝑌 -operators can be expressed as

𝑌2(𝑢, 𝑣) = 𝑌1(𝜔𝑢 , 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 𝜔𝑢 ), 𝑌2(𝑢, 𝑣) = 𝑌1(𝜔𝑢 , 𝑣), 𝑌3(𝑢, 𝑣) = 𝑌1(𝑣, 𝜔𝑢 ). (5.116)

It remains to verify that (5.112) and (5.113) provide a solution to Inv1 (3.30) and YBE1 (3.31), see

Appendix A.3 for details. □

It follows from the crossing symmetries (5.115) that conditions (3.30) and (3.31) reduce to the single

inversion identity and the single standard YBE

1
𝑤

𝑤 = ,
𝑢

𝑣

𝑢𝑣 =
𝑣

𝑢

𝑢𝑣 . (5.117)

Relative to the involution ·∗ on the BMW algebra with 𝜏, 𝑞 ∈ R, the 𝑅-operator (5.112) is self-adjoint

for all 𝑢 ∈ R \ {𝑞2,𝜔}.

Remark. We have verified that, up to a normalising factor, the generalised Yang–Baxter framework of

Proposition 3.2.2 does not admit any other non-specious solution of the form (5.111), with 𝑟𝑔 nonzero,

than the one presented in Proposition 5.4.2.
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5.5 Liu algebra

5.5.1 Planar algebra

The Liu planar algebra is naturally defined as a quotient planar algebra much akin to the PSG planar

algebra in Section 5.2. With 𝐶 (𝜖) (𝛼, 𝛿) as in (5.55), we thus introduce

𝐶
(𝜖)
L (𝛿) := 𝐶 (𝜖) (0, 𝛿) ∪

{
− − 1

𝛿2

[
− − 𝜖

(
− + −

)]}
,

(5.118)

where 𝛿 ≠ 0 and 𝜖 ∈ {−i, i}. Following [39], the Liu planar algebra L(𝜖) (𝛿) is then defined as the

quotient planar algebra (𝐴𝑛 (𝑆,𝐶 (𝜖)L (𝛿)))𝑛∈N0 , where 𝑆 is as in (5.54).

Remark. In the PSG planar algebra in Section 5.2, for PS1 and PS2 to be positive-definite, we have

𝛿 > 1, see (5.27). Here, in our definition of the Liu planar algebra, we relax this condition to 𝛿 ≠ 0.

From here onward, we opt for the abridged notation 𝐿𝑛 ≡ 𝐴𝑛 (𝑆,𝐶 (𝜖)L (𝛿)), 𝑛 ∈ N0. Imposing the

relations 𝐶 (𝜖)L (𝛿) tames the dimensionality of the universal planar algebra, resulting in the dimension

formula

dim𝐿𝑛 = (2𝑛−1)!!. (5.119)

The Liu planar algebra L(𝜖) (𝛿) is spherical and involutive [39], with the involution ·∗ defined as

the conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked

boundary interval, as( )∗
= ,

( )∗
= ,

( )∗
= , (5.120)

recalling that 𝑠∗ = 𝑠 for 𝛼 = 0, see comment following (5.46).

We let L (𝜖) denote the set of all 𝛿 such that L(𝜖) (𝛿) is positive semi-definite. For each 𝛿 ∈ L (𝜖) and

𝜖 ∈ {−i, i}, the Liu subfactor planar algebra L(𝜖) (𝛿) is then defined as the quotient of L(𝜖) (𝛿) by the

kernel of the trace norm. Details of the set L (𝜖) are presented in [39], including
{
i 𝑞𝑚+𝑞

−1
𝑚

𝑞𝑚−𝑞−1
𝑚
|𝑚 ∈ N

}
⊆

L (𝜖) , where 𝑞𝑚 = 𝑞
i𝜋

2𝑚+2 .

5.5.2 Presentation and quotient description

For each 𝑛 ∈ N, 𝜖 ∈ {−i, i} and 𝛿 ≠ 0, the Liu algebra L(𝜖)𝑛 (𝛿) is defined by endowing the vector space

𝐿𝑛 with the multiplication induced by the unshaded planar tangle 𝑀𝑛 following from (2.26). We note

that the Liu algebra is both unital (with unit denoted by 1) and associative, and that it is a ∗-algebra with

involution inherited from the Liu planar algebra. The generators can be represented diagrammatically

as in (5.60), and the algebra admits a presentation ⟨𝑒𝑖, 𝑠𝑖 | 𝑖 = 1, . . . , 𝑛−1⟩ subject to the relations

𝑠2
𝑖
= 1− 1

𝛿
𝑒𝑖, 𝑒𝑖𝑠𝑖 = 𝑠𝑖𝑒𝑖 = 0, 𝑠𝑖𝑠 𝑗 = 𝑠 𝑗 𝑠𝑖, |𝑖− 𝑗 | > 1,

𝑒𝑖𝑒𝑖±1𝑒𝑖 = 𝑒𝑖, 𝑒𝑖𝑒𝑖±1𝑠𝑖 = 𝜖
±1𝑒𝑖𝑠𝑖±1, 𝑠𝑖𝑒𝑖±1𝑒𝑖 = 𝜖

∓1𝑠𝑖±1𝑒𝑖,
(5.121)
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and

𝑠𝑖𝑠𝑖+1𝑠𝑖 − 𝑠𝑖+1𝑠𝑖𝑠𝑖+1 = 1
𝛿2

[
𝑠𝑖 − 𝑠𝑖+1− 𝜖 (𝑒𝑖𝑠𝑖+1− 𝑠𝑖+1𝑒𝑖 + 𝑒𝑖+1𝑠𝑖 − 𝑠𝑖𝑒𝑖+1)

]
, (5.122)

with 1 denoting the unit. Following from (5.121), we also have the relations

𝑒2
𝑖 = 𝛿𝑒𝑖, 𝑒𝑖𝑒 𝑗 = 𝑒 𝑗𝑒𝑖, 𝑒𝑖𝑠 𝑗 = 𝑠 𝑗𝑒𝑖, |𝑖− 𝑗 | > 1, (5.123)

𝑒𝑖𝑠𝑖±1𝑠𝑖 = 𝜖
∓1 (𝑒𝑖𝑒𝑖±1− 1

𝛿
𝑒𝑖
)
, 𝑠𝑖𝑠𝑖±1𝑒𝑖 = 𝜖

±1 (𝑒𝑖±1𝑒𝑖 − 1
𝛿
𝑒𝑖
)
, (5.124)

and

𝑒𝑖𝑠𝑖±1𝑒𝑖 = 0, 𝑠𝑖𝑒𝑖+1𝑠𝑖 = 𝑠𝑖+1𝑒𝑖𝑠𝑖+1. (5.125)

We note that it suffices to list one of the two relations 𝑒𝑖𝑠𝑖 = 0 or 𝑠𝑖𝑒𝑖 = 0 in (5.121).

Remark. It follows from the presentation above that the minimal vanishing polynomial in 𝑠𝑖 is 𝑠3
𝑖
− 𝑠𝑖,

so 𝑠𝑖 is not invertible.

The Liu algebra differs from the FC and BMW algebras in that there is no known basis for L(𝜖)𝑛 (𝛿)
in terms of which the relations (5.121)–(5.125) admit a natural diagrammatic representation. In Section

5.5.4, we consider a basis which includes a braid [39], and where (5.122) can be interpreted as a

type-III Reidemeister move. However, in this basis, some of the other relations fail to have a natural

diagrammatic interpretation.

By comparing the presentation above with the one of PS(𝜖)𝑛 (𝛼, 𝛿) in Section 5.2.3, we obtain the

following result, recalling that 𝛼 = 0 for 𝜖 ∈ {−i, i}.

Proposition 5.5.1. For each 𝑛 ∈ N, 𝜖 ∈ {−i, i}, and 𝛿 > 1, we have

L(𝜖)𝑛 (𝛿) � PS(𝜖)𝑛 (0, 𝛿)
/〈
𝜄1, . . . , 𝜄𝑛−2

〉
, (5.126)

where

𝜄𝑖 = 𝑠𝑖𝑠𝑖+1𝑠𝑖 − 𝑠𝑖+1𝑠𝑖𝑠𝑖+1− 1
𝛿2

[
𝑠𝑖 − 𝑠𝑖+1− 𝜖 (𝑒𝑖𝑠𝑖+1− 𝑠𝑖+1𝑒𝑖 + 𝑒𝑖+1𝑠𝑖 − 𝑠𝑖𝑒𝑖+1)

]
. (5.127)

We let L (𝜖)𝑛 denote the set of all 𝛿 such that the trace form (2.34) is positive semi-definite on

𝐿𝑛, noting that L (𝜖) ⊆ L (𝜖)𝑛 for all 𝑛 ∈ N0. For each 𝛿 ∈ L (𝜖)𝑛 , L(𝜖)𝑛 (𝛿) is defined as the Liu subfactor

algebra constructed as the quotient of L(𝜖)𝑛 (𝛿) by the kernel of the trace norm.

5.5.3 Baxterisation

Relative to the canonical 𝐿2-basis {12, 𝑒, 𝑠}, we introduce the parameterised 𝑅-operator as

𝑅(𝑢) = 𝑟1(𝑢)12 + 𝑟𝑒 (𝑢)𝑒 + 𝑟𝑠 (𝑢)𝑠, 𝑢 = 𝑟1(𝑢) + 𝑟𝑒 (𝑢) + 𝑟𝑠 (𝑢) , (5.128)

with 𝑟1, 𝑟𝑒, 𝑟𝑠 : Ω→ C.

Remark. Since 𝑒𝑖 is quadratic in 𝑠𝑖, the function 𝑟𝑠 is required to be nonzero when exploring

homogeneous integrability encoded by L(𝜖)𝑛 (𝛿).
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Unlike the TL, FC and BMW algebras, the Liu algebra L(𝜖)𝑛 (𝛿), is not known to admit a Baxterisation.

A distinct feature of the Liu algebra is the absence of symmetries of the unparameterised 𝑅-operator,

which is not invariant under rotation by 𝜋 (unless 𝑟𝑠 (𝑢) = 0),

𝑢 ≠ 𝑢 . (5.129)

Despite this fact, we show in Proposition 5.5.2 below, that the Liu algebra admits a homogeneous

Baxterisation. To describe it, we find it useful to introduce the function

𝜙 : (𝑢, 𝑣) ↦→ 𝑢 + 𝑣
1−𝑢𝑣 . (5.130)

Proposition 5.5.2. For each 𝜇 ∈ {−1,1},

𝑅(𝜇) (𝑢) = 12 +𝑢𝑒 + 𝜇𝛿𝑢𝑠 (5.131)

provides a homogeneous Baxterisation of 𝐿 (𝜖)𝑛 (𝛿), with

𝑌1(𝑢, 𝑣) = 𝑅(𝜇) (𝑥), 𝑌1(𝑢, 𝑣) =
𝛿𝑥−1

(𝛿2 +1)𝑥(𝑥 + 𝛿)
𝑅(−𝜇)

( 𝑥 + 𝛿
𝛿𝑥−1

)
, 𝑥 := 𝜙(𝑢, 𝑣), (5.132)

and (for 𝑖 = 2,3)

𝑌𝑖 (𝑢, 𝑣) = 12 + 𝑦𝑒− (−1)𝑖𝜇𝛿𝜖𝑠, 𝑌𝑖 (𝑢, 𝑣) =
1

𝛿2− 𝑦2 𝑌𝑖 (𝑣,𝑢), 𝑦 :=
1

𝜙(𝑢,−𝑣) . (5.133)

Proof. The BYBEs (3.32) are satisfied by observing L2 is a commutative algebra, and noting that

𝑌1(𝑢, 𝑣) = 𝑌4(𝑢, 𝑣), 𝑌2(𝑢, 𝑣) = P𝑟4,2 (𝑌3(𝑢, 𝑣)), 𝑌1(𝑢, 𝑣) = 𝑌4(𝑢, 𝑣), 𝑌2(𝑢, 𝑣) = P𝑟4,2 (𝑌3(𝑢, 𝑣)).
(5.134)

It remains to verify that (5.131)–(5.133) provide a solution to Inv1–Inv3 (3.30), and YBE1–YBE3

(3.31), see Appendix A.4 for details. □

Relative to the involution ·∗ on the Liu algebra, the 𝑅-operator (5.131) is self-adjoint for all 𝑢 ∈ R.

On the other hand, unlike the 𝑅-operators in the FC and BMW algebras, the 𝑅-operator (5.131) is not

crossing symmetric, not even partially crossing symmetric, that is, there do not exist scalar functions 𝑐

and 𝑐 such that

P𝑟4,1 (𝑅(𝜇) (𝑢)) = 𝑐(𝑢)𝑅(𝜇) (𝑐(𝑢)) or P𝑟4,2 (𝑅(𝜇) (𝑢)) = 𝑐(𝑢)𝑅(𝜇) (𝑐(𝑢)). (5.135)

This explains why the𝑌 -operators are not expressible in terms of the 𝑅-operator itself, as is the situation

in the TL, FC and BMW cases, c.f. (5.1.1)–(5.14), (5.87)–(5.88) and (5.113)–(5.114), respectively.

Remark. We have verified that, up to a normalising factor, the generalised Yang–Baxter framework of

Proposition 3.2.2 does not admit any other non-specious solution of the form (5.128), with 𝑟𝑠 nonzero,

than the one presented in Proposition 5.5.2.
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5.5.4 Braid limits

For each 𝜇 ∈ {−1,1}, the 𝑅-operator (5.131) yields well-defined 𝐿2-elements under the specialisations

𝑢 = −i and 𝑢 = i,

𝑅(𝜇) (−i) = 12− i𝑒− i𝜇𝛿𝑠, 𝑅(𝜇) (i) = 12 + i𝑒 + i𝜇𝛿𝑠, (5.136)

and we collect the ensuing four elements in the set

B = {12 + 𝜖1𝑒 + 𝜖2𝛿𝑠 | 𝜖1, 𝜖2 ∈ {−i, i}}. (5.137)

For each 𝑏 ∈ B, we have

𝑏2 = 2𝑏− (𝛿2 +1)12, (5.138)

so, for 𝛿2 ≠ −1, 𝑏 is invertible, with inverse given by

𝑏−1 = 1
𝛿2+1 (212− 𝑏). (5.139)

Although not obtained as limits of our 𝑅-operator, the elements of B also feature in [39], where it is

shown that for each 𝑏 ∈ B, the generators {𝑏1, . . . , 𝑏𝑛−1} ⊂ 𝐿𝑛 satisfy

𝑏𝑖𝑏𝑖±1𝑏𝑖 = 𝑏𝑖±1𝑏𝑖𝑏𝑖±1, 𝑏𝑖𝑏 𝑗 = 𝑏 𝑗𝑏𝑖, |𝑖− 𝑗 | > 1. (5.140)

Here, 𝑏𝑖 ∈ 𝐿𝑛 denotes the element ‘acting’ as 𝑏 on the 𝑖th and (𝑖 + 1)th nodes and as the identity

elsewhere. This justifies referring to (5.136) as braid limits.

5.6 Polynomial integrability

For the TL algebra and each of the singly generated algebras FC, BMW, and Liu, we refer to the

homogeneous double-row transfer operator built using the 𝑅-operator parameterised in (5.13), (5.86),

(5.112), and (5.131), respectively, as the canonical transfer operator on Ω, with Ω ⊆ C a suitable

domain (that depends on the underlying algebra). In each case, this transfer operator is the unique (up

to renormalisations and reparameterisations) algebra element encoding homogeneous Yang–Baxter

integrability on the strip.

Using Liu’s Theorem 5.2.4, the Remark following Corollary 4.2.3, and results obtained in the

previous three sections, we can now account for the polynomialisability of the double-row transfer

operator in Theorem 5.0.2. With notation as in Section 5.1, Section 5.3, Section 5.4, and Section 5.5,

the following result thus gives conditions on the various algebra-defining parameters, ensuring that the

respective canonical transfer operator is polynomialisable.
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Proposition 5.6.1.

(TL) : Let 𝑛 ∈ N and 𝛿 ∈ T𝑛, and suppose 𝑇 (𝑑)𝑛 (𝑢) ∈ TL𝑛 (𝛿) is the corresponding canonical

transfer operator, with 𝑢 ∈ R. Then, 𝑇 (𝑑)𝑛 (𝑢) is polynomialisable.

(FC) : Let 𝑛 ∈ N and 𝛾 ∈ F𝑛, and suppose 𝑇 (𝑑)𝑛 (𝑢) ∈ FC𝑛 (𝛾) is the corresponding canonical

transfer operator, with 𝑢 ∈ R \ {𝛾2−1}. Then, 𝑇 (𝑑)𝑛 (𝑢) is polynomialisable.

(BMW) : Let 𝑛 ∈ N and (𝜏, 𝑞) ∈ B𝑛∩R2, and suppose 𝑇 (𝑑)𝑛 (𝑢) ∈ BMW𝑛 (𝜏, 𝑞) is the corresponding

canonical transfer operator, with 𝑢 ∈ R \ {𝑞2,𝜔}. Then, 𝑇 (𝑑)𝑛 (𝑢) is polynomialisable.

(Liu) : Let 𝑛 ∈ N, 𝜖 ∈ {−i, i}, and 𝛿 ∈ L (𝜖)𝑛 , and suppose 𝑇 (𝑑)𝑛 (𝑢) ∈ L(𝜖)𝑛 (𝛿) is the corresponding

canonical transfer operator, with 𝑢 ∈ R. Then, 𝑇 (𝑑)𝑛 (𝑢) is polynomialisable.

Remark. As the TL subfactor planar algebra is a planar subalgebra of every subfactor planar algebra,

we have 𝛿 ∈ T ⊂ R for any subfactor planar algebra, see (5.5). In the Liu case, in particular, it thus

holds that L (𝜖)𝑛 ∩R = L (𝜖)𝑛 for all 𝑛 ∈ N and 𝜖 ∈ {−i, i}.

Here, we have established that the double-row transfer operator encoding homogeneous Yang–

Baxter integrability for the TL planar algebra and each of the singly generated YBR planar algebras

is polynomialisable. The following chapter is devoted to explicitly determining the form of such

polynomials for two well-known models on the strip.
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Chapter 6

Hamiltonians and polynomial integrability

In this chapter, we explicitly determine algebraic elements giving rise to the polynomial integrability

of two models on the strip: a Temperley–Lieb model and an eight-vertex model. By construction, the

principal Hamiltonians and transfer operator share similar spectral features, at least to linear order in 𝑢.

It is therefore natural to consider these elements as candidates for the polynomial integrability generator.

We begin with the Temperley–Lieb model by establishing some facts about the double-row transfer

operator parameterised as in Section 5.1 which are then used to derive the principal Hamiltonians of

the model. Analysis of two principal Hamiltonians for small 𝑛 reveals, in a faithful representation, that

they possess a non-degenerate spectrum. This, together with the fact that Hamiltonians commute with

the transfer operator, establishes that the transfer operator is polynomial in the principal Hamiltonians.

We conclude by determining explicit polynomial expressions of the transfer operator in terms of these

Hamiltonians and find that, for all 𝛿 ∈ C and small 𝑛, at least one of the polynomials is well-defined.

We proceed by constructing an eight-vertex model with an underlying tensor planar-algebraic

structure and recover the familiar quantum inverse scattering framework discussed in Section 3.3.

We show that the corresponding double-row transfer operator is diagonablisable and present explicit

expressions for all of its eigenvalues and corresponding eigenvectors. We then exploit similarities in

the spectral properties of the transfer operator and a principal Hamiltonian to establish that the transfer

operator is polynomial in this Hamiltonian. Moreover, we determine explicit polynomial expressions

of the transfer operator in terms of this principal Hamiltonian for all 𝑛 ∈ N.

Remark. As this chapter is concerned exclusively with the double-row transfer operator 𝑇 (𝑑)𝑛 (𝑢), we

omit the superscript and refer to it simply as 𝑇𝑛 (𝑢).

6.1 Revisiting the Temperley–Lieb planar algebra

Proposition 5.6.1 implies that for 𝛿 > 2, there exists a 𝑢-independent integral of motion 𝑏𝑛 ∈ TL𝑛 (𝛿),
such that the double-row transfer operator 𝑇𝑛 (𝑢) can be expressed as a polynomial in 𝑏𝑛. For a faithful

representation 𝜚𝑛 defined in Section 6.1.1, it follows from Section 4.2, that 𝜚𝑛 (𝑏𝑛) and 𝜚𝑛 (𝑇𝑛 (𝑢)) will

have closely related Jordan decompositions. In the following, we derive the principal Hamiltonians
89
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associated with 𝑇𝑛 (𝑢), see (6.45) and (6.50), and use spectral analysis to argue that both of these

TL𝑛 (𝛿)-elements can indeed play the role of 𝑏𝑛, at least for small 𝑛. We supplement this result by

determining an explicit polynomial expression for 𝑇𝑛 (𝑢) in terms of each of the Hamiltonian elements,

and find that they are well-defined for all 𝑢 ∈ C and all but finitely many 𝛿-values in C. The restrictions

on 𝑢 and 𝛿 in Proposition 5.6.1 can thus be relaxed accordingly, at least for small 𝑛. Moreover, we find

that, for small 𝑛, 𝑇𝑛 (𝑢) is polynomial in at least one of the two principal Hamiltonians for all 𝛿,𝑢 ∈ C,

see the discussion following (6.78).

Remark. Our focus in the following is on probing the naturally arising principal Hamiltonians as

candidates for the integral of motion 𝑏𝑛. In fact, one could also explore whether any given specialisation

of 𝑇𝑛 (𝑢), where 𝑢 is fixed to some value, could play the role of 𝑏𝑛. We have indeed examined several

such candidates, but the standard Hamiltonian (6.45) has so far had the fewest number of exceptional

points, see the discussion in Section 6.1.5.

6.1.1 Standard modules and cellularity

For each 𝑛 ∈ N, let

𝐷𝑛 := {𝑛−2𝑘 | 𝑘 = 0, . . . , ⌊ 𝑛2⌋}, (6.1)

which is a naturally ordered set with min(𝐷𝑛) = 1
2 (1− (−1)𝑛). Recall that 𝐵𝑛 denotes the basis for T𝑛

consisting of Temperley–Lieb disks, which we refer to as 𝑛-diagrams, and define the following set

𝐵′𝑛 := 𝐵𝑛 \ {1𝑛}. (6.2)

It is common to represent 𝑛-diagrams as rectangular diagrams as in Section 5.1, here drawn such that

the marked boundary interval corresponds to the left-most vertical side, as illustrated by

←→ . (6.3)

We introduce the linear involution

⃝∗ : T𝑛→ T𝑛, 𝑥 ↦→ 𝑥
⃝∗ , (6.4)

that acts by reflecting 𝑛-diagrams about a line perpendicular to the marked boundary interval, and if 𝑥

is expressed as a rectangular diagram, this is simply the horizontal. On the algebra TL𝑛 (𝛿), this yields

an anti-involution.

Remark. We highlight that ·⃝∗ is linear and is therefore distinct from the conjugate-linear involution ·∗

introduced in Section 5.1.

For each 𝑑 ∈ 𝐷𝑛, let 𝐵𝑛,𝑑 ⊆ 𝐵𝑛 denote the set of 𝑛-diagrams with exactly 𝑑 nodes on the lower edge

connected to nodes on the upper edge. The 𝑑 loop segments connecting these 2𝑑 nodes are referred to

as through-lines. We now let 𝑆𝑛,𝑑 denote the set of all 𝑛-diagrams with 𝑑 through-lines, whose upper
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edge has been discarded along with any loop segments having both endpoints on the upper edge. The

elements of 𝑆𝑛,𝑑 are referred to as (𝑛, 𝑑)-link states and the elements of

𝑆𝑛 :=
⋃
𝑑∈𝐷𝑛

𝑆𝑛,𝑑 (6.5)

are referred to as 𝑛-link states. To illustrate,

↦→ , ↦→ , (6.6)

give rise to the same (6,2)-link state. In fact, the (𝑛, 𝑑)-link states may be viewed as equivalence

classes of 𝑛-diagrams. From that perspective, the two 6-diagrams in (6.6) are seen as representatives

of the same (6,2)-link state.

The vector space

𝑉𝑛,𝑑 := spanC(𝑆𝑛,𝑑), dim𝑉𝑛,𝑑 = |𝑆𝑛,𝑑 | =
(
𝑛
𝑛−𝑑

2

)
−

(
𝑛

𝑛−𝑑
2 −1

)
, (6.7)

becomes a TL𝑛 (𝛿)-module by defining an action of the algebra generators on the link states such

that 𝑎2(𝑎1𝑣) = (𝑎2𝑎1)𝑣 for all 𝑎1, 𝑎2 ∈ TL𝑛 (𝛿) and 𝑣 ∈ 𝑉𝑛,𝑑 . The action defining the familiar standard

module, 𝑉𝑛,𝑑 , is first given diagrammatically for 𝑛-diagrams acting on (𝑛, 𝑑)-link states in the ‘natural

way’, see e.g. [62], and then extended linearly to all of TL𝑛 (𝛿) and all of 𝑉𝑛,𝑑 .

For each pair 𝑥, 𝑦 ∈ 𝑆𝑛,𝑑 , let (𝑥, 𝑦)𝑛,𝑑 be constructed by reflecting the link state 𝑥 about the horizontal,

placing it below the link state 𝑦, connecting the strands in the natural way, and replacing any loop by a

factor of 𝛿, see e.g. [62] for details. This extends to a bilinear map

(·, ·)𝑛,𝑑 : 𝑉𝑛,𝑑 ×𝑉𝑛,𝑑→ C[𝛿], (𝑥, 𝑦) ↦→ (𝑥, 𝑦)𝑛,𝑑 . (6.8)

Relative to the (𝑛, 𝑑)-link state basis 𝑆𝑛,𝑑 , the nonzero elements of the corresponding Gram matrix

𝐺𝑛,𝑑 are all monomials in 𝛿. The Gram determinant is thus polynomial in 𝛿, and following [63], it can

be expressed as

det𝐺𝑛,𝑑 =

𝑛−𝑑
2∏
𝑗=1

(
𝑈𝑑+ 𝑗 ( 𝛿2 )
𝑈 𝑗−1( 𝛿2 )

)dim𝑉𝑛,𝑑+2 𝑗

, (6.9)

where𝑈𝑘 (𝑥) is the 𝑘 th Chebyshev polynomial of the section kind.

For each pair 𝑥, 𝑦 ∈ 𝑆𝑛,𝑑 , let |𝑥 𝑦 |𝑛,𝑑 be constructed by reflecting the link state 𝑦 about the horizontal,

placing it above the link state 𝑥 and connecting the 𝑑 defects non-intersectingly. This extends to a

bilinear map

| · ·|𝑛,𝑑 : 𝑉𝑛,𝑑 ×𝑉𝑛,𝑑→ TL𝑛,𝑑 (𝛿), (𝑥, 𝑦) ↦→ |𝑥 𝑦 |𝑛,𝑑 . (6.10)

where TL𝑛,𝑑 (𝛿) is the subset of TL𝑛 (𝛿) whose elements have exactly 𝑑 through-lines. It follows that

|𝑥 𝑦 |𝑛,𝑑 𝑧 = (𝑦, 𝑧)𝑛,𝑑 𝑥, ∀𝑥, 𝑦, 𝑧 ∈ 𝑉𝑛,𝑑 . (6.11)

When clear, the subscripts of (·, ·)𝑛,𝑑 and | · ·|𝑛,𝑑 will be suppressed, writing (·, ·) and | · ·|, respectively.
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It follows from Section 4.4 that TL𝑛 (𝛿) is cellular with cell datum (𝐷𝑛, 𝑆𝑛, | · ·|,⃝∗). We note that

the involution ⃝∗ provides an adjoint operation relative to the bilinear form (·, ·) on 𝑉𝑛,𝑑:

(𝑥, 𝑎𝑦) = (𝑎⃝∗𝑥, 𝑦), 𝑎 ∈ TL𝑛 (𝛿), 𝑥, 𝑦 ∈ 𝑉𝑛,𝑑 . (6.12)

In preparation for the discussion in Section 6.1.4, let

𝑉𝑛 := spanC(𝑆𝑛), (6.13)

and note that, as vector spaces,

𝑉𝑛 =
⊕
𝑑∈𝐷𝑛

𝑉𝑛,𝑑 , (6.14)

hence

dim𝑉𝑛 =
∑︁
𝑑∈𝐷𝑛

dim𝑉𝑛,𝑑 =
(
𝑛

⌊ 𝑛2⌋

)
. (6.15)

We also let 𝜚𝑛,𝑑 denote the representation corresponding to the standard module 𝑉𝑛,𝑑 , and let

𝜚𝑛 :=
⊕
𝑑∈𝐷𝑛

𝜚𝑛,𝑑 . (6.16)

Relative to an ordered 𝑉𝑛-basis of the form

𝑆𝑛,𝑠𝑛 ∪ 𝑆𝑛,𝑠𝑛+2∪ · · · ∪ 𝑆𝑛,𝑛, 𝑠𝑛 := 1
2 (1− (−1)𝑛), (6.17)

the matrix representation of 𝜚𝑛 is block-diagonal. Moreover, from Section 4.4, we have that 𝜚𝑛 is

faithful for all 𝛿 ∈ C for which
∏
𝑑∈𝐷𝑛

det𝐺𝑛,𝑑 ≠ 0. In particular, 𝜚𝑛 is faithful for 𝛿 an indeterminate

and fails to be faithful for at most finitely many 𝛿-values in C.

6.1.2 Transfer operators

Recalling the form of the 𝑅- and 𝐾-elements giving rise to a homogeneous Baxterisation presented in

Section 5.1, we have

𝑅(𝑢) = 12 +𝑢𝑒, 𝐾 (𝑢) = 𝐾 (𝑢) = 11, (6.18)

where 𝑢 ∈ C. Diagrammatically, this 𝑅-element is given by

𝑅(𝑢) = 𝑢 = +𝑢 , (6.19)

and the transfer operator can be expressed in its familiar (see e.g. [21]) diagrammatic form

𝑇𝑛 (𝑢) = . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

. (6.20)

To emphasise its dependence on 𝛿, we occasionally write 𝑇𝑛 (𝑢, 𝛿) instead.

Remark. The parameterisation in (6.18) ensures that 𝑅(𝑢) ≠ 0 for all 𝑢, and this would similarly have

been achieved had we chosen to work with 𝑅̂(𝑢̂) = 𝑢̂12 + 𝑒, where 𝑅̂(𝑢̂) ≠ 0 for all 𝑢̂ ∈ C. Viewing 𝑢
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and 𝑢̂ as coordinates on the Riemann sphere, we see that, for all 𝑢 ∈ C∪ {∞}, 𝑅(𝑢) ↦→ 𝑅(𝑢̂) = 1
𝑢
𝑅̂(𝑢)

as 𝑢 ↦→ 𝑢̂ ≡ 1
𝑢
.

With (6.19), we have the decompositions

𝑢

𝑣

= 𝑢𝑣 + (𝑢 + 𝑣 + 𝛿) ,

𝑢

𝑣

= + (𝑢 + 𝑣 + 𝛿𝑢𝑣) , (6.21)

𝑢

𝑣

= + (𝑢 + 𝑣 + 𝛿𝑢𝑣) ,

𝑢

𝑣

= 𝑢𝑣 + (𝑢 + 𝑣 + 𝛿) . (6.22)

Equations (6.21) and (6.22), reduce to the so-called “drop-down” relations [64] under a specialisation,

see also Proposition 3.4.1.

Proposition 6.1.1. We have

𝑇𝑛 (𝑢)
��
𝛿+2𝑢=0 = 𝛿𝑢

2𝑛1𝑛, 𝑇𝑛 (𝑢)
��
𝑢(2+𝛿𝑢)=0 = 𝛿1𝑛. (6.23)

Proof. The results follow from repeated application of (6.21) with 𝑣 = 𝑢, to (6.20). □

Proposition 6.1.2. We have

𝑇𝑛 (𝑢) = . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

. (6.24)

Proof. For 𝑢(2+ 𝛿𝑢) (𝛿+2𝑢) = 0, apply (6.22) with 𝑣 = 𝑢 to the right-hand side of (6.24). Comparing

with Proposition 6.1.1, we arrive at (6.24). If 𝑢(2+ 𝛿𝑢) (𝛿+2𝑢) ≠ 0, the operators

=
1−𝑢2

𝑢(2+ 𝛿𝑢) + , =
𝑢2−1
2𝑢 + 𝛿 + , (6.25)

satisfy

= ,
𝑢

𝑢

=
𝑢

𝑢

, (6.26)

and

=
𝑢(2+ 𝛿𝑢)
𝛿+2𝑢

, =
𝛿+2𝑢

𝑢(2+ 𝛿𝑢) . (6.27)

It follows that

𝑇𝑛 (𝑢) = . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

= . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

, (6.28)

and we arrive at the desired result. □
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Recall that the 𝑅-operator satisfies the following crossing symmetries

𝑢 = 𝑢 1/𝑢 , 𝑢 = 𝑢 . (6.29)

with 𝑢 = 1 an isotropic point. By Proposition 6.1.2,

𝑇𝑛 (𝑢) = 𝑢2𝑛𝑇𝑛 (1/𝑢), (6.30)

so 𝑢−𝑛𝑇𝑛 (𝑢) is invariant under 𝑢 ↦→ 1/𝑢. Since 𝑇𝑛 (𝑢) is polynomial in 𝑢 of degree at most 2𝑛, it follows

that there exists 𝑇𝑛 (𝑥) ∈ TL𝑛 (𝛿) [𝑥] such that

𝑇𝑛 (𝑢) = 𝑢𝑛𝑇𝑛 (𝑢 + 1
𝑢
). (6.31)

Moreover, there exist 𝑎0, . . . , 𝑎2𝑛 ∈ TL𝑛 (𝛿) such that

𝑇𝑛 (𝑢) =
2𝑛∑︁
𝑖=0
𝑎𝑖𝑢

𝑖, (6.32)

and using (6.30), it follows that 𝑎2𝑛−𝑖 = 𝑎𝑖, 𝑖 = 0, . . . , 𝑛−1, so

𝑇𝑛 (𝑥) = 𝑎𝑛 +2
𝑛∑︁
𝑖=1
𝑎𝑛−𝑖𝑇

(𝑐)
𝑖

(
𝑥
2
)
, (6.33)

where 𝑇 (𝑐)
𝑘

is the 𝑘 th Chebyshev polynomial of the first kind. In establishing (6.33), we have used the

familiar relation

𝑇
(𝑐)
𝑘
(cosh𝜃) = cosh(𝑘𝜃), 𝜃 ∈ C. (6.34)

To shine further light on the structure of 𝑇𝑛 (𝑢, 𝛿), we introduce the following parameterised

elements of TL𝑛 (𝛿). For 𝑛 ∈ N and each pair 𝑗 , 𝑘 ∈ N0 such that 𝑗 + 𝑘 ≤ 𝑛−2, let

𝑆
(𝑛)
𝑗 ,𝑘
(𝑢) := . . .. . .. . .

𝑗 𝑛− 𝑗 − 𝑘 𝑘

𝑢 𝑢

𝑢 𝑢

, (6.35)

which reduces to 𝑆(𝑛)
𝑗 ,𝑛− 𝑗−2(𝑢) = 𝑒 𝑗+1 for 𝑘 = 𝑛− 𝑗−2. To emphasise its dependence on 𝛿, we occasionally

write 𝑆(𝑛)
𝑗 ,𝑘
(𝑢, 𝛿). Note that 𝑆(𝑛)

𝑗 ,𝑘
(𝑢) ∈ spanC(𝐵′𝑛).

Lemma 6.1.3. For 𝑛 ∈ N, we have

. . .

𝑛

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

= 𝑢2𝑛−21𝑛 + (𝛿+2𝑢)
𝑛−2∑︁
𝑘=0

𝑢2𝑘𝑆
(𝑛)
0,𝑘 (𝑢) (6.36)

and

. . .

𝑛

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

= 1𝑛 +𝑢(2+ 𝛿𝑢)
𝑛−2∑︁
𝑗=0
𝑆
(𝑛)
𝑗 ,0 (𝑢). (6.37)
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Proof. The result (6.36) follows by induction on 𝑛, decomposing the two right-most 𝑅-operators as in

(6.22) with 𝑣 = 𝑢 and using that both sides of (6.36) reduce to 11 for 𝑛 = 1. The result (6.37) follows

similarly. □

For 𝑘 ∈ N0 and 𝑥 ∈ C, we let

[𝑘]𝑥 := 1+ 𝑥 + · · · + 𝑥𝑘−1 (𝑘 > 1), [1]𝑥 := 1, [0]𝑥 := 0. (6.38)

Proposition 6.1.4. The transfer operator decomposes as

𝑇𝑛 (𝑢, 𝛿) =
(
𝛿[𝑛+1]𝑢2 +2𝑢[𝑛]𝑢2

)
1𝑛 +𝑢(𝛿+2𝑢) (2+ 𝛿𝑢)

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑢2𝑘𝑆
(𝑛)
𝑗 ,𝑘
(𝑢). (6.39)

Proof. By (6.22) with 𝑣 = 𝑢, we have

𝑇𝑛 (𝑢) = 𝑢(2+ 𝛿𝑢) . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

+ . . .

𝑢 𝑢 𝑢

𝑢 𝑢 𝑢

. (6.40)

The result now follows by induction on 𝑛, applying (6.36) to the first term on the right in (6.40) and

the induction hypothesis to the second term. □

Corollary 6.1.5. For 𝑢(𝛿+2𝑢) (2+ 𝛿𝑢) ≠ 0, we have

1
𝑢𝑛−2

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑢2𝑘𝑆
(𝑛)
𝑗 ,𝑘
(𝑢) = 𝑢𝑛−2

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

1
𝑢2𝑘 𝑆

(𝑛)
𝑗 ,𝑘

( 1
𝑢

)
. (6.41)

Proof. The result follows from (6.30) and Proposition 6.1.4. □

Corollary 6.1.6. The transfer operator decomposes uniquely as

𝑇𝑛 (𝑢, 𝛿) =
(
𝛿[𝑛+1]𝑢2 +2𝑢[𝑛]𝑢2

)
1𝑛 +𝑢(𝛿+2𝑢) (2+ 𝛿𝑢)

∑︁
𝑎∈𝐵′𝑛

Γ
(𝑛)
𝑎 (𝑢, 𝛿)𝑎, (6.42)

where Γ
(𝑛)
𝑎 (𝑢, 𝛿) is polynomial in 𝑢, 𝛿 for every 𝑎 ∈ 𝐵′𝑛.

Proof. With the parameterisation (6.18), the decomposition of 𝑇𝑛 (𝑢, 𝛿) into connectivity diagrams

(elements of 𝐵𝑛) involves only coefficients that are polynomial in 𝑢, 𝛿, and since 𝐵𝑛 is a linearly

independent set, the decomposition is unique. The restriction to a summation over 𝐵′𝑛 is permitted

(and required for uniqueness) because 𝑆(𝑛)
𝑗 ,𝑘
(𝑢) ∈ spanC(𝐵′𝑛). □

Remark. The expression (6.20) for 𝑇𝑛 (𝑢, 𝛿) may be formally extended to 𝑛 = 0, yielding 𝑇0(𝑢, 𝛿) = 𝛿10.

With 10 ≡ 1, this becomes 𝑇0(𝑢, 𝛿) = 𝛿.
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6.1.3 Hamiltonian limits

Proposition 6.1.1 gives sufficient conditions for the determination of identity points. We now classify

the identity points for 𝑇𝑛 (𝑢, 𝛿), 𝑛 ≥ 2.

Proposition 6.1.7. Let 𝑛 ∈ N≥2. For 𝛿 ∉ {−2,0,2}, the set of identity points for 𝑇𝑛 (𝑢, 𝛿) is given by

{0,− 𝛿2 ,−
2
𝛿
}. For 𝑇𝑛 (𝑢,±2), the set of identity points is given by {0,∓1}. For 𝑇𝑛 (𝑢,0), the only identity

point is 𝑢∗ = 0.

Proof. It follows from (6.35) that the connectivity diagram corresponding to 𝑒1 · · · 𝑒𝑛−1 only appears

in 𝑆(𝑛)
𝑗 ,𝑘

for 𝑗 = 𝑘 = 0, with coefficient 𝑢𝑛−2. By Proposition 6.1.4, the element thus appears in 𝑇𝑛 (𝑢, 𝛿)
with coefficient 𝑢𝑛−1(𝛿 + 2𝑢) (2+ 𝛿𝑢). This expression vanishes exactly for the indicated values of

𝑢. □

To determine the Hamiltonian associated with the identity point 𝑢∗ = 0, we use Proposition 6.1.4 to

compute

𝑇𝑛 (𝜖, 𝛿)
��
𝛿≠0 = (𝛿+2𝜖)1𝑛 +2𝜖𝛿

𝑛−1∑︁
𝑗=1
𝑒 𝑗 +O(𝜖2), (6.43)

1
2𝜖𝑇𝑛 (𝜖,0) = 1𝑛 +2𝜖

𝑛−1∑︁
𝑗=1
𝑒 𝑗 +O(𝜖2). (6.44)

For 𝑛 ≥ 2 and all 𝛿, we may thus choose the familiar (see e.g. [21, 46, 65])

ℎ0 := −
𝑛−1∑︁
𝑖=1
𝑒𝑖 (6.45)

as the principal Hamiltonian associated with 𝑢∗ = 0.

Remark. There is also a ‘hidden’ identity point at infinity, see the Remark, following (6.20), that

addresses the extension of the domain for 𝑢 from C to the Riemann sphere. The corresponding principal

Hamiltonian is proportional to ℎ0.

Hamiltonians associated with the identity points 𝑢∗ = − 𝛿2 ≠ 0 and 𝑢∗ = −2
𝛿

do not seem to have

been discussed before in the literature. To determine the corresponding principal Hamiltonians, ℎ- 𝛿
2

and ℎ- 2
𝛿
, we expand as

𝑇𝑛 (− 𝛿2 + 𝜖, 𝛿)
��
𝛿≠0,±2 =

(
𝛿2𝑛+1

4𝑛 + 𝜖
(
2[𝑛] 𝛿2

4
− 𝑛𝛿2𝑛

4𝑛−1

))
1𝑛 + 𝜖 (𝛿2−4)

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

(
𝛿
2
)2𝑘+1

𝑆
(𝑛)
𝑗 ,𝑘
(− 𝛿2 ) +O(𝜖

2),

(6.46)

𝑇𝑛 (−2
𝛿
+ 𝜖, 𝛿)

��
𝛿≠0,±2 =

(
𝛿−2𝜖 [𝑛] 4

𝛿2

)
1𝑛− 𝜖 (𝛿2−4)

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

( 2
𝛿

)2𝑘+1
𝑆
(𝑛)
𝑗 ,𝑘
(−2

𝛿
) +O(𝜖2), (6.47)
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and

𝑇𝑛 (−1+ 𝜖,2) = 2(1− 𝜖𝑛+ 𝜖2𝑛2)1𝑛−4𝜖2
𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑆
(𝑛)
𝑗 ,𝑘
(−1,2) +O(𝜖3), (6.48)

𝑇𝑛 (1+ 𝜖,−2) = −2(1+ 𝜖𝑛+ 𝜖2𝑛2)1𝑛−4𝜖2
𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑆
(𝑛)
𝑗 ,𝑘
(1,−2) +O(𝜖3). (6.49)

Proposition 6.1.8. For 𝑛 ∈N≥2, 𝛿 ≠ 0, and up to rescaling, the principal Hamiltonian for 𝑢∗ ∈ {− 𝛿2 ,−
2
𝛿
}

is given by

ℎ𝑢∗ =
1
𝑢𝑛−2
∗

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑢2𝑘
∗ 𝑆
(𝑛)
𝑗 ,𝑘
(𝑢∗). (6.50)

With the chosen normalisation, it holds that ℎ- 𝛿
2
= ℎ- 2

𝛿
.

Proof. The expression (6.50) follows from (3.56) and the expansions (6.46)–(6.49). The relation

ℎ- 𝛿
2
= ℎ- 2

𝛿
follows from Corollary 6.1.5. □

Although ℎ𝑛,- 2
𝛿

and ℎ𝑛,- 𝛿
2

are linearly dependent, ℎ𝑛,- 2
𝛿

and ℎ𝑛,0 are not. We also note that

ℎ𝑢∗ ∈ spanC[𝛿] (𝐵′𝑛), 𝑢∗ ∈ {0,−2
𝛿
}. (6.51)

For 𝑛 = 2,3,4,5, the principal Hamiltonian ℎ𝑛,- 2
𝛿

is given in Appendix A.5.2.

At the isotropic point 𝑢 = 1, Proposition 6.1.4 implies that

𝑇𝑛 (1, 𝛿) =
(
(𝑛+1)𝛿+2𝑛

)
1𝑛 + (𝛿+2)2

𝑛−2∑︁
𝑗=0

𝑛−2− 𝑗∑︁
𝑘=0

𝑆
(𝑛)
𝑗 ,𝑘
(1, 𝛿), (6.52)

and we note that 𝑇𝑛 (1,−2) = −21𝑛, in accordance with (6.49).

6.1.4 Minimal Hamiltonian polynomials

Since TL𝑛 (𝛿) is finite-dimensional, corresponding to each 𝑎 ∈ TL𝑛 (𝛿), there exists a unique monic

polynomial, of least positive degree, that annihilates 𝑎 – the so-called minimal polynomial of 𝑎. Let

𝑚
(𝑛)
𝑢∗ denote the minimal polynomial of ℎ𝑛,𝑢∗ for 𝛿 an indeterminate, and let 𝑚 (𝑛)

𝑢∗,𝛿
denote the minimal

polynomial of ℎ𝑛,𝑢∗ for 𝛿 ∈ C. Examples are provided in Appendix A.5.1 and Appendix A.5.2. We

denote the degrees of the minimal Hamiltonian polynomials, 𝑚 (𝑛)𝑢∗ and 𝑚 (𝑛)
𝑢∗,𝛿

, by

𝑙
(𝑛)
𝑢∗ := deg

(
𝑚
(𝑛)
𝑢∗

)
, 𝑙

(𝑛)
𝑢∗,𝛿

:= deg
(
𝑚
(𝑛)
𝑢∗,𝛿

)
. (6.53)

For ease of presentation, we let

𝔠𝑛 :=
(
𝑛

⌊ 𝑛2⌋

)
. (6.54)

Proposition 6.1.9. For each 𝑛 ∈ N≥2 and 𝑢∗ ∈ {0,−2
𝛿
}, we have

𝑙
(𝑛)
𝑢∗,𝛿
≤ 𝑙 (𝑛)𝑢∗ ≤ 𝔠𝑛. (6.55)
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Proof. For 𝜚𝑛 faithful, the minimal polynomial of 𝜚𝑛 (ℎ𝑢∗) is the same as that of ℎ𝑢∗ , irrespective

of 𝛿 being an indeterminate or taking on a complex value. Specialising 𝛿 to a complex value may

introduce spurious (see Section 4.3 and the remark following (6.58)) degeneracies in the spectrum of

𝜚𝑛 (ℎ𝑢∗), and such degeneracies could reduce the degree of the minimal polynomial of 𝜚𝑛 (ℎ𝑢∗). This

explains the first inequality. The second inequality follows from the existence of a 𝔠𝑛-dimensional

representation, 𝜚𝑛, that is faithful for 𝛿 an indeterminate. □

Remark. To appreciate the inequality 𝑙 (𝑛)
𝑢∗,𝛿
≤ 𝔠𝑛 directly, note that 𝜚𝑛 is a 𝔠𝑛-dimensional representation

that is faithful for all but finitely many 𝛿-values. The degree of the minimal polynomial for 𝛿 complex

and generic is thus bounded by 𝔠𝑛, and, possibly rescaled to remain well-defined, the corresponding

minimal polynomial will remain annihilating when specialising 𝛿 to one of these values. Such a

rescaling can be chosen such that the rescaled polynomial is nonzero when specialising 𝛿, and the

degree of this rescaled polynomial may decrease upon specialisation (this happens if and only if

the rescaling multiplies the leading monomial by a factor that is zero when specialised) but cannot

increase.

Proposition 6.1.10. Let 𝑛 ∈ N≥2, 𝑢∗ ∈ {0,−2
𝛿
}, and 𝛿 an indeterminate. Then, ℎ𝑛,𝑢∗ is non-derogatory

if and only if 𝑙 (𝑛)𝑢∗ = 𝔠𝑛.

Proof. For 𝜚𝑛 faithful, the minimal polynomial of ℎ𝑢∗ is the same as that of 𝜚𝑛 (ℎ𝑢∗), and ℎ𝑢∗ is non-

derogatory if and only if 𝜚𝑛 (ℎ𝑢∗) is non-derogatory. The latter is also equivalent to 𝑚𝜚𝑛 (ℎ𝑢∗ ) = 𝑐𝜚𝑛 (ℎ𝑢∗ ) ,

hence to deg(𝑚𝜚𝑛 (ℎ𝑢∗ )) = 𝔠𝑛. Since 𝜚𝑛 is faithful for 𝛿 an indeterminate, the result follows. □

Through direct computation, we have found that the spectrum of 𝜚𝑛 (ℎ0) for 𝛿 = −2 is non-

degenerate for 𝑛 = 2, . . . ,17. It follows that

𝑙
(𝑛)
0,−2 = 𝔠𝑛, 𝑛 = 2, . . . ,17. (6.56)

We likewise find that the spectrum of 𝜚𝑛 (ℎ𝑛,- 2
𝛿
) for 𝛿 = 𝜋+𝜋−1 is non-degenerate for 𝑛 = 2, . . . ,6, hence

𝑙
(𝑛)
- 2
𝛿
,𝜋+𝜋−1 = 𝔠𝑛, 𝑛 = 2, . . . ,6. (6.57)

The specific 𝛿-values in these computations are immaterial, as long as they are ‘sufficiently generic’.

Conjecture 6.1.11. For every 𝑛 ∈ N≥2, each 𝑢∗ ∈ {0,−2
𝛿
}, and 𝛿 an indeterminate, the spectrum of

𝜚𝑛 (ℎ𝑢∗) is non-degenerate.

This conjecture implies that, for every 𝑛 ∈ N≥2 and 𝑢∗ ∈ {0,−2
𝛿
}, we have

𝑙
(𝑛)
𝑢∗ = 𝔠𝑛. (6.58)

Remark. Necessary conditions for strict inequalities in (6.55) are the existence of spurious respectively

permanent degeneracies in the spectrum of 𝜚𝑛 (ℎ𝑢∗). However, these are not sufficient conditions as

the Jordan-block structure may ‘prevent’ a corresponding reduction in the degree of the minimal

polynomials.
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Proposition 6.1.12. Let 𝑛 ∈ N≥2 and 𝑢∗ ∈ {0,−2
𝛿
}. Then, there exist at most finitely many values 𝛿 ∈ C

for which the spectrum of 𝜚𝑛 (ℎ𝑢∗) possesses spurious degeneracies.

Proof. Since the matrix elements of 𝜚𝑛 (ℎ𝑢∗) are polynomial in 𝛿, the result follows from Proposition

4.3.1. □

Corollary 6.1.13. Let 𝑛 ∈ N≥2 and 𝑢∗ ∈ {0,−2
𝛿
}. Then, there exist at most finitely many 𝛿-values for

which

𝑙
(𝑛)
𝑢∗,𝛿

< 𝑙
(𝑛)
𝑢∗ . (6.59)

Proof. The result follows from Proposition 6.1.9 and Proposition 6.1.12. □

About the Jones-Wenzl idempotent, w𝑛, we note that (5.11) and (6.51) imply w𝑛ℎ𝑢∗ = ℎ𝑢∗w𝑛 = 0,

hence w𝑛 ∈ CTL𝑛 (𝛿) (ℎ𝑢∗). Assuming (6.58) holds, Proposition 6.1.10 then implies that w𝑛 ∈ ⟨ℎ𝑢∗⟩TL𝑛 (𝛿)

for 𝛿 an indeterminate. It follows that, for every 𝑛 ∈ N≥2 and each 𝑢∗ ∈ {0,−2
𝛿
}, there exists a

polynomial 𝑝 (𝑛)𝑢∗ such that 𝑝 (𝑛)𝑢∗ (0) = 1𝑛 and

w𝑛 = 𝑝
(𝑛)
𝑢∗ (ℎ𝑢∗), 𝑚

(𝑛)
𝑢∗ (ℎ𝑢∗) = ℎ𝑢∗w𝑛. (6.60)

Its degree is thus given by

deg(𝑝 (𝑛)𝑢∗ ) = 𝑙
(𝑛)
𝑢∗ −1 = 𝔠𝑛−1. (6.61)

By (6.56) and (6.57), the relations (6.60) and (6.61) do indeed hold for 𝑛 = 2, . . . ,17 in the case 𝑢∗ = 0,

and for 𝑛 = 2, . . . ,6 in the case 𝑢∗ = −2
𝛿
.

6.1.5 Transfer-operator Hamiltonian polynomials

The above spectral analysis of the principal Hamiltonians ℎ𝑛,𝑢∗ for small 𝑛, together with Proposition

6.1.14 below, indicates that these elements are viable candidates in terms of which the Temperley–Lieb

transfer operator 𝑇𝑛 (𝑢, 𝛿) is polynomial. We proceed by presenting explicit polynomial expressions of

𝑇𝑛 (𝑢, 𝛿) in terms of the principal Hamiltonians for small 𝑛, and by offering conjectures about the form

of such polynomials for general 𝑛.

Proposition 6.1.14. Let 𝑛 ∈ N≥2, 𝑢∗ ∈ {0,−2
𝛿
}, and 𝜓 denote a faithful representation of TL𝑛 (𝛿). If

the spectrum of 𝜓(ℎ𝑢∗) is non-degenerate, then 𝑇𝑛 (𝑢, 𝛿) is polynomial in ℎ𝑢∗ .

Proof. Let the spectrum of 𝜓(ℎ𝑢∗) be non-degenerate. Then, the characteristic and minimal poly-

nomials of 𝜓(ℎ𝑢∗) agree, so 𝜓(ℎ𝑢∗) is non-derogatory. Since 𝜓 is faithful, it follows that ℎ𝑢∗ is

non-derogatory, and since 𝑇𝑛 (𝑢, 𝛿) commutes with ℎ𝑢∗ , we have 𝑇𝑛 (𝑢, 𝛿) ∈ ⟨ℎ𝑢∗⟩TL𝑛 (𝛿) . □

Remark. In the following, we will use that 𝜚𝑛 is faithful for 𝛿 an indeterminate and for all but finitely

many 𝛿 ∈ C.

Because the matrix elements of 𝜚𝑛 (𝑇𝑛 (𝑢, 𝛿)) are polynomial in 𝛿, Proposition 4.3.1 implies that

there are at most finitely many 𝛿-values in C for which the spectrum of 𝜚𝑛 (𝑇𝑛 (𝑢, 𝛿)) possesses spurious
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degeneracies. Combined with the non-degeneracy observations implying (6.56) and (6.57), it follows

from Proposition 6.1.14 that for every 𝑛 = 2, . . . ,17, 𝑇𝑛 (𝑢, 𝛿) is polynomial in ℎ0 for all but finitely

many 𝛿-values, and that for every 𝑛 = 2, . . . ,6, 𝑇𝑛 (𝑢, 𝛿) is polynomial in ℎ- 2
𝛿

for all but finitely many

𝛿-values. For 𝑛 = 2, for example, we have ℎ- 2
𝛿
= −ℎ0 for 𝛿 ≠ 0, and

𝑇2(𝑢, 𝛿) =
(
𝛿[3]𝑢2 +2𝑢[2]𝑢2

)
12−𝑢(𝛿+2𝑢) (2+ 𝛿𝑢)ℎ0, (6.62)

valid for all 𝛿 ∈ C. In the following, we will argue that 𝑇𝑛 (𝑢, 𝛿) ∈ C[𝑢] [ℎ𝑢∗], 𝑢∗ ∈ {0,−2
𝛿
}, for every

𝑛 ∈ N≥2 and all but finitely many 𝛿-values. We refer to these values as ℎ𝑛,𝑢∗-exceptional and note that

the number of them, and their value will depend on 𝑛 and 𝑢∗.

Conjecture 6.1.15. Let 𝑛 ∈ N≥3 and 𝛿 an indeterminate. For each 𝑢∗ ∈ {0,−2
𝛿
}, 𝑇𝑛 (𝑢, 𝛿) admits a

unique decomposition of the form

𝑇𝑛 (𝑢, 𝛿) =
(
𝛿[𝑛+1]𝑢2 +2𝑢[𝑛]𝑢2

)
1𝑛 +

𝑢(𝛿+2𝑢) (2+ 𝛿𝑢)
𝑓𝑛,𝑢∗ (𝛿)

𝑙
(𝑛)
𝑢∗ −1∑︁
𝑖=1

𝑎
𝑛,𝑢∗
𝑖
(𝑢, 𝛿)ℎ𝑖𝑢∗ , (6.63)

where 𝑓𝑛,𝑢∗ (𝛿) is a monic polynomial and 𝑎𝑛,𝑢∗
𝑖
(𝑢, 𝛿) are polynomials such that no root of 𝑓𝑛,𝑢∗ (𝛿) is a

root of 𝑎𝑛,𝑢∗
𝑖
(𝑢, 𝛿) for all 𝑖 = 1, . . . , 𝑙 (𝑛)𝑢∗ −1.

For 𝑢∗ = 0, we have verified Conjecture 6.1.15 for 𝑛 = 3,4,5,6, finding

𝑓3,0(𝛿) = 𝑓4,0(𝛿) = 1, 𝑓5,0(𝛿) = (𝛿2 +4) (𝛿2− 1
2 ) (𝛿

4−27𝛿2 +121), (6.64)

and

𝑓6,0(𝛿) = 𝛿2(𝛿2 +2)
(
𝛿2− 1

6
) (
𝛿2− 1

4
) (
𝛿2− 5

4
)
(𝛿2−3)

(
𝛿2− 16

3
) (
𝛿2− 121

12
)(

𝛿4−14𝛿2 + 121
9

) (
𝛿4−25𝛿2− 121

2
) (
𝛿6− 41

4 𝛿
4 + 53

2 𝛿
2− 9

4
)
(𝛿6−18𝛿4 +81𝛿2−16)(

𝛿6 +11𝛿4 + 185
4 𝛿

2 + 121
2

) (
𝛿8 + 19

9 𝛿
6 + 467

18 𝛿
4 + 320

9 𝛿
2− 512

9
)
, (6.65)

while for 𝑢∗ = −2
𝛿
, we have verified it for 𝑛 = 3,4,5, finding

𝑓3,- 2
𝛿
(𝛿) = 𝛿6−64, (6.66)

𝑓4,- 2
𝛿
(𝛿) = (𝛿8−256)2(𝛿8 +8𝛿6 +32𝛿4 +256)

(
𝛿8 + 8

3𝛿
6−32𝛿4 + 256

3 𝛿
2− 256

3
)

(𝛿16−8𝛿14−64𝛿12 +640𝛿10 +512𝛿8−26624𝛿6 +98304𝛿4−131072𝛿2 +65536), (6.67)

𝑓5,- 2
𝛿
(𝛿) = (𝛿10−1024)3𝑝5(𝛿), (6.68)

where 𝑝5(𝛿) is a non-degenerate even polynomial of degree 198. Explicit expressions for the associated

polynomials 𝑎𝑛,𝑢∗
𝑖
(𝑢, 𝛿) are not presented here. Instead, explicit expressions for similar polynomials

are provided in a refined formulation, see Conjecture A.5.3 in Appendix A.5.3.

Conjecture 6.1.16. Let 𝑛 ∈ N≥3 and 𝛿 an indeterminate. Then,

𝑓𝑛,- 2
𝛿
(𝛿) = (𝛿2𝑛−4𝑛)𝑛−2𝑝𝑛 (𝛿), (6.69)

where 𝑝𝑛 (𝛿) is a non-degenerate even polynomial.
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If Conjecture 6.1.15 holds, then every ℎ𝑛,𝑢∗-exceptional 𝛿-value will be a root of 𝑓𝑛,𝑢∗ (𝛿). The

converse need not be true since 𝑇𝑛 (𝑢, 𝛿) could be polynomial in ℎ𝑛,𝑢∗ even if 𝛿 is a root of 𝑓𝑛,𝑢∗ (𝛿), see

below. Letting 𝐸𝑛,𝑢∗ denote the set of ℎ𝑛,𝑢∗-exceptional 𝛿-values and 𝑍𝑛,𝑢∗ the set of roots (or zeros) of

𝑓𝑛,𝑢∗ (𝛿), we thus have

𝐸𝑛,𝑢∗ ⊆ 𝑍𝑛,𝑢∗ . (6.70)

To appreciate what happens if this is not an equality, let 𝑢 ∉ {0,− 𝛿2 ,−
2
𝛿
} and rewrite (6.63) as

𝑙
(𝑛)
𝑢∗ −1∑︁
𝑖=1

𝑎
𝑛,𝑢∗
𝑖
(𝑢, 𝛿)ℎ𝑖𝑢∗ =

𝑓𝑛,𝑢∗ (𝛿)
𝑢(𝛿+2𝑢) (2+ 𝛿𝑢)

(
𝑇𝑛 (𝑢, 𝛿) −

(
𝛿[𝑛+1]𝑢2 +2𝑢[𝑛]𝑢2

)
1𝑛

)
. (6.71)

Specialising 𝛿 to a root, 𝛿𝑟 , of 𝑓𝑛,𝑢∗ (𝛿) then means that

𝑙
(𝑛)
𝑢∗ −1∑︁
𝑖=1

𝑎
𝑛,𝑢∗
𝑖
(𝑢, 𝛿)ℎ𝑖𝑢∗

��
𝛿=𝛿𝑟

= 0, (6.72)

and since at least one of the polynomials 𝑎𝑛,𝑢∗
𝑖
(𝑢, 𝛿) is nonzero when evaluated at 𝛿 = 𝛿𝑟 , it follows that

𝑙
(𝑛)
𝑢∗,𝛿𝑟

< 𝑙
(𝑛)
𝑢∗ . (6.73)

For 𝛿𝑟 ∈ 𝑍𝑛,𝑢∗ \𝐸𝑛,𝑢∗ , the decomposition (6.63) is replaced by

𝑇𝑛 (𝑢, 𝛿𝑟) =
(
𝛿𝑟 [𝑛+1]𝑢2 +2𝑢[𝑛]𝑢2

)
1𝑛 +𝑢(𝛿𝑟 +2𝑢) (2+ 𝛿𝑟𝑢)

𝑙
(𝑛)
𝑢∗ , 𝛿𝑟−1∑︁
𝑖=1

𝑎
𝑛,𝑢∗
𝑖,𝛿𝑟
(𝑢)ℎ𝑖𝑢∗

��
𝛿=𝛿𝑟

, (6.74)

where 𝑎𝑛,𝑢∗
𝑖,𝛿𝑟
(𝑢) is polynomial for all 𝑖. Although 𝑍3,0 = 𝑍4,0 = ∅ and 𝑍5,0 = 𝐸5,0, we find that such a

root 𝛿𝑟 does indeed exist for 𝑛 = 6, as

𝑍6,0 \𝐸6,0 = {0}. (6.75)

Note that 𝛿𝑟 = 0 is the only degenerate root of 𝑓6,0(𝛿). Through direct computation, we likewise find

that

𝑍𝑛,- 2
𝛿
= 𝐸𝑛,- 2

𝛿
, 𝑛 = 3,4,5, (6.76)

but have not managed to determine 𝑍𝑛,- 2
𝛿

and 𝐸𝑛,- 2
𝛿

for 𝑛 ≥ 6.

For 𝛿𝑟 ∈ 𝐸𝑛,𝑢∗ , 𝑇𝑛 (𝑢, 𝛿𝑟) is not expressible as a polynomial in ℎ𝑛,𝑢∗ . However, observing that

𝑍𝑛,0∩ 𝑍𝑛,- 2
𝛿
= ∅, 𝑛 = 3,4,5, (6.77)

we conclude that

𝐸𝑛,0∩𝐸𝑛,- 2
𝛿
= ∅, 𝑛 = 3,4,5. (6.78)

It follows that, for 𝑛 = 3,4,5 and every 𝛿 ∈ C, 𝑇𝑛 (𝑢, 𝛿) is polynomial in at least one of the two

Hamiltonians: ℎ𝑛,0 and ℎ𝑛,- 2
𝛿
.
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6.2 Tensor planar algebra: an eight-vertex model

In this section, we specialise to tensor planar algebras and thereby recover the familiar quantum

inverse scattering framework, in which case, the 𝑅-operators are tensorially separable, and outline

how the planar-algebraic framework simplifies. To illustrate, we consider a specialisation of the

zero-field eight-vertex model [66, 67] that satisfies the free-fermion condition, and whose principal

Hamiltonian corresponds to the Ising model Hamiltonian. The general model was solved by Baxter

in [34], see also [11], while our presentation highlights the underlying polynomial integrable structure

of a particular specialisation, by analysing the spectral properties of the transfer operator and the

associated Hamiltonian.

We thus show that the transfer operator of this specialised eight-vertex model is diagonablisable

and present an exact solution. Although the model is Yang–Baxter integrable, its simplicity allows

us to use standard techniques to obtain explicit expressions for all eigenvalues and corresponding

eigenvectors of the transfer operator. We then exploit similarities in the spectral properties of the

transfer operator and the Ising Hamiltonian to establish that the transfer operator is polynomial in

this element. Moreover, we decompose the transfer operator into an explicit linear combination of a

complete set of orthogonal idempotents expressed in terms of the minimal polynomial of the Ising

Hamiltonian.

6.2.1 Definition and cellularity

For each 𝑛 ∈ N0 and ℓ ∈ N, let 𝐸𝑛 denote the complex ℓ𝑛-dimensional vector space spanned by disks

with 𝑛 labelled boundary points where each label is taken from the set {1, . . . , ℓ}. As the disks do not

come equipped with any further (interior or otherwise) structure, we have 𝐸𝑛 � 𝐸⊗𝑛, where 𝐸 is an

ℓ-dimensional vector space.

The tensor planar algebra is the graded vector space (𝐸𝑛)𝑛∈N0 , together with the following action

of planar tangles: If a string in the planar tangle connects a pair of boundary points with different labels,

then the output is the zero vector, and if not, then the labels of the output vector are given by the labels

at the opposite string endpoints. If both endpoints of a string are on the exterior boundary of the planar

tangle, then the output vector is a sum obtained by varying the common label of the two endpoints.

Following from compatibility with the glueing of planar tangles, and using the evaluation map e (2.20),

a loop is accordingly replaced by the scalar ℓ. To illustrate, with 𝑇 as in (2.4) and 𝑎, 𝑏 ∈ C, we have

P𝑇
( •
•

3

1
, 𝑎

•
• ••

2

1 4
3 + 𝑏 •

• ••
2

3 4
3 , ••

••
• • 3

133

2 4

)
= 𝑎 •

• ••
2

1 4

3
•• •••
• 1

3

3
42

3

•
•
1

3

+ 𝑏 •
• ••

2

3 4

3
•• •••
• 1

3

3
42

3

•
•
1

3

= 𝑏 ℓ

ℓ∑︁
𝑘=1

••
•
•
••
••2 4 4

3
2

3𝑘
𝑘

.

(6.79)

We now equip each 𝐸2𝑛 with the multiplication induced by the unshaded planar tangle 𝑀𝑛 fol-

lowing from (2.26), and identify the first 𝑛 labels clockwise from the marked boundary interval as
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characterising an incoming vector, with the remaining 𝑛 labels characterising an outgoing vector. The

vector space 𝐸2𝑛 thus has the structure of an endomorphism algebra,

𝐸2𝑛 = End(𝐸⊗𝑛), (6.80)

and is consequently cellular.

6.2.2 Transfer operator

Let bases for 𝐸2 and 𝐸4 be given by

𝐵1 = {𝑒𝑘𝑗 | 𝑗 , 𝑘 ∈ {1, . . . , ℓ}}, 𝐵2 = {𝑒𝑘 𝑚𝑗 𝑙 | 𝑗 , 𝑘, 𝑙,𝑚 ∈ {1, . . . , ℓ}}, (6.81)

respectively, such that, viewed as matrices relative to the natural basis orderings, 𝑒𝑘
𝑗

are ℓ× ℓ matrix

units with 1 in position ( 𝑗 , 𝑘) and zeros elsewhere. By construction,

𝐸2𝑛 � [End(𝐸)]⊗𝑛, (6.82)

so every element of 𝐸4 is separable. In particular, the 𝐸4 basis vectors decompose as

𝑒𝑘 𝑚𝑗 𝑙 = 𝑒𝑘𝑗 ⊗ 𝑒𝑚𝑙 , 𝑗 , 𝑘, 𝑙,𝑚 ∈ {1, . . . , ℓ}. (6.83)

As parameterised elements of 𝐸2 and 𝐸4, respectively, the 𝐾- and 𝑅-operators (3.3) are here written

as

𝐾 (𝑢) =
ℓ∑︁

𝑗 ,𝑘=1
𝐾 𝑘𝑗 (𝑢) •

•𝑘

𝑗

, 𝑅(𝑢) =
ℓ∑︁

𝑗 ,𝑘,𝑙,𝑚=1
𝑅𝑘 𝑚𝑗 𝑙 (𝑢)

• •
• •

𝑘

𝑗

𝑚

𝑙
, 𝐾 (𝑢) =

ℓ∑︁
𝑗 ,𝑘=1

𝐾
𝑘

𝑗 (𝑢) •
•𝑘

𝑗

, (6.84)

where 𝐾 𝑘
𝑗
, 𝑅𝑘 𝑚

𝑗 𝑙
,𝐾

𝑘

𝑗 are scalar functions, and where we have attached short strings to the labelled

boundary points, for illustrative purposes. The separability of 𝐸4 allows us to write

𝑅(𝑢) =
ℓ∑︁

𝑗 ,𝑘,𝑙,𝑚=1
𝑅𝑘 𝑚𝑗 𝑙 (𝑢) •

•
𝑗

𝑘

•
•

𝑙

𝑚

=

ℓ∑︁
𝑗 ,𝑘,𝑙,𝑚=1

𝑅𝑘 𝑚𝑗 𝑙 (𝑢) 𝑒
𝑘
𝑗 ⊗ 𝑒𝑚𝑙 . (6.85)

Using the same scalar functions but with the upper indices interchanged, we get

𝑅̌(𝑢) =
ℓ∑︁

𝑗 ,𝑘,𝑙,𝑚=1
𝑅𝑘 𝑚𝑗 𝑙 (𝑢) •

•
𝑗

𝑘

•
•

𝑙

𝑚

=

ℓ∑︁
𝑗 ,𝑘,𝑙,𝑚=1

𝑅𝑘 𝑚𝑗 𝑙 (𝑢) •
•
𝑗

𝑚

•
•

𝑙

𝑘

=

ℓ∑︁
𝑗 ,𝑘,𝑙,𝑚=1

𝑅𝑘 𝑚𝑗 𝑙 (𝑢) 𝑒
𝑚
𝑗 ⊗ 𝑒𝑘𝑙 , (6.86)

in terms of which we construct the Sklyanin-type transfer operator 𝑇𝑛 (𝑢) ∈ 𝐸2𝑛, as in (3.43).

Accordingly, 𝑇𝑛 (𝑢) can be expressed familiarly as a vector-space trace over an auxiliary copy of

End(𝐸) in 𝐸2𝑛+2. In the following, the auxiliary space is the (𝑛+ 1)th copy, and the corresponding

trace is denoted by tr𝑛+1. For each 𝑖 = 1, . . . , 𝑛, we first introduce

𝑅𝑖,𝑛+1(𝑢) :=
ℓ∑︁

𝑗 ,𝑘,𝑙,𝑚=1
𝑅𝑘 𝑚𝑗 𝑙 (𝑢)1𝑖−1 ⊗ 𝑒𝑘𝑗 ⊗1𝑛−𝑖 ⊗ 𝑒𝑚𝑙 , (6.87)

𝑅𝑛+1,𝑖 (𝑢) :=
ℓ∑︁

𝑗 ,𝑘,𝑙,𝑚=1
𝑅𝑘 𝑚𝑗 𝑙 (𝑢)1𝑖−1 ⊗ 𝑒𝑚𝑙 ⊗1𝑛−𝑖 ⊗ 𝑒

𝑘
𝑗 , (6.88)
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where the indices 𝑖 and 𝑛+1 denote the copies of 𝐸 on which the operators act non-trivially, as well as

𝐾1(𝑢) :=
ℓ∑︁

𝑗 ,𝑘=1
𝐾 𝑘𝑗 (𝑢) 𝑒𝑘𝑗 ⊗1𝑛, 𝐾𝑛+1(𝑢) :=

ℓ∑︁
𝑗 ,𝑘=1

𝐾
𝑘

𝑗 (𝑢)1𝑛 ⊗ 𝑒𝑘𝑗 . (6.89)

The transfer operator can then be expressed in terms of the ‘pre-trace’ transfer operator

𝐿𝑛+1(𝑢) := 𝑅𝑛,𝑛+1(𝑢) · · ·𝑅1,𝑛+1(𝑢)𝐾1(𝑢)𝑅𝑛+1,1(𝑢) · · ·𝑅𝑛+1,𝑛 (𝑢)𝐾𝑛+1(𝑢) (6.90)

as

𝑇𝑛 (𝑢) = tr𝑛+1(𝐿𝑛+1(𝑢)). (6.91)

6.2.3 Eight-vertex model

For the remainder of this chapter, we let

dim(𝐸) = 2 (6.92)

and fix the parameterisation to an eight-vertex model, characterised by

𝑅𝑘 𝑚𝑗 𝑙 (𝑢) =



1, 𝑗 = 𝑚, 𝑙 = 𝑘,

𝑢, 𝑗 = 𝑙, 𝑘 = 𝑚, 𝑗 ≠ 𝑘,

𝑢, 𝑗 = 𝑘, 𝑙 = 𝑚, 𝑗 ≠ 𝑙,

0, otherwise,

𝐾 𝑘𝑗 (𝑢) = 𝐾
𝑘

𝑗 (𝑢) =


1, 𝑗 = 𝑘,

0, 𝑗 ≠ 𝑘.
(6.93)

Working in the natural matrix representation where 𝑒𝑘
𝑗

are matrix units, and where 1 denotes the 2×2
identity matrix, the 𝑅- and 𝐾-operators can be expressed in terms of Pauli matrices as

𝑅(𝑢) = 1
2
[
(1+𝑢) (1⊗1+𝜎𝑥 ⊗𝜎𝑥) + (1−𝑢) (𝜎𝑦 ⊗𝜎𝑦 +𝜎𝑧 ⊗𝜎𝑧)

]
, 𝐾 (𝑢) = 𝐾 (𝑢) = 1. (6.94)

It follows that

𝑅2(𝑢) = (1+𝑢2)1⊗1+2𝑢𝜎𝑥 ⊗𝜎𝑥 , (6.95)

𝑅(𝑢) (1⊗𝜎𝑥)𝑅(𝑢) = (1+𝑢2)𝜎𝑥 ⊗1+2𝑢1⊗𝜎𝑥 , (6.96)

and using the standard notation

𝜎𝛼𝑚,𝑖 := 1𝑖−1 ⊗𝜎𝛼 ⊗1𝑚−𝑖, 𝛼 ∈ {𝑥, 𝑦, 𝑧}, 𝑖 ∈ {1, . . . ,𝑚}, 𝑚 ∈ N, (6.97)

we then have the following result.

Lemma 6.2.1. 𝐿𝑛+1(𝑢) is polynomial in 𝜎𝑥
𝑛+1,1, . . . ,𝜎

𝑥
𝑛+1,𝑛+1.
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It follows that

𝐿𝑛+1(𝑢) = 𝐿 (0)𝑛 (𝑢) ⊗1+ 𝐿 (1)𝑛 (𝑢) ⊗𝜎𝑥 , (6.98)

for some 𝐿 (0)𝑛 (𝑢), 𝐿 (1)𝑛 (𝑢) ∈ 𝐸2𝑛, and consequently that

𝑇𝑛 (𝑢) = 2𝐿 (0)𝑛 (𝑢) (6.99)

and

[𝑇𝑛 (𝑢),𝑇𝑛 (𝑣)] = 0, ∀ 𝑢, 𝑣 ∈ C. (6.100)

The next result allows us to determine the polynomial structures of 𝐿𝑛+1(𝑢) and 𝑇𝑛 (𝑢).

Proposition 6.2.2. With 𝐿1(𝑢) ≡ 1 and 𝑇1(𝑢) = 2(1 + 𝑢2)1, the matrices 𝐿𝑛+1(𝑢) and 𝑇𝑛 (𝑢) are

determined recursively by

𝐿𝑛+1(𝑢) =
(
(1+𝑢2)1𝑛+1 +2𝑢𝜎𝑥 ⊗𝜎𝑥 ⊗1𝑛−1

) (
1⊗ 𝐿𝑛 (𝑢)

)
, (6.101)

𝑇𝑛 (𝑢) =
(
(1+𝑢2)1𝑛 +2𝑢𝜎𝑥 ⊗𝜎𝑥 ⊗1𝑛−2

) (
1⊗𝑇𝑛−1(𝑢)

)
. (6.102)

Proof. Using 𝐾 (𝑢) = 𝐾 (𝑢) = 1 and that 𝑅𝑛+1,𝑖 (𝑢) = 𝑅𝑖,𝑛+1(𝑢) for all 𝑖, the relation (6.101) follows

from

𝐿𝑛+1(𝑢) = 𝑅𝑛,𝑛+1(𝑢) · · ·𝑅1,𝑛+1(𝑢)𝑅1,𝑛+1(𝑢) · · ·𝑅𝑛,𝑛+1(𝑢)

= 𝑅𝑛,𝑛+1(𝑢) · · ·𝑅2,𝑛+1(𝑢)
[
(1+𝑢2)1𝑛+1 +2𝑢𝜎𝑥 ⊗1𝑛−1 ⊗𝜎𝑥

]
𝑅2,𝑛+1(𝑢) · · ·𝑅𝑛,𝑛+1(𝑢)

= (1+𝑢2)1⊗ 𝐿𝑛 (𝑢) +2𝑢𝜎𝑥 ⊗
(
𝑅𝑛−1,𝑛 (𝑢) · · ·𝑅1,𝑛 (𝑢) [1𝑛−1 ⊗𝜎𝑥]𝑅1,𝑛 (𝑢) · · ·𝑅𝑛−1,𝑛 (𝑢)

)
=

(
(1+𝑢2)1𝑛+1

) (
1⊗ 𝐿𝑛 (𝑢)

)
+2𝑢𝜎𝑥 ⊗

(
𝑅𝑛−1,𝑛 (𝑢) · · ·𝑅2,𝑛 (𝑢) [𝜎𝑥 ⊗1𝑛−1]𝑅1,𝑛 (𝑢)𝑅1,𝑛 (𝑢) · · ·𝑅𝑛−1,𝑛 (𝑢)

)
=

(
(1+𝑢2)1𝑛+1

) (
1⊗ 𝐿𝑛 (𝑢)

)
+2𝑢

(
𝜎𝑥 ⊗𝜎𝑥 ⊗1𝑛−1

) (
1⊗ 𝐿𝑛 (𝑢)

)
, (6.103)

where the fourth equality is a consequence of

𝑅(𝑢) (1⊗𝜎𝑥)𝑅(𝑢) = (𝜎𝑥 ⊗1)𝑅2(𝑢). (6.104)

The relation (6.102) is an immediate consequence of (6.101). □

In preparation for giving explicit expressions for 𝑇𝑛 (𝑢), let

𝐼𝑛,𝑘 := {(𝑖1, . . . , 𝑖2𝑘 ) ∈ N2𝑘 | 1 ≤ 𝑖1 < · · · < 𝑖2𝑘 ≤ 𝑛}, 𝑘 = 1, . . . , ⌊ 𝑛2⌋, (6.105)

and define

𝜅𝑛,𝑘 : 𝐼𝑛,𝑘 → Z, (𝑖1, . . . , 𝑖2𝑘 ) ↦→
2𝑘∑︁
𝑙=1
(−1)𝑙𝑖𝑙 . (6.106)

Note that 𝜅𝑛,𝑘 (𝜄) ∈ {1, . . . , 𝑛−1} for all 𝜄 ∈ 𝐼𝑛,𝑘 .
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Proposition 6.2.3. The transfer operator admits the multiplicative expression

𝑇𝑛 (𝑢) = 2(1+𝑢2)
𝑛−1∏
𝑖=1

[
(1+𝑢2)1𝑛 +2𝑢𝜎𝑥𝑛,𝑖𝜎

𝑥
𝑛,𝑖+1

]
(6.107)

and the additive expression

𝑇𝑛 (𝑢) = 2(1+𝑢2)𝑛1𝑛 +2(1+𝑢2)
⌊ 𝑛2 ⌋∑︁
𝑘=1

∑︁
𝜄=(𝑖1,...,𝑖2𝑘)∈𝐼𝑛,𝑘

(1+𝑢2)𝑛−𝜅𝑛,𝑘 (𝜄) (2𝑢)𝜅𝑛,𝑘 (𝜄)𝜎𝑥𝑛,𝑖1 · · ·𝜎
𝑥
𝑛,𝑖2𝑘

. (6.108)

Proof. The multiplicative expression is readily seen to satisfy the recursion relation (6.102), including

the initial condition for 𝑛 = 1. The additive expression follows by expanding the multiplicative

expression. □

We let |±⟩ denote eigenvectors of 𝜎𝑥 ,

𝜎𝑥 |±⟩ = ±|±⟩, |±⟩ :=

[
1
±1

]
, (6.109)

and let

𝐾𝑛 : {±}𝑛→ {0,1, . . . , 𝑛−1}, (𝑠1, . . . , 𝑠𝑛) ↦→
𝑛−1∑︁
𝑖=1
|𝑠𝑖 − 𝑠𝑖+1 |, (6.110)

denote the function that counts the number of sign changes present in (𝑠1, . . . , 𝑠𝑛) ∈ {±}𝑛. The

pre-images

V𝑛,𝑘 := spanC{|𝐾−1
𝑛 (𝑘)⟩}, 𝑘 = 0,1, . . . , 𝑛−1, (6.111)

have dimension

dimV𝑛,𝑘 = 2
(
𝑛−1
𝑘

)
, (6.112)

consistent with

dim(𝐸⊗𝑛) =
��{±}𝑛�� = 2𝑛 =

𝑛−1∑︁
𝑘=0

dimV𝑛,𝑘 . (6.113)

Proposition 6.2.4. The transfer operator 𝑇𝑛 (𝑢) is diagonalisable, with eigenvectors

|s⟩ = |𝑠1⟩ ⊗ · · · ⊗ |𝑠𝑛⟩, s = (𝑠1, . . . , 𝑠𝑛) ∈ {±}𝑛, (6.114)

and corresponding eigenvalues

𝜆s(𝑢) = 2(1+𝑢2) (1−𝑢)2𝐾𝑛 (s) (1+𝑢)2(𝑛−1−𝐾𝑛 (s)) . (6.115)

Proof. The result follows from the multiplicative expression (6.107). □

The following result readily follows from Proposition 6.2.4.

Corollary 6.2.5. For each 𝑘 = 0,1, . . . , 𝑛 − 1, V𝑛,𝑘 is the 𝑇𝑛 (𝑢)-eigenspace corresponding to the

eigenvalue 2(1+𝑢2) (1−𝑢)2𝑘 (1+𝑢)2(𝑛−1−𝑘) , and we have the eigenspace decomposition

𝐸⊗𝑛 =
𝑛−1⊕
𝑘=0
V𝑛,𝑘 . (6.116)
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6.2.4 Polynomial integrability

Since 𝑇𝑛 (𝑢) is diagonalisable and satisfies (6.100), the corresponding eight-vertex model is polyno-

mially integrable. As we show in the following, the transfer operator is polynomial in the principal

Hamiltonian given in (6.118).

It follows from Proposition 6.2.3 that 𝑢∗ = 0 is the only identity point, with

𝑇𝑛 (𝜖) = 21𝑛 +4𝜖
𝑛−1∑︁
𝑖=1
𝜎𝑥𝑛,𝑖𝜎

𝑥
𝑛,𝑖+1 +O(𝜖

2). (6.117)

The corresponding (renormalised) principal Hamiltonian is given by

ℎ𝑛 =

𝑛−1∑︁
𝑖=1
𝜎𝑥𝑛,𝑖𝜎

𝑥
𝑛,𝑖+1. (6.118)

Proposition 6.2.6. The principal Hamiltonian ℎ𝑛 is diagonalisable, with eigenvectors

|s⟩ = |𝑠1⟩ ⊗ · · · ⊗ |𝑠𝑛⟩, s = (𝑠1, . . . , 𝑠𝑛) ∈ {±}𝑛, (6.119)

and corresponding eigenvalues

𝜇s = 𝑛−1−2𝐾𝑛 (s). (6.120)

Moreover, for each 𝑘 = 0,1, . . . , 𝑛− 1, V𝑛,𝑘 is the ℎ𝑛-eigenspace corresponding to the eigenvalue

𝑛−1−2𝑘 .

Proof. The result follows from (6.118). □

Remark. The eigenvalues of 𝑇𝑛 (𝑢) and ℎ𝑛 are related as

𝜆s(𝜖) = 2
[
1+2𝜖 𝜇s +O(𝜖2)

]
, ∀s ∈ {±}𝑛. (6.121)

The form of the minimal polynomial of ℎ𝑛 follows from Proposition 6.2.6. To fix our notation, we

define the polynomials

𝑚 𝑗 (𝑥) :=
𝑗−1∏
𝑘=0
[𝑥− ( 𝑗 −1−2𝑘)], 𝑗 ∈ N. (6.122)

Corollary 6.2.7. The minimal polynomial of ℎ𝑛 is 𝑚𝑛.

Although ℎ𝑛 is not non-derogatory, it follows from Corollary 6.2.5 and Proposition 6.2.6 that

𝑇𝑛 (𝑢) ∈ C(𝑢) [ℎ𝑛] . (6.123)

The next result provides details of this polynomial. In preparation, let 𝜆𝑘 (𝑢) and 𝜇𝑘 denote the eigen-

values corresponding to the (joint) eigenspacesV𝑛,𝑘 , 𝑘 = 0,1, . . . , 𝑛−1, of 𝑇𝑛 (𝑢) and ℎ𝑛, respectively.

For ease of reference, we recall their expressions,

𝜆𝑘 (𝑢) = 2(1+𝑢2) (1−𝑢)2𝑘 (1+𝑢)2(𝑛−1−𝑘) , 𝜇𝑘 = 𝑛−1−2𝑘, (6.124)
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and introduce the 𝑛×𝑛 matrix

V𝑛 :=



1 𝜇0 . . . 𝜇𝑛−1
0

1 𝜇1 . . . 𝜇𝑛−1
1

...
...

. . .
...

1 𝜇𝑛−1 . . . 𝜇𝑛−1
𝑛−1


, 𝑛 ∈ N. (6.125)

Since this is a Vandermonde matrix with 𝜇𝑖 ≠ 𝜇 𝑗 for all 𝑖 ≠ 𝑗 , it is invertible, and the inverse can be

evaluated explicitly. For every 𝑛 ∈ N, we let 𝑚0(ℎ𝑛) ≡ ℎ0
𝑛 ≡ 1𝑛.

Proposition 6.2.8. For every 𝑛 ∈ N and all 𝑢 ∈ C, we have

𝑇𝑛 (𝑢) =
𝑛−1∑︁
𝑖=0
𝜏𝑖 (𝑢)ℎ𝑖𝑛, (6.126)

where

𝜏𝑖 (𝑢) =
𝑛−1∑︁
𝑗=0
[V−1

𝑛 ]𝑖+1, 𝑗+1𝜆 𝑗 (𝑢), 𝑖 = 0,1, . . . , 𝑛−1. (6.127)

Proof. That an expression of the form (6.126) exists follows from (6.123) and Corollary 6.2.7. Using

the common eigenbasis {|s⟩| s ∈ {±}𝑛} of 𝑇𝑛 (𝑢) and ℎ𝑛 to diagonalise the expression, yields

diag
(
𝜆0(𝑢),𝜆1(𝑢), . . . ,𝜆𝑛−1(𝑢)

)
=

𝑛−1∑︁
𝑖=0

diag
(
𝜏𝑖 (𝑢)𝜇𝑖0, 𝜏𝑖 (𝑢)𝜇

𝑖
1, . . . , 𝜏𝑖 (𝑢)𝜇

𝑖
𝑛−1

)
, (6.128)

where we have omitted repeated eigenvalues. Compressing the diagonal matrices into vectors, we

obtain 

𝜆0(𝑢)

𝜆1(𝑢)
...

𝜆𝑛−1(𝑢)


=



1 𝜇0 . . . 𝜇𝑛−1
0

1 𝜇1 . . . 𝜇𝑛−1
1

...
...

. . .
...

1 𝜇𝑛−1 . . . 𝜇𝑛−1
𝑛−1





𝜏0(𝑢)

𝜏1(𝑢)
...

𝜏𝑛−1(𝑢)


, (6.129)

and since V𝑛 is invertible, (6.127) follows. □

For each 𝑖 = 0,1, . . . , 𝑛−1, we let

𝑚
(𝑖)
𝑛 (𝑥) :=

𝑛−1∏
𝑘=0
𝑘≠𝑖

(𝑥− 𝜇𝑘 ), (6.130)

and note that

𝑚𝑛 (𝑥) = (𝑥− 𝜇𝑖)𝑚 (𝑖)𝑛 (𝑥), 𝑚
(𝑖)
𝑛 (𝜇 𝑗 ) = 𝛿𝑖 𝑗 (−1)𝑖 (2𝑛−2)!!

(
𝑛−1
𝑖

)−1
. (6.131)

Since 𝑚 (𝑖)𝑛 (𝜇𝑖) ≠ 0 for all 𝑖, we can renormalise the polynomials (6.130) as

𝑚̂
(𝑖)
𝑛 (𝑥) :=

𝑚
(𝑖)
𝑛 (𝑥)

𝑚
(𝑖)
𝑛 (𝜇𝑖)

, 𝑖 = 0,1, . . . , 𝑛−1. (6.132)
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In terms of these polynomials, we now define

p𝑖 := 𝑚̂ (𝑖)𝑛 (ℎ𝑛), 𝑖 = 0,1, . . . , 𝑛−1. (6.133)

Using standard arguments, we have the following result.

Proposition 6.2.9. {p𝑖 | 𝑖 = 0,1, . . . , 𝑛−1} is a complete set of orthogonal idempotents:

𝑛−1∑︁
𝑖=0

p𝑖 = 1𝑛, p 𝑗p𝑘 = 𝛿 𝑗 𝑘p𝑘 , ∀ 𝑗 , 𝑘 ∈ {0,1, . . . , 𝑛−1}. (6.134)

Proof. By construction, each 𝑚̂ (𝑖)𝑛 (𝑥) is a polynomial of degree 𝑛−1, so
∑𝑛−1
𝑖=0 𝑚̂

(𝑖)
𝑛 (𝑥) is a polynomial

of degree at most 𝑛− 1. Since 𝑚̂ (𝑖)𝑛 (𝜇 𝑗 ) = 𝛿𝑖 𝑗 for all 𝑖, 𝑗 , we have
∑𝑛−1
𝑖=0 𝑚̂

(𝑖)
𝑛 (𝜇 𝑗 ) = 1 for every 𝑗 ∈

{0,1, . . . , 𝑛−1}, and since |{𝜇0, 𝜇1, . . . , 𝜇𝑛−1}| = 𝑛, it follows that
∑𝑛−1
𝑖=0 𝑚̂

(𝑖)
𝑛 (𝑥) = 1, hence

∑𝑛−1
𝑖=0 p𝑖 = 1𝑛.

For 𝑗 ≠ 𝑘 , we have

p 𝑗p𝑘 =
𝑚𝑛 (ℎ𝑛)

𝑚
( 𝑗)
𝑛 (𝜇 𝑗 )𝑚 (𝑘)𝑛 (𝜇𝑘 )

𝑛−1∏
𝑖=0
𝑖≠ 𝑗 ,𝑘

(ℎ𝑛− 𝜇𝑖1𝑛) = 0. (6.135)

Finally, for each 𝑘 = 0,1, . . . , 𝑛−1, we have(
𝑚
(𝑘)
𝑛 (𝑥) −𝑚 (𝑘)𝑛 (𝜇𝑘 )

) ��
𝑥=𝜇𝑘

= 0, (6.136)

so

𝑚
(𝑘)
𝑛 (𝑥) −𝑚 (𝑘)𝑛 (𝜇𝑘 ) = (𝑥− 𝜇𝑘 )𝑞𝑘 (𝑥), (6.137)

for some polynomial 𝑞𝑘 (𝑥). It follows that

p𝑘p𝑘 −p𝑘 =
(ℎ𝑛− 𝜇𝑘1𝑛)𝑞𝑘 (ℎ𝑛)

𝑚
(𝑘)
𝑛 (𝜇𝑘 )

𝑚̂
(𝑘)
𝑛 (ℎ𝑛) =

𝑞𝑘 (ℎ𝑛)(
𝑚
(𝑘)
𝑛 (𝜇𝑘 )

)2 𝑚𝑛 (ℎ𝑛) = 0. (6.138)

□

Lemma 6.2.10. For each 𝑖 = 0,1, . . . , 𝑛−1, we have

ker(p𝑖) =
𝑛−1⊕
𝑘=0
𝑘≠𝑖

V𝑛,𝑘 , im(p𝑖) =V𝑛,𝑖 . (6.139)

Proof. Let 𝑖, 𝑘 ∈ {0,1, . . . , 𝑛−1} and 𝑣 ∈ V𝑛,𝑘 . Then,

p𝑖𝑣 = 𝑚̂
(𝑖)
𝑛 (𝜇𝑘 )𝑣 = 𝛿𝑖𝑘𝑣, (6.140)

and since p𝑖 is an idempotent, the result follows. □

Proposition 6.2.11. For every 𝑛 ∈ N and all 𝑢 ∈ C, we have

𝑇𝑛 (𝑢) =
𝑛−1∑︁
𝑖=0
𝜆𝑖 (𝑢)p𝑖 =

𝑛−1∑︁
𝑖=0

(
𝑛−1
𝑖

)
(−1)𝑖𝜆𝑖 (𝑢)
(2𝑛−2)!! 𝑚

(𝑖)
𝑛 (ℎ𝑛). (6.141)
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Proof. The result follows from Proposition 6.2.4, Corollary 6.2.5, Lemma 6.2.10 and (6.131). □

Alternative expressions for 𝑇𝑛 (𝑢) can be obtained, for example by evaluating the inverse V−1
𝑛

explicitly and using

𝑚𝑛 (𝑥) = 𝑥𝑛−
𝑛−1∑︁
𝑖, 𝑗=0
[V−1

𝑛 ]𝑖−1, 𝑗−1𝜇
𝑛
𝑗𝑥
𝑖 . (6.142)

We thus conjecture that 𝑇𝑛 (𝑢) admits the following expression in terms of the double factorial binomial

coefficient [68], ((
𝑛1
𝑛2

))
:=

𝑛1!!
𝑛2!! (𝑛1−𝑛2)!!

. (6.143)

Conjecture 6.2.12. For every 𝑛 ∈ N and all 𝑢 ∈ C, we have

𝑇𝑛 (𝑢) = 2
𝑛−1∑︁
𝑘=0
(1+𝑢2)𝑛−𝑘 (2𝑢)𝑘

⌊ 𝑘2 ⌋∑︁
𝑗=0

((
𝑛− 𝑘 −2+2 𝑗

2 𝑗

)) (−1) 𝑗𝑚𝑘−2 𝑗 (ℎ𝑛)
(𝑘 −2 𝑗)! . (6.144)

We have verified Conjecture 6.2.12 for 𝑛 = 1, . . . ,180.
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Chapter 7

Loop models on causal triangulations

In this chapter, we develop a planar-algebraic framework to describe and analyse statistical mechanical

models on two-dimensional causal dynamical triangulations. We introduce a dense and a dilute loop

model, each defined in terms of an underlying transfer operator (distinct from the one defined in

Section 3.1), and whose underlying algebraic structure is endowed from the tensor planar algebra.

Both models are characterised by a geometric coupling constant 𝑔 and a loop parameter 𝛼 such that the

purely geometric causal triangulation model is recovered for 𝛼 = 1. We show that the dense loop model

can be mapped to a solvable planar tree model, whose partition function we compute explicitly and use

to determine the critical behaviour of the loop model. The dilute loop model can likewise be mapped

to a planar tree model; however, a closed-form expression for the corresponding partition function is

not obtainable using the standard methods employed in the dense case. Instead, we derive bounds on

the critical coupling 𝑔𝑐 and apply transfer operator techniques to examine the critical behaviour for 𝛼

small.

7.1 Background

If a two-dimensional statistical mechanical model with a second-order phase transition is coupled

to a random background, its critical exponents may change and there may be a back-reaction on the

background geometry changing its Hausdorff dimension. A prominent example of this phenomenon is

the Ising model on a random two-dimensional triangulation (or quadrangulation), as demonstrated

in [69]. Other examples are dimer models [70], Potts models [71, 72], and multicritical models [73],

see also [74] for an overview. The relation between the critical exponents, or scaling dimensions, of a

matter field on a flat background and on a random curved background is given quite generally by the

KPZ-formula of Liouville quantum gravity [75]. A conjectured formula for the Hausdorff dimension

of the background geometry as a function of the central charge of the matter fields can be found in [76],

although recent mathematical results in Liouville quantum gravity [77, 78] imply restrictions on the

possible range of validity of this formula.

It is natural to ask how universal this so-called dressing of critical exponents is with respect to the
113
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ensembles of background geometries considered. In particular, it is natural to compare the ensemble

of unrestricted dynamical triangulations (DT) (see e.g. [74]) considered in the references above, with

the ensemble of causal dynamical triangulations (CDT) [79]. Without coupling to a matter system,

these ensembles, which we shall call pure DT and pure CDT in the following, exhibit different critical

behaviours, the former having Hausdorff dimension 4 [80,81], while the latter has Hausdorff dimension

2 [82]. Very few analytical results are available concerning matter systems coupled to CDT. A number

of numerical studies have been carried out, notably for Ising type and Potts type models [83–85], but

there is no clear indication of a change in the critical exponents. In [86, 87], a class of restricted dimer

models are mapped to certain labelled tree models. Using this, the corresponding Hausdorff dimension

is found to be affected by the dimer system, although the underlying mechanism remains unclear. In

the work [88], a class of CDT models with curvature-dependent weights is found to exhibit the same

scaling behaviour as pure CDT.

In statistical mechanics, one usually works with local degrees of freedom, such as spins or heights,

as in the Ising and Potts models above. However, percolation and polymer systems, for example,

require that one keeps track of connectivities or some other inherently nonlocal degrees of freedom

and this paradigm shift has a profound effect on the physical properties of the models. Critical

fully-packed loop models on regular square lattices have thus been found to give rise to logarithmic

conformal field theories in the continuum scaling limit [21]. Using underlying Temperley–Lieb

algebraic structures [13, 89], these loop models are found to be Yang–Baxter integrable and amenable

to exact solutions. One of these models describes critical dense polymers and has been solved exactly

on the strip [46], the cylinder [64] and the torus [90], confirming predictions about scaling dimensions

made in [91–93]. Other types of loop models have also been constructed, including dilute loop models

associated with the O(𝑛) models [94, 95] where the configurations may contain spaces of variable

sizes in between the loop segments. Loop models have also been coupled to random surfaces [73, 96],

including random triangulations [97,98]. However, to the best of our knowledge, loop models have yet

to be coupled to CDT.

In this chapter, we introduce and study two models of loop configurations on two-dimensional

causal dynamical triangulations: a dense loop model and a dilute loop model, reminiscent of the familiar

fully-packed and dilute loop models, respectively. Both models are characterised by a geometric

coupling constant 𝑔 associated with the underlying triangulations, as in pure CDT, and a loop parameter

𝛼 that encodes the relative weights of the admissible loop configurations on individual elementary

triangles. No weight is associated with the number of closed loops in the models considered here,

effectively setting the corresponding loop fugacities to 1. We show that the known correspondence

between pure CDT and planar trees [82, 99] extends to each of the loop models and a corresponding

class of labelled trees. This implies simple relations between the partition functions of the loop models

and those of the associated labelled tree models. In the case of the dense loop model, we solve the

corresponding tree model exactly and find that its Hausdorff dimension equals that of pure CDT. The

critical behaviour of the loop model is readily extracted from the closed-form expression we obtain

for the partition function following our tree analysis. Although the dilute loop model can likewise be
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mapped to a planar tree model, a closed-form expression for the corresponding partition function is not

obtainable using the techniques employed in the dense case. Instead, we employ analyticity arguments,

centred around the transfer operator, to examine the critical behaviour of the loop model for 𝛼 close to

0. We conclude that the critical behaviour for 𝛼 small is different from that of pure CDT, and provide

an explanation for this difference. Based on results in [100], we argue that the Hausdorff dimension

equals 1 in this phase. While these results may hold for more general values of 𝛼, our analysis has not

been able to confirm this. In fact, it is consistent with our findings that there exists a transition point

𝛼0 ∈ (0,1) at which the scaling behaviour changes.

7.2 Loop models

We begin in Section 7.2.1 by recalling the properties of two-dimensional causal dynamical triangula-

tions, which we refer to simply as causal triangulations. By considering dual causal triangulations,

we develop a planar-algebraic framework to describe models on causal triangulations. While the

underlying algebraic structure of this framework is identical to that of Chapter 3, the transfer operator

used to describe models on causal triangulations is distinct. As an application of this framework, we

define a pure CDT model in Section 7.2.2, a dense loop model in Section 7.2.3 and a dilute loop model

in Section 7.2.4, and formulate each in a planar-algebraic setting.

7.2.1 Causal triangulations

A causal triangulation of the disk is defined by a central vertex 𝑥, a distinguished vertex 𝑣1 in 𝑆1,

and a sequence of concentric cycles (circular graphs) 𝑆0 ≡ {𝑥}, 𝑆1, . . . , 𝑆𝑚 where 𝑚 ∈ N is the height,

such that for each 𝑘 = 0, . . . ,𝑚−1 edges connect vertices between each cycle 𝑆𝑘 and 𝑆𝑘+1 as to form a

triangulation. We denote by 𝐴𝑘 the annulus bounded by 𝑆𝑘 and 𝑆𝑘+1, and note that 𝐴0 is simply a disk

with boundary 𝑆1 and a central node 𝑥. The natural ordering on the concentric cycles is interpreted as

encoding a natural time direction; with the inner-most (𝑆0) and outer-most (𝑆𝑚) cycles denoting the

first and last instant of time respectively. Accordingly, edges within each cycle are called space-like

and are here coloured red, while edges connecting two cycles are called time-like and are here coloured

black, see for example Figure 7.1c. For a given 𝑆𝑘 we denote the number of space-like edges by |𝑆𝑘 |
and note that |𝑆0 | = 0, while |𝑆𝑘 | > 0 for all 𝑘 ∈ N. Within each 𝐴𝑘 , an elementary triangle is either

forward-directed with a single node in 𝑆𝑘+1 and the remaining two nodes in 𝑆𝑘 , or backward-directed

with a single node in 𝑆𝑘 and the remaining two nodes in 𝑆𝑘+1.

As a means to orient causal triangulations, beginning with the distinguished vertex 𝑣1 in 𝑆1, we

introduce a procedure that assigns a distinguished vertex 𝑣𝑘 in 𝑆𝑘 for all 𝑘 = 1 . . .𝑚. From 𝑣1, travel

along the right-most emanating edge to a vertex in 𝑆2 that we denote by 𝑣2. Likewise, 𝑣2 is connected to

a vertex denoted by 𝑣3 in 𝑆3 by travelling along its right-most emanating edge. Repeating this procedure

until we arrive at a vertex in 𝑆𝑚, we have a sequence of distinguished vertices 𝑣0 ≡ 𝑥, 𝑣1, . . . 𝑣𝑚 where

each neighbouring pair is connected by a time-like edge: {𝑣𝑘 , 𝑣𝑘+1} for 𝑘 = 0, . . . ,𝑚−1. Relative to the
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distinguished vertex 𝑣𝑘 , space-like edges in 𝑆𝑘 are assigned a clockwise order. Accordingly, the first

space-like edge within each annulus 𝐴𝑘 corresponds to a forward-directed triangle for all 𝑘 = 1, . . . ,𝑚.

Note that the above prescription can be adapted to define a causal triangulation of the cylinder and

of the sphere. For the cylinder, the cycle 𝑆0 is omitted, and the first instant of time is therefore given

by 𝑆1. While for the sphere, we introduce the cycle 𝑆𝑚+1 ≡ {𝑦} as the pole opposite to 𝑆0 and adjoin

forward-directed triangles to each of the space-like edges in 𝑆𝑚 such that each of these triangles are

connected to the unique vertex 𝑦 in 𝑆𝑚+1. See Figure 7.1 for an example of a causal triangulation of

each of these topologies.

To each causal triangulation of the disk, cylinder or sphere there is a unique dual triangulation

constructed as follows: assign a trivalent dual vertex to each of the elementary triangles such that the

three emanating dual edges each intersect a unique edge of the triangle; if two elementary triangles

share an edge, identify the two corresponding dual edges that intersect that given edge. Here, the

dual edge inherits the colour of the edge it intersects c.f. Figures 7.1a and 7.1b. We identify the

distinguished dual edge 𝑤𝑘 as that which intersects the distinguished time-like edge {𝑣𝑘 , 𝑣𝑘+1} for

𝑘 = 0, . . . ,𝑚−1. Accordingly, the dual disk has free edges emanating from the outer cycle, the dual

cylinder has edges emanating from both the outer and inner cycle, and the dual sphere has no free

edges. See Figure 7.1 for an example of a causal triangulation and the corresponding dual for each of

these topologies.

From the perspective of the planar-algebraic framework presented in Chapter 3, the dual of a

causal triangulation is highly suggestive. The concentric circles of dual nodes indicate a natural

multiplicative structure, while the dual nodes themselves can be elevated to input disks – indicating a

generality beyond pure triangulations. Moreover, the distinguished dual edges 𝑤1 respectively 𝑤𝑚 can

be translated to the marked interval of the inner disk respectively outer disk of an annular planar tangle.

Despite these common features, the corresponding transfer operator of models on casual triangulations

is distinct from that presented in Chapter 3; there are two main differences (i) it consists of a sum of

constituent transfer operators, each not necessarily belonging to the same vector space, and (ii) the

𝑅-operators within the constituent transfer operators are not identical, and likewise, need not belong to

the same vector space.

We proceed by defining the annular tangle

𝑇o
i := ..

.

..
.

. .
.

. .
.

. . .

. . .

. . .

. . .

. . .

. . .

1

2

𝑛−1

𝑛

𝑜1

𝑜2

𝑜𝑛−1

𝑜𝑛

𝑖1
𝑖2

𝑖𝑛−1
𝑖𝑛

, (7.1)

where i := (𝑖1, . . . , 𝑖𝑛) is an element of N𝑛 and o := (𝑜1, . . . , 𝑜𝑛) is an element of N𝑛−1×N0 for 𝑛 ∈ N,
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𝑣1
𝑣2

𝑣3

(a)

𝑤1

𝑤2

(b)

𝑥

𝑣1
𝑣2

𝑣3

(c)

𝑤0

𝑤1

𝑤2

(d)

𝑦

𝑥

𝑣1
𝑣2

𝑣3

𝑣4

(e)

𝑤0

𝑤1

𝑤2 𝑤3

(f)

Figure 7.1: In the first column, we present a causal triangulation on three topologies; the cylinder (a)
and the extension of this triangulation to the disk (c) and the sphere (e). While in the second column,
we present the corresponding dual triangulation of the cylinder (b), disk (d) and sphere (f).
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that indicate the distribution of inner and outer nodes respectively. Note that the inner and outer

distinguished intervals are placed about the distinguished edge of the dual triangulation.

Let (𝑃𝑛)𝑛∈N0 denote the collection vector spaces of a general planar algebra, and let (Q𝑃𝑚,𝑛)𝑚,𝑛∈N0

denote the corresponding collection of affine vector spaces, defined in Section 2.6. The 𝑅-operators

are defined as the parameterised elements

𝑅𝑘𝑗 (𝑢) := 𝑢 𝑢 𝑢 𝑢
. . .

. . .

𝑗

𝑘

, (7.2)

with

𝑢 =
∑︁
𝑎∈𝐵3

𝑟𝑎 (𝑢) 𝑎 , 𝑢 =
∑︁
𝑎∈𝐵3

𝑟𝑎 (𝑢) 𝑎 , (7.3)

where 𝐵3 is a basis for 𝑃3, 𝑟𝑎 : Ω→ C and Ω is a suitable domain. By construction, 𝑅𝑘
𝑗
(𝑢) is an

element of the vector space 𝑃 𝑗+𝑘+2. We can now define the constituent transfer operator as

𝑇o
i (𝑢) := P𝑇o

i

(
𝑅
𝑜1
𝑖1
(𝑢), . . . , 𝑅𝑜𝑛

𝑖𝑛
(𝑢)

)
, (7.4)

which is an element Q𝑃𝑖,𝑜 where 𝑖 =
∑𝑛
𝑘=1 𝑖𝑘 and 𝑜 =

∑𝑛
𝑘=1 𝑜𝑘 . Applying the map to the plane introduced

in Section 2.6, we can express 𝑇o
i (𝑢) diagrammatically as

𝑇o
i (𝑢) :=

. . . . . . . . .

. . . . . . . . .

𝑜1 𝑜2 𝑜𝑛

𝑖1 𝑖2 𝑖𝑛

𝑢 𝑢 𝑢 , 𝑅
𝑜𝑘
𝑖𝑘
(𝑢) =

. . .

. . .

𝑜𝑘

𝑖𝑘

𝑢 , (7.5)

where we identify the left-most and right-most edges, which corresponds to the distinguished edge of

the dual triangulation. Finally, we define the transfer operator of a general CDT model as

𝑇 (𝑢) :=
∑︁
𝑛∈N

∑︁
i∈N𝑛

o∈N𝑛−1×N0

𝑇o
i (𝑢), (7.6)

where we note that 𝑇 (𝑢) is an element of the graded vector space (Q𝑃𝑛,𝑚)𝑛,𝑚∈N0 .

Recall the product structure among elements of (Q𝑃𝑛,𝑚)𝑛,𝑚∈N0 , defined in Section 2.6. Let

𝑎 ∈ Q𝑃𝑛,𝑚 and 𝑏 ∈ Q𝑃𝑟,𝑠, we define

𝑎𝑏 :=

𝑏 ◦ 𝑎, 𝑚 = 𝑟

0, 𝑚 ≠ 𝑟
(7.7)

where 𝑏 ◦ 𝑎 corresponds to the insertion of 𝑎 inside 𝑏. To illustrate, the example dual triangulation

presented in Figure 7.1b corresponds to the element

𝑇
o1
i1 (𝑢)𝑇

o2
i2 (𝑢),

o1 = (1,2,1,2,1), o2 = (1,2,2,2,2,2),
i1 = (1,1,1,1,1), i2 = (1,2,1,1,1,1).

(7.8)
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With the multiplication defined in (7.7), we emphasise that many terms in the product between two

transfer operators are eliminated. The particular model described by the transfer operator depends

entirely on the parameterisation of the constituent 𝑅-operators (7.2)–(7.3). Given a parameterisation,

the transfer operator 𝑇 (𝑢)𝑛 generates, as a linear combination, all height 𝑛 causal triangulations of the

cylinder, where we note that the inner-most and outer-most edges are weighted as the ‘square root’ of

the internal edges.

7.2.2 Pure CDT model

Let C𝑚 (𝑁) denote the set of all height 𝑚 causal triangulations of the disk with 𝑁 vertices, and let C𝑚
denote the corresponding set where the constraint on vertex number is relaxed. We define

|𝐶 | :=
𝑚∑︁
𝑘=0
|𝑆𝑘 |, 𝐶 ∈ C𝑚, (7.9)

as the number of space-like edges in 𝐶, equivalently the number of vertices in 𝐶, excluding the central

vertex. It is convenient to include the degenerate case where 𝑚 = 0, hence 𝐶 ≡ 𝑆0 and |𝐶 | = 0 for the

unique ‘triangulation’ 𝐶 ∈ C0.

The pure CDT model weights each 𝐶 in C𝑚 by associating a factor of 𝑔 ∈ C to each space-like edge

in 𝐶. Accordingly, the partition functions of the model are defined as

𝑍 (𝑔) :=
∞∑︁
𝑚=0

𝑍𝑚 (𝑔), 𝑍𝑚 (𝑔) :=
∑︁
𝐶∈C𝑚

𝑔 |𝐶 |, (7.10)

and we note that 𝑍0(𝑔) = 1. As is clear from the expression above, the model need not be well defined

for all 𝑔 ∈ C. It is understood [79], and will be shown below, that there exists a critical coupling 𝑔𝑐 > 0
such that 𝑍 (𝑔) is analytic for 𝑔 < |𝑔𝑐 |, while 𝑍 (𝑔) is divergent for 𝑔 > 𝑔𝑐, and therefore is singular at

the point 𝑔 = 𝑔𝑐.

Remark. As each causal triangulation of the disk has a unique equivalent on the sphere and on the

cylinder, and these triangulations have the same number of space-like edges, configurations of the pure

CDT model can be considered as belonging to either of these topologies.

There is not a unique algebraic structure underlying the pure CDT model. As our goal is to

understand the critical behaviour of the partition function (7.10), we opt for the simplest planar algebra

such that the partition function of the model can be expressed as a function of the transfer operator.

Accordingly, we specialise to the tensor planar algebra (𝐸𝑛)𝑛∈N0 where 𝐸𝑛 � 𝐸⊗𝑛 and dim𝐸 = 1, see

Section 6.2.1 for the definition. As there is a single label for the nodes of each disk in 𝐸𝑛 for 𝑛 ∈ N, we

will omit it entirely.

For the pure CDT model, the elementary operators must simply account for the weight associated

with each space-like edge, as such, we introduce the following parameterisation

𝑔 = 𝑔
1
2 ••• , 𝑔 = 𝑔

1
2 ••• , (7.11)
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where the combination of two dual space-like edges under the product assigns the appropriate weight

𝑔. Given this parameterisation, we write the 𝑅-operator as

𝑅𝑘𝑗 (𝑔) = 𝑔
1
2 ( 𝑗+𝑘) ••• ••• ••• •••

. . .

. . .

𝑗

𝑘

. (7.12)

Recall that if two elements in the tensor planar algebra have the same number of external nodes with

the same labels, they are equal, independent of their internal structure. Accordingly, by collecting

terms in the transfer operator, we have

𝑇 (𝑔) =
∑︁
𝑟,𝑠∈N

(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2

. . .

. . .

𝑟

𝑠

••
• •

, (7.13)

where the combinatorial factor counts the number of ways 𝑟 outward (up) pointing edges and (𝑠−1)
inward (down) pointing edges can be distributed to the right (viewed outwardly) of the first inward

pointing edge.

It will be convenient, when analysing the transfer operator 𝑇 (𝑔), to instead work with a representa-

tion of this algebraic element here denoted by T(𝑔), that acts on the Hilbert space of square summable

sequences

𝑙2(N) :=
{
(𝑥𝑛)𝑛∈N |

∞∑︁
𝑛=1
|𝑥𝑛 |2 <∞; 𝑥𝑖 ∈ C, 𝑖 ∈ N

}
, (7.14)

where 𝑛 labels the number of edges. Accordingly, the matrix elements of T(𝑔) with respect to the

standard orthonormal basis of 𝑙2(N) are given by

T𝑟,𝑠 (𝑔) =
(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2 . (7.15)

To distinguish our terminology, we will refer to T(𝑔) as the transfer matrix corresponding to the

transfer operator 𝑇 (𝑔). In the following, we use Dirac notation |𝑤⟩ to denote a sequence in 𝑙2(N) with

coordinates 𝑤𝑛, we similarly let ⟨𝑤 | denote the corresponding conjugated sequence. Geometrically,

|𝑤⟩ is acted upon by the outer (top) edges, while ⟨𝑤 | is acted upon by the lower (bottom) edges.

Finally, we define the sequence |𝑣(𝑔)⟩ ∈ 𝑙2(N), where

𝑣𝑛 (𝑔) := 𝑔
𝑛
2 , 𝑛 ∈ N. (7.16)

Given the definition of the partition function (7.10), the representation T(𝑔) (7.15), and the vector

|𝑣(𝑔)⟩ (7.16), the fixed height partition function of the pure CDT model can be written

𝑍𝑚 (𝑔) = ⟨𝑣(𝑔) |T(𝑔)𝑚−1 |𝑣(𝑔)⟩, (7.17)

for all 𝑚 ∈ N.
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7.2.3 Dense loop model

Each height 𝑚 dense loop configuration on the disk with 𝑁 vertices can be constructed from a given

𝐶 ∈ C𝑚, by replacing each of the elementary triangles in 𝐶 with one of the two similarly directed

triangles in Figure 7.2 such that loop segments are only allowed to terminate on the boundary of the

triangulation (the cycle 𝑆𝑚). Consequently, one must impose a compatibility condition along each

space-like edge. The elementary triangles of dense loop configurations are constructed by decorating

the original triangles with blue arc(s), which are non-intersecting and defined up to ambient isotopy.

Arcs within a loop configuration may combine to form closed loops. One may similarly define dense

loop configurations on the cylinder and on the sphere. See Figure 7.3 for an example of a dense loop

configuration on the disk (Figure 7.3c) and the corresponding configuration on the cylinder (Figure

7.3a) and on the sphere (Figure 7.3e).

𝑆𝑘+1

𝑆𝑘

Figure 7.2: The possible decorations of elementary triangles in the dense loop model.

Let L𝑑𝑒𝑚 (𝑁) denote the set of all height 𝑚 dense loop configurations (on the disk) with 𝑁 vertices,

and let L𝑑𝑒𝑚 denote the corresponding set where the constraint on vertex number is relaxed. Each

crossing of a space-like edge by a loop segment is called an intersection, and we denote by 𝑠(𝐿) the

total number of intersections in 𝐿 ∈ L𝑑𝑒𝑚 (𝑁). As in Section 7.2.2, we denote by |𝐿 | the total number of

space-like edges in the dense loop configuration 𝐿.

The dense loop model weights each 𝐿 in L𝑑𝑒𝑚 by associating a factor of 𝑔 ∈ C and a factor of

𝛼 ∈ [0,1] to each space-like edge and intersection in 𝐿, respectively. Accordingly, the partition

functions of the model are defined as

𝑍𝑑𝑒 (𝑔,𝛼) :=
∞∑︁
𝑚=0

𝑍𝑑𝑒𝑚 (𝑔,𝛼), 𝑍𝑑𝑒𝑚 (𝑔,𝛼) :=
∑︁
𝐿∈L𝑑𝑒

𝑚

𝑔 |𝐿 |𝛼𝑠(𝐿) , (7.18)

where we note that 𝑍𝑑𝑒0 (𝑔,𝛼) = 1, and take 𝛼𝑛, for 𝛼 = 0 and 𝑛 ∈ N0, to mean 𝛿𝑛,0. In the following,

we will show, for fixed 𝛼, that there exists a critical coupling 𝑔𝑑𝑖𝑐 (𝛼) > 0 such that 𝑍𝑑𝑒 (𝑔,𝛼) is analytic

for |𝑔 | < 𝑔𝑑𝑒𝑐 (𝛼), while 𝑍𝑑𝑒 (𝑔,𝛼) is divergent for 𝑔 > 𝑔𝑑𝑒𝑐 (𝛼), and therefore is singular along the curve

𝑔 = 𝑔𝑑𝑒𝑐 (𝛼).

Remark. As in the pure CDT model, each dense loop configuration on the disk has an equivalent on

the sphere and on the cylinder, and each of these equivalent forms has the same number of space-like

edges and intersections. It follows that the configurations of the dense loop model can be considered

as belonging to either of these topologies.

The algebraic structure underlying the dense loop model is not unique. We adopt the attitude

presented in Section 7.2.2, where we opt for the simplest planar algebra such that the partition function

of the model can be expressed as a function of the transfer operator. To this end, we specialise to
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: In the first column, we present a dense loop configuration on three topologies; the cylinder
(a) and the extension of this configuration to the disk (c) and the sphere (e). While in the second
column, we present the corresponding dual configuration of the cylinder (b), disk (d) and sphere (f).
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the tensor planar algebra (𝐸𝑛)𝑛∈N0 where 𝐸𝑛 � 𝐸⊗𝑛 and dim𝐸 = 2. Nodes of each disk within 𝐸𝑛 are

assigned two possible labels, here represented diagrammatically by the colours black and blue.

Expressing the elementary triangles as elements of the underlying planar algebra, we have:

••• ↔ , ••• ↔ , ••• ↔ , ••• ↔ . (7.19)

Accordingly, we parameterise the elementary operators by

= 𝑔
1
2 ••• +𝑔 1

2𝛼 ••• , = 𝑔
1
2 ••• +𝑔 1

2𝛼 ••• , (7.20)

from which the 𝑅-operators (7.2) follow. For brevity, we have not indicated the 𝑔 and 𝛼 dependence

of the green diagrams in (7.20). Given this parameterisation of the 𝑅-operators, we denote the

corresponding transfer operator 𝑇 𝑑𝑒 (𝑔,𝛼), which can be expressed as

𝑇 𝑑𝑒 (𝑔,𝛼) =
∑︁
𝑟,𝑠∈N

(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2

. . .

. . .

𝑟

𝑠

, = +𝛼 . (7.21)

As our primary motivation is defining a transfer operator that reproduces the partition function of

the model, we can introduce a simpler counterpart to 𝑇 𝑑𝑒 (𝑔,𝛼) which, from the perspective of the

partition function, is indistinguishable from the original. In particular, 𝑇 𝑑𝑒 (𝑔,𝛼), keeps track of

unnecessary information about the specific positioning of intersected space-like edges, it suffices to

simply ensure compatibility between space-like edges. Accordingly, the two possible elementary

configurations corresponding to a single space-like edge are •
• and •

• , which assign the weight 𝑔

and 𝑔𝛼2 respectively. The correct assignment of weights can be achieved by simply considering a

single elementary configuration •
• which is assigned the weight 𝑔(1+𝛼2). In light of this observation,

we introduce an effective transfer operator corresponding to 𝑇 𝑑𝑒 (𝑔,𝛼), defined as

𝑇
𝑑𝑒 (𝑔,𝛼) :=

∑︁
𝑟,𝑠∈N

(
𝑟 + 𝑠−1

𝑟

)
[𝑔(1+𝛼2)] 𝑟+𝑠2

. . .

. . .

𝑟

𝑠

••
• •

, (7.22)

where each node is considered a ‘square root’ of a space-like edge and is assigned the weight

[𝑔(1+𝛼2)] 1
2 . While the algebraic operators appearing in 𝑇

𝑑𝑒 (𝑔,𝛼)𝑚 do not have a direct relation to the

underlying loop configurations, they assign the correct weight of 𝑔(1+𝛼2) to each internal space-like

edge.

Remark. As the effective transfer operator 𝑇
𝑑𝑒 (𝑔,𝛼) is parameterised in terms of elements that only

use a single node label, we consider the underlying planar algebra to be as in the pure CDT model,

where dim𝐸 = 1.

Proceeding as in the pure CDT case, we denote by T𝑑𝑒 (𝑔,𝛼) the corresponding representation of

𝑇
𝑑𝑒 (𝑔,𝛼), that acts on the Hilbert space 𝑙2(N), whose matrix elements are given by

T𝑑𝑒𝑟,𝑠 (𝑔,𝛼) =
(
𝑟 + 𝑠−1

𝑟

)
[𝑔(1+𝛼2)] 𝑟+𝑠2 . (7.23)
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We also introduce the sequence |𝑣𝑑𝑒 (𝑔,𝛼)⟩ ∈ 𝑙2(N), where

𝑣𝑑𝑒𝑛 (𝑔,𝛼) := [𝑔(1+𝛼2)] 𝑛2 , 𝑛 ∈ N. (7.24)

Given the definition of the partition function (7.18), the representation T𝑑𝑒 (𝑔,𝛼) (7.23), and the vector

|𝑣𝑑𝑒 (𝑔,𝛼)⟩ (7.24), the fixed height partition function of the dense loop model can be written

𝑍𝑑𝑒𝑚 (𝑔,𝛼) = ⟨𝑣𝑑𝑒 (𝑔,𝛼) |T𝑑𝑒 (𝑔,𝛼)𝑚−1 |𝑣𝑑𝑒 (𝑔,𝛼)⟩, (7.25)

for all 𝑚 ∈ N.

7.2.4 Dilute loop model

Each height 𝑚 dilute loop configuration on the disk with 𝑁 vertices can be constructed from a given

𝐶 ∈ C𝑚, by replacing each of the elementary triangles in 𝐶 with one of the four similarly directed

triangles in Figure 7.5, such that loop segments are only allowed to terminate on the boundary of the

triangulation. Consequently, one must impose a compatibility condition along both space-like and

time-like edges. The elementary triangles of dilute loop configurations are constructed by decorating

the original triangles with at least one blue arc, which, as in the dense loop model, are non-intersecting,

defined up to ambient isotopy and may combine to form closed loops. One may similarly define dilute

loop configurations on the cylinder and on the sphere. See Figure 7.4 for an example of a dilute loop

configuration on the disk (Figure 7.4c) and a corresponding configuration on the cylinder (Figure 7.4a)

and on the sphere (Figure 7.4e). Unlike dense loop configurations, the extension of a disk configuration

to the sphere can be performed in two distinct ways, each resulting in distinct configurations on the

sphere. Moreover, the extension of a configuration on the cylinder to the disk need not be well defined,

we explore this in the following.

For dense and dilute loop models, let 𝑠𝑘 (𝐿) denote the number of intersections of the cycle 𝑆𝑘
associated with the loop configuration 𝐿 which may be on the cylinder, disk or sphere. In the dilute

loop model, the compatibility condition along space-like and time-like edges ensures that the parity of

𝑠𝑘 (𝐿) is the same for all 𝑘 , that is

𝑠𝑘 (𝐿) ≡ 𝑠𝑘 ′ (𝐿) (mod2), ∀ 𝑘, 𝑘′. (7.26)

Considering dilute configurations on the disk and sphere, the initial condition 𝑠0(𝐿) = 0, restricts the

parity of the remaining cycles to be even. While for dilute configurations on the cylinder, both parities

are allowed. It follows that only the even parity annular configurations admit extensions to the disk, in

which case the extension is not unique and gives rise to two distinct configurations.

Let L𝑑𝑖𝑚 (𝑁) denote the set of all height 𝑚 dilute loop configurations (on the disk) with 𝑁 vertices,

and let L𝑑𝑖𝑚 denote the corresponding set where the constraint on vertex number is relaxed. We adopt

the same notation as in the dense model where |𝐿 | and 𝑠(𝐿) denote the number of space-like edges

and intersections in a dilute loop configuration 𝐿 ∈ L𝑑𝑖𝑚 (𝑁), respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: In the first column, we present a dilute loop configuration on three topologies; the cylinder
(a) and an extension of this configuration to the disk (c) and the sphere (e). While in the second column,
we present the corresponding dual configuration of the cylinder (b), disk (d) and sphere (f).
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𝑆𝑘+1

𝑆𝑘

𝑆𝑘+1

𝑆𝑘

Figure 7.5: The possible decorations of elementary triangles in the dilute loop model.

The dilute loop model weights each 𝐿 in L𝑑𝑖𝑚 by associating a factor of 𝑔 ∈ C and a factor of

𝛼 ∈ [0,1] to each space-like edge and intersection in 𝐿, respectively. Accordingly, the partition

functions of the model are defined as

𝑍𝑑𝑖 (𝑔,𝛼) :=
∞∑︁
𝑚=0

𝑍𝑑𝑖𝑚 (𝑔,𝛼), 𝑍𝑑𝑖𝑚 (𝑔,𝛼) :=
∑︁
𝐿∈L𝑑𝑖

𝑚

𝑔 |𝐿 |𝛼𝑠(𝐿) , (7.27)

where we note that 𝑍𝑑𝑖0 (𝑔,𝛼) = 1, and take 𝛼𝑛, for 𝛼 = 0 and 𝑛 ∈ N0, to mean 𝛿𝑛,0. In the following, we

will show that, for fixed 𝛼, there exists a critical coupling 𝑔𝑑𝑖𝑐 (𝛼) > 0 such that 𝑍𝑑𝑖 (𝑔,𝛼) is analytic

for |𝑔 | < 𝑔𝑑𝑖𝑐 (𝛼), while 𝑍𝑑𝑖 (𝑔,𝛼) is divergent for 𝑔 > 𝑔𝑑𝑖𝑐 (𝛼), and therefore is singular along the curve

𝑔 = 𝑔𝑑𝑖𝑐 (𝛼).

Remark. While the parity condition of dilute loop configurations (7.26) inhibits a natural correspon-

dence between configurations on the cylinder and the disk, there is a two-to-one correspondence

between configurations on the sphere and the disk. Accordingly, configurations of the dilute loop

model can be considered as belonging to either the disk or sphere, as long as one accounts for the

factor of two appropriately.

As in the dense loop model, we specialise to the tensor planar algebra (𝐸𝑛)𝑛∈N0 where 𝐸𝑛 � 𝐸⊗𝑛

and dim𝐸 = 2, and use black and blue to represent the two node labels. Expressing the elementary

triangles of the dilute loop model as elements of the underlying planar algebra, we have:

••• ↔ , ••• ↔ , ••• ↔ , ••• ↔ , (7.28)

••• ↔ , ••• ↔ , ••• ↔ , ••• ↔ . (7.29)

Accordingly, we parameterise the elementary operators by

= 𝑔
1
2

(
••• + •••

)
+ (𝑔𝛼) 1

2

(
••• + •••

)
, (7.30)

= 𝑔
1
2

(
••• + •••

)
+ (𝑔𝛼) 1

2

(
•••
+

•••
)
, (7.31)

from which the 𝑅-operators (7.2) follow. Note that we have not indicated the 𝑔 and 𝛼 dependence of the

green diagrams in (7.30). Given this parameterisation of the 𝑅-operators, we denote the corresponding

transfer operator 𝑇 𝑑𝑖 (𝑔,𝛼). Unlike for the dense loop model, a simplified expression for 𝑇 𝑑𝑖 (𝑔,𝛼)
and an associated effective transfer operator 𝑇

𝑑𝑖 (𝑔,𝛼) cannot be immediately stated. An analogous

construction for the dilute loop model exists but will be deferred until Section 7.5.3, as it relies on

results established in the forthcoming section.
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7.3 Tree correspondences

In this section, we begin by recalling the correspondence between causal triangulations and planar trees.

Section 7.3.2 is devoted to extending this correspondence to relate loop models on causal triangulations

and classes of labelled planar trees. In Section 7.3.3, we make use of these correspondences to relate

the partition functions of the matched constructions, which ultimately facilitates the analysis of CDT

partition functions using tree methods.

7.3.1 Pure CDT model

Let T𝑚 (𝑁) denote the set of height 𝑚+1 planar trees with 𝑁 edges and a root of degree 1, similarly, T𝑚
where the constraint on vertex number is relaxed, and finally T where the height constraint is relaxed.

It is well-known [82, 99] that there exists a bijective correspondence between causal triangulations and

planar trees

𝜓 : C𝑚 (𝑁) → T𝑚 (𝑁). (7.32)

Let 𝐶 ∈ C𝑚 (𝑁), the map 𝜓 is constructed as follows: first, remove all space-like edges, then for each

vertex in 𝑆𝑘 for 1 ≤ 𝑘 < 𝑚 remove the right-most outward-pointing time-like edge, finally, add a

new vertex 𝑥0 and a corresponding edge {𝑥0, 𝑥} immediately to the left (viewed outwardly) of the

distinguished edge {𝑥, 𝑣1}. The resulting graph, denoted by 𝑇 = 𝜓(𝐶), is an element of the set T𝑚 (𝑁),
and the map 𝜓 is readily seen to admit an inverse. Note that the vertices of 𝐶 and 𝑇 are the same,

except for the vertex 𝑥0, and that the graph distance from 𝑥 to any vertex 𝑣 in 𝐶 and the one between

the corresponding vertices in 𝑇 are the same. Given the equivalence between vertices, we will often use

the same notion for equivalent vertices in 𝐶 and 𝑇 , that is, for 𝑣 in 𝐶 we will refer to the corresponding

vertex in 𝑇 as simply 𝑣. In Figure 7.6, we present an example of this construction.

Denote by 𝑑𝐺 (𝑥, 𝑦) the graph distance between two vertices 𝑥 and 𝑦 in the graph 𝐺. We introduce

𝑉𝑘 (𝑇) := {𝑣 ∈ 𝑇 | 𝑑𝑇 (𝑥0, 𝑣) = 𝑘 +1}, (7.33)

as the set of vertices in 𝑇 ∈ T𝑚 (𝑁) with a graph distance of 𝑘 +1 from the root vertex 𝑥0. Refining the

notation

𝑉𝑘 (𝑇) = {𝑣𝑘,𝑖 | 𝑖 = 1, . . . , |𝑉𝑘 (𝑇) |}, (7.34)

where 𝑣𝑘,1 ≡ 𝑣𝑘 is the distinguished vertex of the corresponding triangulation, defined in Section 7.2.1,

and the remaining vertices 𝑣𝑘,𝑖 are labelled clockwise from 𝑣𝑘,1, for 𝑖 = 2, . . . , |𝑉𝑘 (𝑇) |. Finally, we

define

𝑉 (𝑇) :=
𝑚⋃
𝑘=1
𝑉𝑘 (𝑇), (7.35)

which is the vertex set of 𝑇 , excluding the vertices 𝑥0 and 𝑥.
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𝑥

𝑣1

𝑥0

𝑣2

𝑣3 ←→

𝑥0

𝑥

𝑣1

𝑣2

𝑣3

Figure 7.6: A causal triangulation of the disk 𝐶 and the corresponding tree 𝜓(𝐶).

7.3.2 Loop models

In the following, we extend the correspondence (7.32) to a pair of correspondences applicable to the

respective sets L𝑑𝑒𝑚 (𝑁) and L𝑑𝑖𝑚 (𝑁) of loop configurations. First, we define the sets of planar trees

that correspond to the sets of loop configurations. Denote by T̃𝑚 (𝑁) the set of height 𝑚 +1 planar trees

with 𝑁 vertices each of which, except for 𝑥0 and 𝑥, are assigned a binary label, here denoted by a 0 or

1, that is

T̃𝑚 (𝑁) :=
{
(𝑇, 𝛿) |𝑇 ∈ T𝑚 (𝑁), 𝛿 :𝑉 (𝑇) → {0,1}

}
, (7.36)

and we denote by T̃𝑚 the corresponding set where we relax the constraint on the number of vertices.

For each (𝑇, 𝛿) ∈ T̃𝑚 (𝑁), we define the labelling characteristics at height 𝑘 +1

𝛿𝛿𝛿𝑘 :=
(
𝛿(𝑣𝑘,1), . . . , 𝛿(𝑣𝑘,|𝑉𝑘 (𝑇) |)

)
(7.37)

and the following summary statistics

𝛿𝑘 :=
∑︁

𝑣∈𝑉𝑘 (𝑇)
𝛿(𝑣), |𝛿 | :=

𝑚∑︁
𝑘=1

𝛿𝑘 , (7.38)

where 𝛿𝑘 counts the number of labels at each height 𝑘 = 1, . . . ,𝑚, and |𝛿 | counts the total number of

labels in (𝑇, 𝛿) ∈ T̃𝑚. We now define the set which is the subject of the latter correspondence

T̃ 𝑒𝑣𝑚 (𝑁) :=
{
(𝑇, 𝛿) |𝑇 ∈ T𝑚 (𝑁), 𝛿𝑘 ∈ 2N0, 𝑘 = 1, . . . ,𝑚

}
, (7.39)

and similarly, we denote by T̃ 𝑒𝑣𝑚 the corresponding set where we relax the constraint on the number

of vertices. In Proposition 7.3.5 below, we establish a bijective correspondence between L𝑑𝑒𝑚 (𝑁)
and T̃𝑚 (𝑁), while in Proposition 7.3.6, we establish a 2𝑚 to 1 correspondence between L𝑑𝑖𝑚 (𝑁) and

T̃ 𝑒𝑣𝑚 (𝑁). In preparation for these statements, we introduce further notation and establish preliminary

results about both dense and dilute loop configurations.
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For each 𝐶 ∈ C𝑚, we introduce the notation 𝑙𝑘 ≡ |𝑆𝑘 | for 𝑘 = 0, . . .𝑚, and refer to 𝑙𝑘 and 𝑙𝑘+1 as the

boundary lengths of the annulus 𝐴𝑘 . By applying a sequence of local flip operations

↔ (7.40)

one can transform an arbitrary triangulation of 𝐴𝑘 into one of the form depicted in Figure 7.7, called

a standard triangulation, with the same boundary lengths 𝑙𝑘 and 𝑙𝑘+1, and distinguished vertices 𝑣𝑘
and 𝑣𝑘+1 for each 𝑘 = 1, . . . ,𝑚. The details of this construction, where we restrict to 𝑘 = 1, . . . ,𝑚
throughout, are as follows. Any arbitrary triangulation 𝑇𝐴𝑘

of 𝐴𝑘 can be described as a sequence

of forward- and backward-directed triangles, here denoted by 𝑓 ’s and 𝑏’s respectively, where the

order is endowed from the distinguished vertex 𝑣𝑘 . By construction, each sequence begins with a

forward-directed triangle. Suppose the triangulation 𝑇𝐴𝑘
is not standard, then there exists a 𝑏 𝑓 in the

sequence. Apply the flip operation to the first instance of 𝑏 𝑓 , transforming it into an 𝑓 𝑏. Iterating this

procedure, one transforms the original triangulation into a standard triangulation maintaining the same

boundary lengths 𝑙𝑘 and 𝑙𝑘+1, and distinguished vertices 𝑣𝑘 and 𝑣𝑘+1.

𝑆𝑘𝑣𝑘

𝑆𝑘+1𝑣𝑘+1

1 2 𝑙𝑘

1 2 𝑙𝑘+1

Figure 7.7: The standard triangulation of the annulus 𝐴𝑘 . The left-most and right-most time-like edges
are dashed to indicate that they are identified.

The flip operation in (7.40) is readily extended to a flip operation on the similar local components

of a loop configuration on 𝐴𝑘 . In the dense loop model, the extension is given by

↔ ↔ ↔ ↔ . (7.41)

In the dilute loop model, the extension is given by

↔ ↔ ↔ ↔

↔ ↔ ↔ ↔ .

(7.42)

We have the following result.

Lemma 7.3.1.

(i) The flip operations (7.41) and (7.42) applied to a dense, respectively dilute, loop configuration

𝐿 on the disk, leave |𝐿 | and the positions of intersections invariant.

(ii) The number of possible dense, respectively dilute, loop configurations on the triangulated

annulus 𝐴𝑘 , depend only on the boundary lengths 𝑙𝑘 and 𝑙𝑘+1, not the details of the triangulation.
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𝑆𝑘𝑣𝑘

𝑆𝑘+1𝑣𝑘+1

1 2 3 4

1 2 3

Figure 7.8: The unique dense loop configuration on the standard triangulation of 𝐴𝑘 with intersection
characteristics n𝑘 = (1,1,0,0) and n𝑘+1 = (0,1,0).

Proof. (i) As the flip operators (7.41) and (7.42) leave 𝑙𝑘 and 𝑙𝑘+1, and the positions of intersections

invariant at each layer, this extends to the whole loop configuration. (ii) Let 𝑇 ′ and 𝑇 be distinct disk

triangulations of 𝐴𝑘 , and enumerate all of the possible dense loop configurations on each. As the flip

operations (7.41) are one-to-one, each loop configuration with an underlying triangulation 𝑇 ′, can be

transformed into a unique loop configuration with an underlying triangulation 𝑇 . Likewise with 𝑇 and

𝑇 ′ swapped. A similar procedure applies to dilute loop configurations where we instead use the flip

operations (7.42). □

A dense or dilute loop configuration is not only characterised by the collection of boundary lengths

𝑙𝑘 for 𝑘 = 1, . . . ,𝑚, but also by the distribution of space-like edges which are intersected by loop

segments. Accordingly, for each cycle 𝑆𝑘 where 𝑘 = 1, . . . ,𝑚, the intersection characteristics are

encoded in the 𝑙𝑘 -tuple

n𝑘 := (𝑛𝑘,1, . . . , 𝑛𝑘,𝑙𝑘 ) ∈ {0,1}𝑙𝑘 , 𝑘 = 1, . . . ,𝑚, (7.43)

where 𝑛𝑘,𝑖 is 1 if the 𝑖th space-like edge (labelled clockwise from 𝑣𝑘) is intersected, and 0 otherwise.

Associated with each n𝑘 , is the summary statistic

𝑛𝑘 :=
𝑙𝑘∑︁
𝑖=1
𝑛𝑘,𝑖, 𝑘 = 1, . . . ,𝑚. (7.44)

Remark. With notation as in Section 7.2, we have 𝑠𝑘 (𝐿) = 2𝑛𝑘 for 𝐿 ∈ L𝑑𝑒𝑚 , while 𝑠𝑘 (𝐿) = 𝑛𝑘 for

𝐿 ∈ L𝑑𝑖𝑚 .

Lemma 7.3.2. Let 𝐶𝑘 be a triangulation of the annulus 𝐴𝑘 with boundary lengths 𝑙𝑘 and 𝑙𝑘+1, and let

n𝑘 ∈ {0,1}𝑙𝑘 and n𝑘+1 ∈ {0,1}𝑙𝑘+1 denote intersection characteristics. Then,

(i) 𝐶𝑘 admits one dense loop configuration for each n𝑘 and n𝑘+1;

(ii) 𝐶𝑘 admits two, respectively zero, dilute loop configurations for each n𝑘 and n𝑘+1 if 𝑛𝑘 +𝑛𝑘+1 is

even, respectively odd.

Proof. By Lemma 7.3.1, it suffices to consider the standard triangulation of 𝐴𝑘 , which we proceed to

do for both (i) and (ii).

(i) For the dense loop model, the entries of the intersection characteristics are in one-to-one

correspondence with the loop decorations of the elementary triangles:

↔ 𝑛𝑘+1,𝑖 = 0, ↔ 𝑛𝑘+1,𝑖 = 1, ↔ 𝑛𝑘,𝑖 = 0, ↔ 𝑛𝑘,𝑖 = 1. (7.45)
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𝑆𝑘𝑣𝑘

𝑆𝑘+1𝑣𝑘+1

1 2 3 4

1 2 3

𝑆𝑘𝑣𝑘

𝑆𝑘+1𝑣𝑘+1

1 2 3 4

1 2 3

Figure 7.9: The two dilute loop configurations on the standard triangulation of 𝐴𝑘 with intersection
characteristics n𝑘 = (1,1,1,1) and n𝑘+1 = (0,1,1).

As there are no compatibility conditions along time-like edges, the claim readily follows in this case.

(ii) For the dilute loop model, the analogous correspondence is two-to-one:{
,

}
→ 𝑛𝑘+1,𝑖 = 0,

{
,

}
→ 𝑛𝑘+1,𝑖 = 1,{

,

}
→ 𝑛𝑘,𝑖 = 0,

{
,

}
→ 𝑛𝑘,𝑖 = 1.

In this case, there exists a compatibility condition along time-like edges, that is, the time-like edge

may be intersected or not. Consequently, there is a unique decoration for an elementary triangle for

a given value of 𝑛𝑘,𝑖 or 𝑛𝑘+1,𝑖, if the ‘intersectedness’ of the left (or right) time-like edge is known.

Applying this argument successively to the standard triangulation of 𝐴𝑘 , given the intersectedness of

the left-most time-like edge connected to a forward-directed triangle (whose space-like edge is indexed

by 𝑛𝑘,1), the decorations of all forward-directed triangles are uniquely determined by the intersection

characteristics n𝑘 . The intersectedness of the right-most time-like edge connected to a forward-directed

triangle (whose space-like edge is indexed by 𝑛𝑘,𝑙𝑘 ) is the same as, respectively opposite to that of

the left-most time-like edge if 𝑛𝑘 is even, respectively odd. Repeating this argument, the decorations

of all backward-directed triangles are uniquely determined by the intersection characteristics n𝑘+1;

and the intersectedness of the right-most time-like edge connected to a back-directed triangle (whose

space-like edge is indexed by 𝑛𝑘+1,𝑙𝑘+1) is the same as, respectively opposite to that of the left-most

time-like edge connected to a forward-directed triangle if 𝑛𝑘 +𝑛𝑘+1 is even, respectively odd. Given the

periodic boundary conditions of the annulus, the intersectedness of the left- and right-most time-like

edges must coincide, accordingly, there is no corresponding loop configuration when 𝑛𝑘 +𝑛𝑘+1 is odd.

On the other hand, for 𝑛𝑘 +𝑛𝑘+1 even, the intersectedness of the left-most time-like edge of the annulus

can take on both values, each giving rise to a distinct dilute loop configuration. □

As an example of Lemma 7.3.2, Figure 7.8 depicts the unique dense loop configuration on a standard

triangulation 𝐴𝑘 with intersection characteristics n𝑘 = (1,1,0,0) and n𝑘+1 = (0,1,0), while Figure 7.9,

for the same triangulation, depicts the two dilute loop configurations with intersection characteristics

n𝑘 = (1,1,1,1) and n𝑘+1 = (0,1,1).
The notion of intersection characteristics is readily extended from loop configurations on trian-

gulated annuli to loop configurations on a triangulated disk of height 𝑚 by reading off n𝑘 for each

𝑘 = 1, . . . ,𝑚. Conversely, if the set of 𝑚 tuples n𝑘 ∈ {0,1}𝑙𝑘 for each 𝑘 = 1, . . . ,𝑚, correspond to at

least one loop configuration on a triangulated annulus, we say that they form admissible intersection

characteristics. It follows from Lemma 7.3.2 and the observation (7.26), that such a collection of
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←→

Figure 7.10: A dense loop configuration 𝐿 and the corresponding labelled planar tree 𝜓̃(𝐿). Vertices
labelled 1 are indicated with blue circles.

tuples always is admissible for dense loop configurations, while for dilute loop configurations, they

are admissible if and only if 𝑛𝑘 ∈ 2N for all 𝑘 = 1, . . . ,𝑚. We also note that, given a triangulation of

the disk with admissible intersection characteristics, the choice of dilute loop configuration on any

given triangulated annuli is independent of the choices made on the other triangulated annuli. This

observation together with Lemma 7.3.2 and the proof thereof, we have the following two results.

Lemma 7.3.3. A triangulation of the disk of height 𝑚 with admissible intersection characteristics

admits exactly one dense loop configuration and exactly 2𝑚 dilute loop configurations.

Corollary 7.3.4.

(i) A triangulation of the cylinder with 𝑁 vertices admits exactly 2𝑁 dense loop configurations, and

exactly 2𝑁 dilute loop configurations.

(ii) A triangulation of the disk with 𝑁 vertices admits exactly 2𝑁−1 dense loop configurations, and

exactly 2𝑁−1 dilute loop configurations. Thus,

|L𝑑𝑒𝑚 (𝑁) | = |L𝑑𝑖𝑚 (𝑁) |, 𝑚, 𝑁 ∈ N. (7.46)

Remarkably, the parity constraint of dilute loop configurations is compensated by the factor of two

arising at each layer in such a way that the number of dilute loop configurations coincides with the

number of dense loop configurations.

The following proposition establishes the aforementioned correspondence between dense loop

configurations and labelled planar trees. To illustrate, an example of this correspondence is presented

in Figure 7.10, where tree vertices labelled by a 1 are indicated by a solid blue node.
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−→

Figure 7.11: A dilute loop configuration 𝐿 and the corresponding labelled planar tree 𝜓̂(𝐿). Vertices
labelled 1 are indicated with blue circles.

Proposition 7.3.5. For each 𝑚 ∈ N0 and 𝑁 ∈ N, there is a bijective correspondence

𝜓̃ : L𝑑𝑒𝑚 (𝑁) → T̃𝑚 (𝑁) (7.47)

such that if (𝑇, 𝛿) = 𝜓̃(𝐿) then 𝑇 = 𝜓(𝐶), where 𝐶 is the triangulation underlying 𝐿. Moreover,

|𝛿 | = 𝑠(𝐿)/2.

Proof. Inheriting the action of 𝜓 from (7.32), to define the map 𝜓̃ it suffices to define the map 𝛿, which

acts in the following way: assign with a label 1 any vertex appearing to the left (viewed outwardly) of

a space-like edge intersected by two arcs, and assign a label of 0 to all other vertices of 𝑉 (𝑇). Here we

highlight that the vertices 𝑥0 and 𝑥 are not assigned any label. As the map 𝜓 is bijective and, omitting

𝑥0, the vertices of 𝐿 ∈ L𝑑𝑒𝑚 (𝑁) and 𝑇 = 𝜓(𝐶) coincide, the bijectivity of 𝜓̃ follows from the fact that

the intersection characteristics n𝑘 for 𝑘 = 1, . . . ,𝑚, which (together with 𝐶) uniquely describe 𝐿 see

Lemma 7.3.3, coincide with the labelling characteristics 𝛿𝛿𝛿𝑘 for 𝑘 = 1, . . . ,𝑚, which (together with 𝑇)

uniquely describe (𝑇, 𝛿) see the definition (7.36), that is n𝑘 = 𝛿𝛿𝛿𝑘 for all 𝑘 = 1, . . .𝑚. The statement

|𝛿 | = 𝑠(𝐿)/2 readily follows. □

The following is a counterpart to Proposition 7.3.5 for the dilute loop model, see Figure 7.11 for an

example of this correspondence.

Proposition 7.3.6. For each 𝑚 ∈ N0 and 𝑁 ∈ N, there is a 2𝑚 to 1 correspondence

𝜓̂ : L𝑑𝑖𝑚 (𝑁) → T̃ 𝑒𝑣𝑚 (𝑁) (7.48)

such that if (𝑇, 𝛿) = 𝜓̂(𝐿) then 𝑇 = 𝜓(𝐶), where 𝐶 is the triangulation underlying 𝐿. Moreover,

|𝛿 | = 𝑠(𝐿).
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Proof. Inheriting the action of 𝜓 from (7.32), to define the map 𝜓̂ it suffices to define the map 𝛿, which

acts in the following way: assign with a label 1 any vertex appearing to the left (viewed outwardly) of

a space-like edge intersected by an arc, and assign a label of 0 to all other vertices of 𝑉 (𝑇). Here we

highlight that the vertices 𝑥0 and 𝑥 are not assigned any label. As the map 𝜓 is bijective and, omitting

𝑥0, the vertices of 𝐿 ∈ L𝑑𝑖𝑚 (𝑁) and 𝑇 = 𝜓(𝐶) coincide, the 2𝑚 to 1 property of 𝜓̂ follows from the fact

that the intersection characteristics n𝑘 for 𝑘 = 1, . . . ,𝑚, which (together with 𝐶) are consistent with 2𝑚

possible 𝐿’s see Lemma 7.3.3, coincide with the labelling characteristics 𝛿𝛿𝛿𝑘 for 𝑘 = 1, . . . ,𝑚, which

(together with 𝑇) uniquely describe (𝑇, 𝛿) see the definition (7.36), that is n𝑘 = 𝛿𝛿𝛿𝑘 for all 𝑘 = 1, . . .𝑚.

The statement |𝛿 | = 𝑠(𝐿) readily follows. □

7.3.3 Partition functions

Motivated by the correspondences (7.32), (7.47) and (7.48), we define partition functions associated

with the ensembles T𝑚, T̃𝑚 and T̃ 𝑒𝑣𝑚 such that they can be related to those on causal triangulations

defined in (7.10), (7.18) and (7.27) respectively. Accordingly, for a given element in each ensemble,

we assign a weight of 𝛼 to all vertices labelled by a 1, and a weight of 𝑔 to all edges except for {𝑥0, 𝑥},
and therefore have

𝑊 (𝑔) :=
∞∑︁
𝑚=0

𝑊𝑚 (𝑔), 𝑊𝑚 (𝑔) :=
∑︁
𝑇∈T𝑚

𝑔 |𝑇 |−1, (7.49)

𝑊 (𝑔,𝛼) :=
∞∑︁
𝑚=0

𝑊𝑚 (𝑔,𝛼), 𝑊𝑚 (𝑔,𝛼) :=
∑︁
(𝑇,𝛿)∈T̃𝑚

𝑔 |𝑇 |−1𝛼 |𝛿 |, (7.50)

𝑊 𝑒𝑣 (𝑔,𝛼) :=
∞∑︁
𝑚=0

𝑊 𝑒𝑣
𝑚 (𝑔,𝛼), 𝑊 𝑒𝑣

𝑚 (𝑔,𝛼) :=
∑︁

(𝑇,𝛿)∈T̃ 𝑒𝑣
𝑚

𝑔 |𝑇 |−1𝛼 |𝛿 |, (7.51)

where we highlight that 𝑊0(𝑔) =𝑊0(𝑔,𝛼) =𝑊 𝑒𝑣
0 (𝑔,𝛼) = 1. Following from Section 7.3.1 and the

above construction, we have the relations between partition functions

𝑍 (𝑔) =𝑊 (𝑔), 𝑍𝑚 (𝑔) =𝑊𝑚 (𝑔). (7.52)

Similarly, it follows from Proposition 7.3.5 and the above construction that we have the relations

𝑍𝑑𝑒 (𝑔,𝛼) =𝑊 (𝑔,𝛼2), 𝑍𝑑𝑒𝑚 (𝑔,𝛼) =𝑊𝑚 (𝑔,𝛼2). (7.53)

Likewise, it follows from Proposition 7.3.6 that we have the relations

𝑍𝑑𝑖 (𝑔,𝛼) =
∞∑︁
𝑚=0

2𝑚𝑊 𝑒𝑣
𝑚 (𝑔,𝛼), 𝑍𝑑𝑖𝑚 (𝑔,𝛼) = 2𝑚𝑊 𝑒𝑣

𝑚 (𝑔,𝛼). (7.54)

Here we observe the 2𝑚 to 1 correspondence (7.48) manifesting in the partition functions (7.54). As

we will see in the following sections, this will prove instrumental in influencing the critical behaviour

of the dilute loop model.
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7.4 Tree partition function analysis

In light of the relations (7.53) and (7.54), we analyse the partition functions𝑊 (𝑔,𝛼) and𝑊 𝑒𝑣 (𝑔,𝛼) as

a means to determine the critical behaviour of the dense and dilute loop models. To further probe the

dilute case, we consider a generalisation of the full partition function (7.51) which we refer to as the

height-coupled partition function

𝑊 𝑒𝑣 (𝑔,𝛼, 𝑘) :=
∞∑︁
𝑚=0

𝑘𝑚𝑊 𝑒𝑣
𝑚 (𝑔,𝛼), (7.55)

where 𝑘 > 0 is an arbitrary height coupling, such that𝑊 𝑒𝑣 (𝑔,𝛼) is recovered for 𝑘 = 1, and 𝑍𝑑𝑖 (𝑔,𝛼)
is recovered for 𝑘 = 2:

𝑊 𝑒𝑣 (𝑔,𝛼) =𝑊 𝑒𝑣 (𝑔,𝛼,1), 𝑍𝑑𝑖 (𝑔,𝛼) =𝑊 𝑒𝑣 (𝑔,𝛼,2). (7.56)

Throughout this section, we analyse 𝑊 (𝑔,𝛼), 𝑊 𝑒𝑣 (𝑔,𝛼) and 𝑊 𝑒𝑣 (𝑔,𝛼, 𝑘), in Section 7.4.1 we spe-

cialise to 𝛼 = 0 corresponding to unlabelled planar trees, while in Section 7.4.2 we relax this constraint

and consider a label which takes values 𝛼 ∈ [0,1).

7.4.1 Planar trees

Under the specialisation 𝛼 = 0, we have the following relation between partition functions

𝑊 (𝑔) =𝑊 (𝑔,0) =𝑊 𝑒𝑣 (𝑔,0) =𝑊 𝑒𝑣 (𝑔,0,1). (7.57)

In the following, using well-known arguments see e.g [101], the partition function 𝑊 (𝑔) can be

determined in closed form.

Lemma 7.4.1. The partition function𝑊 (𝑔), admits the recursion

𝑊 (𝑔) = 1
1−𝑔𝑊 (𝑔) , (7.58)

whose solution is identified with

𝑊 (𝑔) =
1−

√︁
1−4𝑔

2𝑔
. (7.59)

Proof. Each node of a tree in the ensemble T , apart from the root, admits the possibility of arbitrarily

many successive nodes. Formally,

= +𝑔 +𝑔2 +𝑔3 + . . . (7.60)

where the diagram denotes the weighted ensemble of successive nodes and is equivalent to the

partition function𝑊 (𝑔). Expressing (7.60) in terms𝑊 (𝑔), we have

𝑊 (𝑔) = 1+𝑔𝑊 (𝑔) +𝑔2𝑊2(𝑔) +𝑔3𝑊3(𝑔) + . . . =
∞∑︁
𝑘=0

𝑔𝑘𝑊 𝑘 (𝑔) = 1
1−𝑔𝑊 (𝑔) . (7.61)
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Solving this recursion, we arrive at

𝑊 (𝑔) =
1±

√︁
1−4𝑔

2𝑔
. (7.62)

Performing a power series expansion in 𝑔 of (7.62), and comparing with the definition of𝑊 (𝑔) (7.49),

we disregard the positive solution and arrive at (7.59). □

We can immediately conclude that𝑊 (𝑔) is analytic on the disk

D := {𝑔 ∈ C | |𝑔 | < 1
4 }, (7.63)

with a square-root singularity at 𝑔𝑐 = 1
4 , and we note that𝑊 ( 14 ) = 2.

Applying similar arguments, we can determine a closed-form expression for𝑊𝑚 (𝑔) for all 𝑚 ∈ N0.

For each 𝑚 ∈ N0, let 𝑋𝑚 (𝑔) denote the partition function for trees in T of height at most 𝑚 +1. By

definition, it follows that

𝑊𝑚 (𝑔) = 𝑋𝑚 (𝑔) − 𝑋𝑚−1(𝑔), (7.64)

where for convenience, we associate 𝑋−1(𝑔) ≡ 0. The following is a counterpart to Lemma 7.4.1 for

𝑋𝑚 (𝑔).

Lemma 7.4.2. For each 𝑚 ∈ N0, the partition function 𝑋𝑚 (𝑔), admits the recursion

𝑋𝑚 (𝑔) =
1

1−𝑔𝑋𝑚−1(𝑔)
, (7.65)

whose solution is given by

𝑋𝑚 (𝑔) =
𝑈𝑚 ( 1

2√𝑔 )
√
𝑔 𝑈𝑚+1( 1

2√𝑔 )
, (7.66)

where𝑈𝑛 (𝑥) is the 𝑛th Chebyshev polynomial of the section kind (with𝑈−1(𝑥) ≡ 0).

Proof. The analogous observation to (7.60) for ensembles of trees of height at most 𝑚 is given by

𝑚

= +𝑔

𝑚−1

+𝑔2

𝑚−1𝑚−1

+𝑔3

𝑚−1𝑚−1𝑚−1

+ . . . (7.67)

where the diagram
𝑚

denotes the weighted ensemble of successive nodes up to a height 𝑚 and is

equivalent to the partition function 𝑋𝑚 (𝑔). Expressing (7.67) in terms of 𝑋𝑚 (𝑔) and 𝑋𝑚−1(𝑔), we have

𝑋𝑚 (𝑔) = 1+𝑔𝑋𝑚−1(𝑔) +𝑔2𝑋2
𝑚−1(𝑔) +𝑔

3𝑋3
𝑚−1(𝑔) + . . . =

∞∑︁
𝑘=0

𝑔𝑘𝑋 𝑘𝑚−1(𝑔) =
1

1−𝑔𝑋𝑚−1(𝑔)
. (7.68)

By direct computation, we see that (7.66) solves the recursion above. □
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Applying the closed-form expression of 𝑋𝑚 (𝑔) to (7.64), we arrive at

𝑊𝑚 (𝑔) =
1

√
𝑔 𝑈𝑚 ( 1

2√𝑔 )𝑈𝑚+1(
1

2√𝑔 )
(7.69)

and since

𝑈𝑛 (𝑥) = 2𝑛
𝑛∏
𝑗=1

(
𝑥− cos

( 𝑗𝜋
𝑛+1

) )
, (7.70)

the partition functions𝑊𝑚 (𝑔) and 𝑋𝑚 (𝑔) are analytic on the disk

D𝑚 := {𝑔 ∈ C | |𝑔 | < 𝑔𝑚}, 𝑔𝑚 :=
1
4

(
1+ tan2 (

𝜋
𝑚+2

) )
, (7.71)

both with a simple pole at 𝑔𝑚.

Under the specialisation of the height-coupled partition function where 𝛼 = 0, we have

𝑊 𝑒𝑣 (𝑔,0, 𝑘) :=
∞∑︁
𝑚=0

𝑘𝑚𝑊𝑚 (𝑔) (7.72)

and can therefore apply the above insights to analyse this partition function. As the coefficients

defining𝑊𝑚 (𝑔) as a power series in 𝑔 are nonnegative, it follows that𝑊𝑚 (𝑔) is divergent for 𝑔 > 𝑔𝑚.

Observing that 𝑔𝑚→ 1
4 as 𝑚→∞, it follows that 𝑊 𝑒𝑣 (𝑔,0, 𝑘) diverges for all 𝑔 > 1

4 and 𝑘 > 0. We

therefore conclude that the radius of convergence 𝑔𝑐 (𝑘) of𝑊 𝑒𝑣 (𝑔,0, 𝑘) for fixed 𝑘 is at most 1
4 for any

𝑘 > 0. In the following, we refine this bound, culminating in Proposition 7.4.5 below.

Lemma 7.4.3. For 𝑔 ∈ (0, 1
4 ) and 𝑚 ∈ N, we have

𝜙(𝑊 (𝑔) −1)2
𝑊 (𝑔) (𝑊 (𝑔) −1)𝑚 <𝑊𝑚 (𝑔) < (𝑊 (𝑔) −1)𝑚 (7.73)

where 𝜙 is Euler’s function.

Proof. When unlikely to cause confusion, we omit the arguments of a given function. Let us first

establish the upper bound. Applying the recursion relation (7.65) to (7.64), we have

𝑊𝑚 = 𝑋𝑚 − 𝑋𝑚−1 =
𝑔(𝑋𝑚−1− 𝑋𝑚−2)

(1−𝑔𝑋𝑚−1) (1−𝑔𝑋𝑚−2)
= 𝑔(𝑋𝑚−1− 𝑋𝑚−2)𝑋𝑚𝑋𝑚−1. (7.74)

Iteratively applying this expression for 𝑚 ∈ N, we have

𝑊𝑚 = 𝑔𝑚𝑋𝑚

𝑚−1∏
𝑖=1

𝑋2
𝑖 , (7.75)

where we recall 𝑋−1(𝑔) ≡ 0. By definition for 𝑖 ∈ N, we have 1 < 𝑋𝑖 <𝑊 , hence 𝑋𝑖
𝑊
< 1, therefore by

applying (7.58) to (7.75), we have

𝑊𝑚 = 𝑔𝑚𝑊2𝑚−2𝑋𝑚

𝑚−1∏
𝑖=1

(
𝑋𝑖

𝑊

)2
= (𝑊 −1)𝑚 𝑋𝑚

𝑊2

𝑚−1∏
𝑖=1

(
𝑋𝑖

𝑊

)2
< (𝑊 −1)𝑚, (7.76)
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establishing the upper bound.

Now for the lower bound, applying (7.58) we have

𝑊 − 𝑋𝑚 =
𝑊 −1−𝑔𝑊𝑋𝑚−1

1−𝑔𝑋𝑚−1
= 𝑔𝑊 (𝑊 − 𝑋𝑚−1)𝑋𝑚 . (7.77)

Iteratively applying this expression for 𝑚 ∈ N, we have

𝑊 − 𝑋𝑚 = 𝑔𝑚𝑊𝑚 (𝑊 −1)
𝑚∏
𝑖=1

𝑋𝑖 . (7.78)

Now, using 𝑋𝑖
𝑊
< 1, 1 <𝑊 < 2 and (7.58), we have

𝑊 − 𝑋𝑚 = 𝑔𝑚𝑊2𝑚 (𝑊 −1)
𝑚∏
𝑖=1

𝑋𝑖

𝑊
= (𝑊 −1)𝑚 (𝑊 −1)

𝑚∏
𝑖=1

𝑋𝑖

𝑊
< (𝑊 −1)𝑚 . (7.79)

It follows that

𝑋𝑖

𝑊
= 1−𝑊 − 𝑋𝑖

𝑊
> 1− (𝑊 −1)𝑖

𝑊
> 1− (𝑊 −1)𝑖, (7.80)

and since 0 <𝑊 −1 < 1, we have

𝑚∏
𝑖=1

(
1− (𝑊 −1)𝑖

)
>

∞∏
𝑖=1

(
1− (𝑊 −1)𝑖

)
= 𝜙(𝑊 −1). (7.81)

Finally, applying (7.80) and (7.81) to (7.75), we have

𝑊𝑚 =
𝑔𝑚𝑊2𝑚

𝑋𝑚

𝑚∏
𝑖=1

(
𝑋𝑖

𝑊

)2
=
(𝑊 −1)𝑚
𝑋𝑚

𝑚∏
𝑖=1

(
𝑋𝑖

𝑊

)2
>
𝜙(𝑊 −1)2

𝑊
(𝑊 −1)𝑚, (7.82)

thereby establishing the lower bound. □

The corollary immediately follows.

Corollary 7.4.4. For 𝑘 > 0 and 𝑔 ∈ (0, 1
4 ), we have

𝜙(𝑊 (𝑔) −1)2
𝑊 (𝑔)

∞∑︁
𝑚=0

(
𝑘 (𝑊 (𝑔) −1)

)𝑚 ≤𝑊 𝑒𝑣 (𝑔,0, 𝑘) ≤
∞∑︁
𝑚=0

(
𝑘 (𝑊 (𝑔) −1)

)𝑚
. (7.83)

Finally, we arrive at the proposition below.

Proposition 7.4.5. The critical coupling of𝑊 𝑒𝑣 (𝑔,0, 𝑘) is given by

𝑔𝑐 (𝑘) =


1
4 , 𝑘 ∈ (0,1]
𝑘

(𝑘+1)2 , 𝑘 ∈ (1,∞)
(7.84)

Proof. As identified above, 𝑔𝑐 (𝑘) ≤ 1
4 . For 𝑘 ∈ (0,1], we have 𝑊 𝑒𝑣 (𝑔,0, 𝑘) ≤ 𝑊 (𝑔), consequently

𝑔𝑐 (𝑘) = 1
4 . While for 𝑘 ∈ (1,∞), it follows from Corollary 7.4.4 that𝑊 𝑒𝑣 (𝑔,0, 𝑘) is finite if and only if

𝑘
(
𝑊 (𝑔) −1

)
< 1. (7.85)

Solving for 𝑔𝑐 such that 𝑘
(
𝑊 (𝑔𝑐) −1

)
= 1, we arrive at the desired result. □
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7.4.2 Labelled planar trees

We now consider a non-trivial labelling, with the associated coupling 𝛼 taking values in (0,1].
Summing over the labels 𝛿 of 𝑊𝑚 (𝑔,𝛼) in (7.50), we can express this partition function in terms of

𝑊𝑚 (𝑔), as follows

𝑊𝑚 (𝑔,𝛼) =
∑︁
𝑇∈T𝑚

(
𝑔(1+𝛼)

) |𝑇 |−1
=𝑊𝑚 (𝑔(1+𝛼)), (7.86)

similarly for the full partition function

𝑊 (𝑔,𝛼) =𝑊 (𝑔(1+𝛼)). (7.87)

Applying results from the previous section, we can immediately identify the critical coupling of

𝑊 (𝑔,𝛼) as 𝑔 = 1
4(1+𝛼) .

Likewise, summing over the labels 𝛿 of𝑊 𝑒𝑣
𝑚 (𝑔,𝛼) in (7.51), we have

𝑊 𝑒𝑣
𝑚 (𝑔,𝛼) =

∑︁
𝑇∈T𝑚

𝑔 |𝑇 |−1
𝑚∏
𝑖=1

1
2
[
(1+𝛼)𝑛𝑖 + (1−𝛼)𝑛𝑖

]
, (7.88)

where 𝑛𝑖 (𝑇) = |𝑉𝑖 (𝑇) | denotes the number of vertices in 𝑇 at height 𝑖 + 1. Unlike for the partition

function𝑊𝑚 (𝑔,𝛼), we do not have an explicit closed-form expression for𝑊 𝑒𝑣
𝑚 (𝑔,𝛼). To understand the

critical behaviour of this partition function, we instead bound it by functions whose critical behaviour

is known. We first observe that for 𝛼 ∈ (0,1] and 𝑛 ∈ N, we have

(1+𝛼)𝑛 ≤ (1+𝛼)𝑛 + (1−𝛼)𝑛 ≤ 2(1+𝛼)𝑛−1, (7.89)

which together with

𝑚∑︁
𝑖=1
𝑛𝑖 = |𝑇 | −1, 𝑇 ∈ T𝑚, (7.90)

allows us to bound the partition function𝑊 𝑒𝑣 (𝑔,𝛼, 𝑘), as follows

𝑊 𝑒𝑣
(
𝑔(1+𝛼),0, 𝑘2

)
≤𝑊 𝑒𝑣 (𝑔,𝛼, 𝑘) ≤𝑊 𝑒𝑣

(
𝑔(1+𝛼),0, 𝑘

1+𝛼
)
. (7.91)

As will be demonstrated in Section 7.5.3, this bound will prove instrumental in analysing the critical

behaviour of 𝑍𝑑𝑖 (𝑔,𝛼).

7.5 Critical behaviour of loop models

In this section, we bring to bear prior analysis to determine the critical behaviour of the pure CDT

model (Section 7.5.1), the dense loop model (Section 7.5.2) and the dilute loop model (Section

7.5.3). In each case, we show how the largest eigenvalue of the transfer matrix determines the critical

behaviour of the model. For the dilute loop model, where a closed-form expression of the partition

function is elusive, these techniques prove essential.
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7.5.1 Pure CDT model

While much is known about the critical behaviour and large-scale structure of the pure CDT model,

we begin here to outline, in the simplest case, methods that will be applied in the analysis of both loop

models. These techniques naturally divide into two approaches based upon the object of study (i) the

closed-form expression of the partition function 𝑍 (𝑔), and (ii) the transfer matrix T(𝑔). While (i) is

indeed the most powerful, it is only applicable in the case of the dense loop model, whereas (ii) can be

analysed for both loop models.

First, we recall the results [82, 99] on the analysis of the pure CDT partition function. It follows

from (7.52) and (7.59) that 𝑍 (𝑔) can be written explicitly as

𝑍 (𝑔) =
1−

√︁
1−4𝑔

2𝑔
. (7.92)

We can immediately read off the critical coupling of the pure CDT model denoted by 𝑔𝑐, and determine

the associated value of the partition function 𝑍𝑐 := 𝑍 (𝑔𝑐), as

𝑔𝑐 =
1
4
, 𝑍𝑐 = 2. (7.93)

Furthermore, the behaviour of 𝑍 (𝑔) near the critical point is given by

𝑍 (𝑔) ∼ 𝑍𝑐 −4
√
𝑔𝑐 −𝑔 . (7.94)

Examining the large-scale structure of the pure CDT model, we consider a limiting distribution

of infinite size (or radius) causal triangulations, the precise definition of which is given in [82], and

determine the associated Hausdorff dimension of such configurations. For a given 𝐶 in this distribution

with central vertex 𝑥, the ball of radius 𝑅 around 𝑥 is defined as

𝐵(𝑥, 𝑅) := {𝑣 ∈ 𝑉 (𝐶) | 𝑑𝐶 (𝑥, 𝑣) ≤ 𝑅}, (7.95)

where 𝑑𝐶 denotes the graph distance on 𝐶. We can now define the Hausdorff dimension as the

polynomial growth rate of the number of vertices |𝐵(𝑥, 𝑅) |, as a function of 𝑅:

𝑑𝐻 (𝐶) := lim
𝑅→∞

ln |𝐵(𝑥, 𝑅) |
ln 𝑅

, (7.96)

where the limit must exist. For the pure CDT model, by making use of the closed-form expression of

the partition function (7.92) and the associated behaviour about the critical point, it was shown in [82]

that the Hausdorff dimension is given by

𝑑𝐻 = 2 (almost surely). (7.97)

We now pivot to analyse the transfer matrix T(𝑔). Here unlike above, the techniques are novel and

contrast those presented in [99], as we do not rely on the explicit determination of the transfer matrix

eigenvalues. First observe that the transfer matrix is symmetrisable, admitting a factorisation in terms

of a diagonal matrix D and a symmetric matrix K(𝑔)

T(𝑔) = DK(𝑔), (7.98)



7.5. CRITICAL BEHAVIOUR OF LOOP MODELS 141

whose elements are given by

D𝑟,𝑠 :=
𝛿𝑟,𝑠

𝑟
, K𝑟,𝑠 (𝑔) :=

(𝑟 + 𝑠−1)!
(𝑟 −1)!(𝑠−1)!𝑔

𝑟+𝑠
2 . (7.99)

In light of this factorisation, it is convenient to analyse the symmetric operator K(𝑔) and translate these

results to the transfer matrix.

Proposition 7.5.1. The operator K(𝑔) is trace-class for 𝑔 ∈ D, positive definite for 𝑔 ∈ (0, 1
4 ), and the

operator valued function ℎ ↦→ 𝐾 (ℎ2) is analytic on {ℎ ∈ C | |ℎ | < 1
2 }.

Proof. We first note that for fixed 𝑠, we have (K𝑟,𝑠 (𝑔))𝑟∈N ∈ 𝑙2(N) for |𝑔 | < 1. Denote by 𝑉 the dense

subspace of sequences with finitely many non-vanishing entries, then K(𝑔) is well defined on 𝑉 for

|𝑔 | < 1. For each 𝑛 ∈ N, let P𝑛 denote the orthogonal idempotent acting on 𝑙2(N) that projects onto

the subspace spanned by vectors |𝑤⟩ whose entries 𝑤𝑟 vanish for 𝑟 > 𝑛. By construction, the operator

𝐾𝑛 (𝑔) := P𝑛K(𝑔)P𝑛 is of finite rank and is bounded on 𝑙2(N), with matrix elements

(
𝐾𝑛 (𝑔)

)
𝑟,𝑠

=


K𝑟,𝑠 (𝑔), 𝑟, 𝑠 ≤ 𝑛,

0, otherwise.
(7.100)

It is also positive semi-definite for 𝑔 ∈ [0,1) as

(𝑟 + 𝑠−1)!
(𝑟 −1)!(𝑠−1)! =

∞∑︁
𝑘=1

𝑘

(
𝑠

𝑘

) (
𝑟

𝑘

)
implies ⟨𝑤 |𝐾𝑛 (𝑔) |𝑤⟩ =

𝑛∑︁
𝑘=1

𝑘 |
𝑛∑︁
𝑠=𝑘

(
𝑠

𝑘

)
𝑤𝑠𝑔

𝑠
2 |2 ≥ 0. (7.101)

With the corresponding trace norm given by

||𝐾𝑛 (𝑔) ||1 = tr𝐾𝑛 (𝑔) =
𝑛∑︁
𝑠=1

𝑠∑︁
𝑘=1

𝑠

(
𝑠

𝑘

) (
𝑠−1
𝑘 −1

)
𝑔𝑠 ≤

∞∑︁
𝑠=1

𝑠

(
2𝑠−1
𝑠

)
𝑔𝑠 =

𝑔

(1−4𝑔) 3
2
, (7.102)

where the last equality holds for 𝑔 ∈ (0, 1
4 ). It follows that the operator norms ||𝐾𝑛 (𝑔) || are uniformly

bounded in 𝑛 for any fixed 𝑔 ∈ [0, 1
4 ). Having established these basic results, we proceed by establishing

the claims about K(𝑔) by considering 𝐾𝑛 (𝑔) and the limit 𝑛→∞.

We first note that since lim𝑛→∞⟨𝑣 |𝐾𝑛 (𝑔) |𝑤⟩ = ⟨𝑣 |K(𝑔) |𝑤⟩ for all 𝑣,𝑤 ∈ 𝑉 , it follows that K(𝑔)
extends to a bounded operator on 𝑙2(N) equal to the weak limit of

(
𝐾𝑛 (𝑔)

)
𝑛∈N for 𝑔 ∈ [0, 1

4 ). It follows

from (7.102) and Theorem 10 in Section 2.4 of [102] that K(𝑔) is trace-class for 𝑔 ∈ (0, 1
4 ), with trace

norm

||K(𝑔) ||1 = trK(𝑔) = 𝑔

(1−4𝑔) 3
2
. (7.103)

Extending the trace-class domain to all of D, let 𝑔 ∈ D be arbitrary and parameterise by 𝑔 = |𝑔 |𝑒i𝜃

where 𝜃 ∈ R, we can therefore write

K(𝑔) =𝑈 (𝜃)K( |𝑔 |)𝑈 (𝜃), (7.104)

where𝑈 (𝜃) is a diagonal and unitary operator with matrix elements

𝑈𝑟,𝑠 (𝜃) = 𝑒
i𝑟 𝜃
2 𝛿𝑟,𝑠 . (7.105)
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It follows that K(𝑔) is well-defined and trace-class for all 𝑔 ∈ D, with

||K(𝑔) ||1 = tr|K(𝑔) | = ||K( |𝑔 |) ||1. (7.106)

As 𝑔 ↦→ ⟨𝑣 |K(𝑔) |𝑤⟩ is analytic for 𝑔 ∈ D and all 𝑣,𝑤 ∈ 𝑉 , the operator K(𝑔) is also analytic on D as a

function of 𝑔
1
2 , in the sense of Kato (see [7] Section XII.2).

Finally, we establish positivity. Taking the limit 𝑛→∞ in (7.101), it follows that ⟨𝑤 |K(𝑔) |𝑤⟩ is

zero if and only if
∞∑︁
𝑠=𝑘

(
𝑠

𝑘

)
𝑤𝑠𝑔

𝑠
2 = 0, (7.107)

for all 𝑘 ∈ N. We note that this sum is convergent for |𝑔 | < 1 and

∞∑︁
𝑠=𝑘

(
𝑠

𝑘

)
𝑤𝑠𝑔

𝑠
2 =

𝑔
𝑘
2

𝑘!
𝑓 (𝑘) (𝑔 1

2 ), 𝑓 (𝑧) :=
∞∑︁
𝑠=1
𝑤𝑠𝑧

𝑠 (7.108)

where 𝑓 (𝑘) (𝑧) denotes the 𝑘 th derivative of the function 𝑓 (𝑧). Accordingly, for 𝑔 ≠ 0 the expression

⟨𝑤 |K(𝑔) |𝑤⟩ is zero if and only if 𝑓 (𝑧) = 0, i.e. 𝑤𝑠 = 0 for all 𝑠 ∈ N. It follows that K(𝑔) is positive

definite for 𝑔 ∈ (0, 1
4 ). □

As the diagonal operator D is bounded, it follows that the transfer operator T(𝑔) is trace-class for

𝑔 ∈ (0, 1
4 ) with trace given by

tr
(
T(𝑔)

)
=

1−
√︁

1−4𝑔
2
√︁

1−4𝑔
. (7.109)

Moreover, since the matrix elements of K(𝑔) are positive for 𝑔 ∈ (0, 1
4 ), it thus follows from the Perron–

Frobenius theorem (see e.g. Theorem XIII.43 [7]) that K(𝑔) has a positive largest eigenvalue equal to

the operator norm ||K(𝑔) ||, and the corresponding normalised eigenvector has strictly positive entries.

Applying the Kato–Rellich theorem (see e.g. Theorem XII.8 [7]), this largest eigenvalue is an analytic

function for 𝑔 ∈ (0, 1
4 ), and up to a phase, the entries of the corresponding normalised eigenvector are

analytic functions for 𝑔 ∈ (0, 1
4 ). As D is diagonal and positive definite, these statements are also true

of the positive definite operator D
1
2K(𝑔)D 1

2 .

We now define the time-periodic partition functions as

𝑍
𝑝𝑒𝑟
𝑚 (𝑔) := tr

(
T(𝑔)𝑚−1) , 𝑚 ≥ 2, (7.110)

which can be interpreted as summing over triangulations of a cylinder of height (𝑚 − 1) whose

boundary cycles 𝑆1 and 𝑆𝑚 are identified (i.e. 𝑆1 ≡ 𝑆𝑚), and a weight of 𝑔 is assigned to each space-like

edge. Equivalently, a weight of 𝑔
1
2 may be assigned to each elementary triangle.

Relating the partition functions 𝑍𝑚 (𝑔) and 𝑍 𝑝𝑒𝑟
𝑚+1(𝑔), we first observe that the trace of a positive

definite trace-class operator O is equal to the sum of its eigenvalues [102], accordingly tr(O𝑛) ≤ (trO)𝑛

for all 𝑛 ∈ N. As D
1
2K(𝑔)D 1

2 is positive definite, we have

𝑍
𝑝𝑒𝑟
𝑚 ≤

(
trT(𝑔)

)𝑚−1
. (7.111)
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𝑚−1 −→
𝑚

Figure 7.12: A triangulation contributing to 𝑍𝑚 (𝑔) on the left, and the corresponding contribution to
𝑍
𝑝𝑒𝑟

𝑚+1(𝑔) on the right. In both diagrams, the left-most and right-most dashed edges are identified. In
the right-most diagram, the bottom and top space-like edges are identified i.e. 𝑆1 ≡ 𝑆𝑚+1.

Lemma 7.5.2. For each 𝑚 ∈ N and 𝑔 ∈ [0, 1
4 ), we have

𝑍𝑚 (𝑔) ≤ 𝑍 𝑝𝑒𝑟𝑚+1(𝑔). (7.112)

Proof. Let 𝐶 denote a causal triangulation of the sphere contributing to the partition function 𝑍𝑚 (𝑔).
Each height 𝑚 spherical triangulation 𝐶 can be transformed into a unique time-periodic triangulation

𝐶′ of height 𝑚 +1 contributing to the partition function 𝑍 𝑝𝑒𝑟
𝑚+1(𝑔). This construction is as follows: (i)

remove the |𝑆1 | backward-directed triangles with space-like edges in 𝑆1, (ii) place them to the right

(viewed outwardly) of the |𝑆𝑚 | forward-directed triangles with space-like edges in 𝑆𝑚 such that the

right-most forward-directed triangle shares a time-like edge with the left-most backward-directed

triangle thereby introducing a new annulus 𝐴𝑛 with a standard triangulation between cycles 𝑆𝑛 and

𝑆𝑛+1, and (iii) identify the new outer cycle 𝑆𝑚+1 with the initial cycle 𝑆1. See Figure 7.12 for an

illustration.

As the triangle number is conserved under the map taking 𝐶 to 𝐶′, both 𝐶 and 𝐶′ contribute

the same weight to their respective partition functions. Furthermore, we note that this same map is

injective but not surjective, as 𝐴𝑛 of 𝐶′ is restricted to be a standard triangulation. Together, these two

facts establish the inequality. □

Exploiting the cyclicity of the trace, the partition function 𝑍 𝑝𝑒𝑟𝑚 (𝑔) can be expressed as

𝑍
𝑝𝑒𝑟
𝑚 (𝑔) = tr

(
(D 1

2K(𝑔)D 1
2 )𝑚−1) , 𝑚 ≥ 2. (7.113)

Ultimately, we will use properties of the operator D
1
2K(𝑔)D 1

2 to understand the critical behaviour of

𝑍
𝑝𝑒𝑟

𝑚+1(𝑔) and hence 𝑍𝑚 (𝑔). The following proposition determines how the largest eigenvalue behaves

as 𝑔 approaches the critical coupling.

Proposition 7.5.3. The largest eigenvalue 𝜆1(𝑔) of D
1
2K(𝑔)D 1

2 satisfies

𝜆1(𝑔) ↗ 1 as 𝑔↗ 1
4 . (7.114)
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Proof. Note that all matrix elements of D
1
2K(𝑔)D 1

2 are strictly increasing functions of 𝑔. It follows

from the variational principle (see Theorem XIII.1 in [7]), that 𝜆1(𝑔) is strictly increasing for 𝑔 ∈ (0, 1
4 ).

Again, we suppress arguments of functions when unlikely to cause confusion.

First, suppose that 𝜆1 ≤ 𝑐1 where 𝑐1 < 1. Consequently, (1− 𝑘D 1
2KD

1
2 )−1 is a bounded operator

for 𝑘 ∈ [1, 𝑐−1
1 ) and we have

∞∑︁
𝑚=1

𝑘𝑚𝑍
𝑝𝑒𝑟

𝑚+1(𝑔) =
∞∑︁
𝑚=1

tr
(
(𝑘D 1

2KD
1
2 )𝑚

)
= tr

(
𝑘D

1
2KD

1
2

1− 𝑘D 1
2KD

1
2

)
≤ 𝑘

������ 1
1− 𝑘D 1

2KD
1
2

������tr(T) <∞, (7.115)

for all 𝑔 ∈ (0, 1
4 ). It follows from Lemma 7.5.2 that

𝑊 𝑒𝑣 (𝑔,0, 𝑘) = 1+
∞∑︁
𝑚=1

𝑘𝑚𝑍𝑚 (𝑔) <∞, 𝑔 ∈ (0, 1
4 ), (7.116)

in contradiction to Proposition 7.4.5, which states that the critical coupling for𝑊 𝑒𝑣 (𝑔,0, 𝑘) satisfies

𝑔𝑐 (𝑘) < 1
4 for 𝑘 > 1. Therefore lim𝑔↗ 1

4
𝜆1(𝑔) ≥ 1.

Now, suppose that 𝜆1 ≥ 𝑐1 where 𝑐1 > 1. It follows that there exists a 𝑔0 <
1
4 such that 𝜆1(𝑔0) = 1.

Denote by 𝜆1 > 𝜆2 ≥ 𝜆3 ≥ . . . the eigenvalues, and by {|𝑤 (𝑛)⟩ | 𝑛 ∈ N} the corresponding set of

eigenvectors of the operator D
1
2KD

1
2 . In particular, |𝑤 (1)⟩ has been normalised such that it is analytic

and has positive coordinates in an interval 𝐼 about 𝑔0. For a sufficiently small 𝐼, there exists a constant

𝑐 > 0, such that

⟨𝑣 |D 1
2 |𝑤 (1)⟩⟨𝑤 (1) |D− 1

2 |𝑣⟩ ≥ 𝑐, (7.117)

for 𝑔 ∈ 𝐼. Let us now consider 𝑍 (𝑔) for 𝑔 < 𝑔0, we have

𝑍 (𝑔) −1 =

∞∑︁
𝑚=1
⟨𝑣 |D 1

2 (D 1
2KD

1
2 )𝑚−1D−

1
2 |𝑣⟩ (7.118)

=

∞∑︁
𝑚,𝑛=1
⟨𝑣 |D 1

2 (D 1
2KD

1
2 )𝑚−1 |𝑤 (𝑛)⟩⟨𝑤 (𝑛) |D− 1

2 |𝑣⟩ (7.119)

= ⟨𝑣 |D 1
2 |𝑤 (1)⟩⟨𝑤 (1) |D− 1

2 |𝑣⟩
∞∑︁
𝑚=1

𝜆𝑚−1
1 +

∞∑︁
𝑚=1

∞∑︁
𝑛=2

𝜆𝑚−1
𝑛 ⟨𝑣 |D 1

2 |𝑤 (𝑛)⟩⟨𝑤 (𝑛) |D− 1
2 |𝑣⟩ (7.120)

≥ 𝑐

1−𝜆1
+
∞∑︁
𝑛=2

⟨𝑣 |D 1
2 |𝑤 (𝑛)⟩⟨𝑤 (𝑛) |D− 1

2 |𝑣⟩
1−𝜆𝑛

(7.121)

and it follows that

𝑍 (𝑔) ≥ 1+ 𝑐

1−𝜆1
−
∞∑︁
𝑛=2

|⟨𝑣 |D 1
2 |𝑤 (𝑛)⟩⟨𝑤 (𝑛) |D− 1

2 |𝑣⟩|
1−𝜆𝑛

≥ 1+ 𝑐

1−𝜆1
− ||D

1
2 𝑣 || ||D− 1

2 𝑣 ||
1−𝜆2

. (7.122)

Note that while D−
1
2 is unbounded, D−

1
2 𝑣 ∈ 𝑙2(N), as the entries of 𝑣(𝑔) decay exponentially. It follows

from (7.122) that 𝑍 (𝑔) diverges as 𝑔↗ 𝑔0, which contradicts the fact that 𝑍 (𝑔) is analytic for 𝑔 ∈ D.

This contradiction, together with the previous contradiction, serves to show lim𝑔↗ 1
4
𝜆1(𝑔) = 1. □

This concludes the analysis of the pure CDT model, in the following sections, we apply these techniques

to the novel settings of the dense loop model and the dilute loop model.
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7.5.2 Dense loop model

As we will see in this section, the critical behaviour and large-scale structure of the dense loop model

are identical to the pure CDT model up to a simple shift in the coupling. Beginning with the partition

function, it follows from (7.53), (7.59) and (7.87), that we have

𝑍𝑑𝑒 (𝑔,𝛼) =𝑊 (𝑔(1+𝛼2)) = 1−
√︁

1−4𝑔(1+𝛼2)
2𝑔(1+𝛼2)

. (7.123)

We can immediately read off the critical coupling of the dense loop model denoted by 𝑔𝑑𝑒𝑐 (𝛼), and

determine the associated value of the partition function 𝑍𝑑𝑒𝑐 (𝛼) := 𝑍𝑑𝑒 (𝑔𝑑𝑒𝑐 (𝛼), 𝛼), as

𝑔𝑑𝑒𝑐 (𝛼) =
1

4(1+𝛼2)
, 𝑍𝑑𝑒𝑐 (𝛼) = 2. (7.124)

Furthermore, the behaviour of 𝑍𝑑𝑒 (𝑔,𝛼) near the critical coupling matches that of the pure CDT model,

and is given by

𝑍𝑑𝑒 (𝑔,𝛼) ∼ 𝑍𝑑𝑒𝑐 (𝛼) − 𝑐𝛼
√︃
𝑔𝑑𝑒𝑐 (𝛼) −𝑔 (7.125)

where 𝑐𝛼 = 4
√

1+𝛼2 .

The dense loop model and the pure CDT model share the same large-scale structure. It follows

from (7.123) and (7.125), and arguments made in Section 7.5.1 that the Hausdorff dimension is given

by

𝑑𝑑𝑒𝐻 = 2 (almost surely). (7.126)

Given the similarities between the critical behaviour and the large-scale structure of both pure CDT and

dense loop models, the influence of coupling dense loops to CDT does not manifest in the statistical

behaviour of the underlying triangulation. An analogous situation arises when coupling the Ising

model to random planar trees, whereby a relation of the form (7.125) can be derived [103].

For completeness, we proceed by analysing the transfer matrix T𝑑𝑒 (𝑔,𝛼) =DK𝑑𝑒 (𝑔,𝛼). Comparing

equations (7.15) and (7.23), it is clear that we have

T𝑑𝑒 (𝑔,𝛼) = T(𝑔(1+𝛼2)), K𝑑𝑒 (𝑔,𝛼) = K(𝑔(1+𝛼2)), (7.127)

and consequently

tr
(
T𝑑𝑒 (𝑔,𝛼)

)
=

1−
√︁

1−4𝑔(1+𝛼2)
2
√︁

1−4𝑔(1+𝛼2)
, tr

(
K𝑑𝑒 (𝑔,𝛼)

)
=

𝑔(1+𝛼2)(
1−4𝑔(1+𝛼2)

) 3
2
. (7.128)

Accordingly, we have a counterpart to Proposition 7.5.3, where for 𝛼 ∈ [0,1], the largest eigenvalue

𝜆1(𝑔,𝛼) of D
1
2K𝑑𝑒 (𝑔,𝛼)D 1

2 approaches 1 from below as 𝑔 approaches 1
4(1+𝛼2) from below. The goal of

the following section is to develop a counterpart to Proposition 7.5.3 for the dilute loop model and

thereby determine the critical behaviour of this model.
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7.5.3 Dilute loop model

Unlike the dense loop model, the partition function of the dilute loop model cannot be expressed

explicitly in terms of the pure CDT partition function. Accordingly, the analysis presented in the

previous sections, using the closed-form expression of the partition function, is not applicable here. As

will be established below, the critical behaviour and large-scale structure of the dilute loop model can

be determined using transfer matrix techniques.

We begin by presenting a simplification of the transfer operator 𝑇 𝑑𝑖 (𝑔,𝛼) introduced in Section

7.2.4,

𝑇 𝑑𝑖 (𝑔,𝛼) =
∑︁
𝑟,𝑠∈N

2
(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2

. . .

. . .

𝑟

𝑠

, = +𝛼 , #( ) ∈ 2N0, (7.129)

where we note that the combinatorial factor follows from Lemma 7.3.1, and both the factor of 2

and the parity constraint follow from Lemma 7.3.2. Proceeding as in the dense loop model, we

define an effective transfer operator corresponding to 𝑇 𝑑𝑖 (𝑔,𝛼), that assigns the correct weight to

space-like edges within a configuration. We first note that the transfer operator 𝑇 𝑑𝑖 (𝑔,𝛼) generates

both even and odd parity loop configurations, for the dilute loop model on the disk, we will restrict

to even parity configurations only. Now, the two possible elementary configurations corresponding

to a single space-like edge are •
• and •

• , which assign the weight 𝑔 and 𝑔𝛼 respectively. For the

dilute loop model, the correct assignment of weights can be achieved by considering a single layer

configuration with 𝑛 edges which, after summing over an even number of blue labels, is assigned the

weight 1
2𝑔

𝑛 [(1+𝛼)𝑛 + (1−𝛼)𝑛]. In light of this observation, we introduce an effective transfer operator

corresponding to 𝑇 𝑑𝑖 (𝑔,𝛼), defined as

𝑇
𝑑𝑖 (𝑔,𝛼) :=

∑︁
𝑟,𝑠∈N

(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2 [(1+𝛼)𝑟 + (1−𝛼)𝑟] 1

2 [(1+𝛼)𝑠 + (1−𝛼)𝑠] 1
2

. . .

. . .

𝑟

𝑠

••
• •

, (7.130)

where each layer with 𝑛 nodes is considered as a ‘square root’ of a layer of 𝑛 space-like edges and is

assigned the weight 1√
2
𝑔

𝑛
2 [(1+𝛼)𝑛 + (1−𝛼)𝑛] 1

2 . As in the dense loop model, the algebraic operators

appearing in 𝑇
𝑑𝑖 (𝑔,𝛼)𝑚 do not have a direct relation to the underlying loop configurations, they simply

assign the correct weight to each internal space-like edge.

Proceeding as in the pure CDT case, we denote by T𝑑𝑖 (𝑔,𝛼) the corresponding representation of

𝑇
𝑑𝑖 (𝑔,𝛼), that acts on the Hilbert space 𝑙2(N), whose matrix elements are given by

T𝑑𝑖𝑟,𝑠 (𝑔,𝛼) =
(
𝑟 + 𝑠−1

𝑟

)
𝑔

𝑟+𝑠
2 [(1+𝛼)𝑟 + (1−𝛼)𝑟] 1

2 [(1+𝛼)𝑠 + (1−𝛼)𝑠] 1
2 . (7.131)

We also introduce the sequence |𝑣𝑑𝑖 (𝑔,𝛼)⟩ ∈ 𝑙2(N), where

𝑣𝑑𝑖𝑛 (𝑔,𝛼) := 𝑔
𝑛
2 [(1+𝛼)𝑛 + (1−𝛼)𝑛] 1

2 , 𝑛 ∈ N. (7.132)
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Given the definition of the partition function (7.27), the representation T𝑑𝑖 (𝑔,𝛼) (7.131), and the vector

|𝑣𝑑𝑖 (𝑔,𝛼)⟩ (7.132), the fixed height partition function of the dilute loop model can be written

𝑍𝑑𝑖𝑚 (𝑔,𝛼) = ⟨𝑣𝑑𝑖 (𝑔,𝛼) |T𝑑𝑖 (𝑔,𝛼)𝑚−1 |𝑣𝑑𝑖 (𝑔,𝛼)⟩, (7.133)

for all 𝑚 ∈ N.

Having defined the transfer matrix T𝑑𝑖 (𝑔,𝛼), we first note that it is symmetrisable, admitting the

factorisation

T𝑑𝑖 (𝑔,𝛼) = 2DK𝑑𝑖 (𝑔,𝛼), (7.134)

where D is defined in (7.99), and the matrix elements of K𝑑𝑖 (𝑔,𝛼) are given by

K𝑑𝑖𝑟,𝑠 (𝑔,𝛼) =
1
2
(𝑟 + 𝑠−1)!
(𝑟 −1)!(𝑠−1)!𝑔

𝑟+𝑠
2 [(1+𝛼)𝑟 + (1−𝛼)𝑟] 1

2 [(1+𝛼)𝑠 + (1−𝛼)𝑠] 1
2 . (7.135)

We also note that K𝑑𝑖 (𝑔,0) = K(𝑔). Applying arguments developed for the pure CDT model in Section

7.5.1, we conclude that K𝑑𝑖 (𝑔,𝛼) and D
1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 are positive definite and trace-class operators on

𝑙2(N) for 𝑔 ∈ (0, 1
4(1+𝛼) ) and 𝛼 ∈ [0,1], where

tr
(
K𝑑𝑖 (𝑔,𝛼)

)
=

1
2
[
tr
(
K(𝑔(1+𝛼))

)
+ tr

(
K(𝑔(1−𝛼))

) ]
=

𝑔(1+𝛼)

2
(
1−4𝑔(1+𝛼)

) 3
2
+ 𝑔(1−𝛼)

2
(
1−4𝑔(1−𝛼)

) 3
2

(7.136)

and

tr
(
T𝑑𝑖 (𝑔,𝛼)

)
= tr

(
T(𝑔(1+𝛼))

)
+ tr

(
T(𝑔(1−𝛼))

)
=

1−
√︁

1−4𝑔(1+𝛼)
2
√︁

1−4𝑔(1+𝛼)
+

1−
√︁

1−4𝑔(1−𝛼)
2
√︁

1−4𝑔(1−𝛼)
.

(7.137)

Examining these expressions, it is clear that for 𝑔 > 1
4(1+𝛼) , the operators K𝑑𝑖 (𝑔,𝛼) and T𝑑𝑖 (𝑔,𝛼) are

not bounded. Again, arguing as in the case of D
1
2K(𝑔)D 1

2 , together with the inequality

|K𝑑𝑖𝑟,𝑠 (𝑔,𝛼) | ≤ K𝑟,𝑠
(
|𝑔 | (1+ |𝛼 |)

)
, (7.138)

the operator D
1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 is analytic in the variables (√𝑔 ,𝛼) for |𝛼 | < 1 and |𝑔 | < 1
4(1+|𝛼 |) . Further-

more, the Perron–Frobenius theorem applies to both K𝑑𝑖 (𝑔,𝛼) and D
1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 which implies that

for each operator there exists a largest non-degenerate eigenvalue equal to the operator norm and that

the corresponding eigenvector can be normalised such that it has positive coordinates only.

Adapting arguments made in Lemma 7.5.2, we have

𝑍𝑑𝑖𝑚 (𝑔,𝛼) ≤ tr
(
(T𝑑𝑖 (𝑔,𝛼))𝑚

)
, 𝑚 ∈ N, (7.139)

for 𝑔 ∈ (0, 1
4(1+𝛼) ) and 𝛼 ∈ [0,1]. In the following, we apply this result to construct a dilute model

counterpart to Proposition 7.5.3.
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Proposition 7.5.4. For each 𝛼 ∈ [0,1], the largest eigenvalue 𝜆𝑑𝑖1 (𝑔,𝛼) of D
1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 is a strictly

increasing function of 𝑔, and satisfies

𝜆𝑑𝑖1 (𝑔,𝛼) ↗ 𝜆
𝑑𝑖

1 (𝛼) as 𝑔↗ 1
4(1+𝛼) , (7.140)

where 𝜆
𝑑𝑖

1 (𝛼) ≤ 1 for all 𝛼.

Proof. The variational principle for eigenvalues (see e.g. Theorem XIII.1 in [7]), together with the

fact that the matrix elements of K𝑑𝑖 (𝑔,𝛼) are strictly increasing functions of 𝑔, implies that 𝜆
𝑑𝑖 (𝛼) has

a positive derivative with respect to 𝑔, and is therefore strictly increasing. Suppose that 𝜆
𝑑𝑖

1 (𝛼) > 1
for some fixed 𝛼, then there exists a 𝑔0 <

1
4(1+𝛼) such that 𝜆𝑑𝑖1 (𝑔0, 𝛼) = 1. Performing a calculation for

𝑔 ∈ (0, 𝑔0), analogous to that presented in (7.122), implies that

𝑊 𝑒𝑣 (𝑔,𝛼) = 1+
∞∑︁
𝑚=1

〈
𝑣𝑑𝑖 (𝑔,𝛼)

�� ( 1
2T

𝑑𝑖 (𝑔,𝛼)
)𝑚−1��𝑣𝑑𝑖 (𝑔,𝛼)〉 ≥ 𝑐′

1−𝜆𝑑𝑖1 (𝑔,𝛼)
−𝐵(𝑔,𝛼), (7.141)

where 𝑐′ > 0, and 𝐵(𝑔,𝛼) is bounded for 𝑔 close to 𝑔0. It follows from (7.141) that𝑊 𝑒𝑣 (𝑔,𝛼) diverges

as 𝑔 approaches 𝑔0, which contradicts the upper bound in (7.91) for 𝑘 = 1. We therefore conclude that

𝜆
𝑑𝑖

1 (𝛼) ≤ 1. □

Examining the limit 𝜆
𝑑𝑖

1 (𝛼) at the bounds of the interval 𝛼 ∈ [0,1], we note that T𝑑𝑖 (𝑔,0) = 2T(𝑔)
and T𝑑𝑖 (𝑔,1) = T(2𝑔), and applying Proposition 7.5.3 to these facts, we conclude

𝜆
𝑑𝑖

1 (0) = 1, 𝜆
𝑑𝑖

1 (1) =
1
2
. (7.142)

Reexpressing the matrix elements of K𝑑𝑖 (𝑔,𝛼) as

K𝑑𝑖𝑟,𝑠 (𝑔,𝛼) =
1
2
(𝑟 + 𝑠−1)!
(𝑟 −1)!(𝑠−1)!

[
1+

(1−𝛼
1+𝛼

)𝑟 ] 1
2
[
1+

(1−𝛼
1+𝛼

)𝑠] 1
2 (
𝑔(1+𝛼)

) 𝑟+𝑠
2 , (7.143)

we see, for fixed 𝑔(1+𝛼) ∈ (0, 1
4 ), that these elements are decreasing functions in 𝛼 ∈ [0,1]. It follows

that 𝜆1(𝛼) is a decreasing function of 𝛼. With these observations in hand, we present our main result

on the critical behaviour of the dilute loop model.

Theorem 7.5.5. For 𝛼 real and sufficiently small, the critical coupling 𝑔𝑑𝑖𝑐 (𝛼) of the partition function

𝑍𝑑𝑖 (𝑔,𝛼) is determined by the equation

𝜆𝑑𝑖1
(
𝑔𝑑𝑖𝑐 (𝛼), 𝛼

)
=

1
2

(7.144)

and there exists 𝐶1(𝛼),𝐶2(𝛼) > 0, such that

𝐶1(𝛼)
𝑔𝑑𝑖𝑐 (𝛼) −𝑔

≤ 𝑍𝑑𝑖 (𝑔,𝛼) ≤ 𝐶2(𝛼)
𝑔𝑑𝑖𝑐 (𝛼) −𝑔

(7.145)

for 𝑔 close to 𝑔𝑑𝑖𝑐 (𝛼).
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Proof. We first note that 𝜆𝑑𝑖1 (𝑔,𝛼) is a continuous function that is strictly increasing in 𝑔. It follows

from (7.142) that for 𝛼 sufficiently small, 𝜆
𝑑𝑖

1 (𝛼) > 1
2 , and by the intermediate value theorem, the value

of 𝑔𝑑𝑖𝑐 (𝛼) satisfying (7.144) is unique and strictly smaller than 1
4(1+𝛼) . Thus, for fixed 𝛼 sufficiently

small, D
1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 is analytic in 𝑔 in a neighbourhood of 𝑔𝑑𝑖𝑐 (𝛼).
Determining the lower bound, we perform a calculation similar to (7.122), which implies that for

𝑔 ∈ (0, 𝑔𝑑𝑖𝑐 (𝛼)), we have

𝑍𝑑𝑖 (𝑔,𝛼) ≥
𝐶′1(𝛼)

1−2𝜆𝑑𝑖1 (𝑔,𝛼)
−𝐵(𝑔,𝛼), (7.146)

where 𝐶′1(𝛼) > 0, and 𝐵(𝑔,𝛼) is bounded for 𝑔 close to 𝑔0. Recalling that for fixed 𝛼, 𝜆𝑑𝑖1 (𝑔,𝛼) is

a strictly increasing analytic function of 𝑔 ∈ (0, 𝑔𝑑𝑖𝑐 (𝛼)), together with (7.146), the lower bound in

(7.145) follows.

For the upper bound, we apply (7.139) for 𝑔 ∈ (0, 𝑔𝑑𝑖𝑐 (𝛼)) and write

𝑍𝑑𝑖 (𝑔,𝛼) ≤ 1+
∞∑︁
𝑚=1

tr
(
T𝑑𝑖 (𝑔,𝛼)

)𝑚
= 1+

∞∑︁
𝑚=1

2𝑚tr
(
D

1
2K𝑑𝑖 (𝑔,𝛼)D 1

2
)𝑚

= 1+
∞∑︁
𝑛=1

2𝜆𝑑𝑖𝑛 (𝑔,𝛼)
1−2𝜆𝑑𝑖𝑛 (𝑔,𝛼)

, (7.147)

where 𝜆𝑑𝑖1 (𝑔,𝛼) > 𝜆
𝑑𝑖
2 (𝑔,𝛼) ≥ 𝜆

𝑑𝑖
3 (𝑔,𝛼) ≥ . . . denote the eigenvalues of D

1
2K𝑑𝑖 (𝑔,𝛼)D 1

2 . Separating

the first summand, the contribution from the remaining terms is bounded for 𝑔 close to 𝑔𝑑𝑖𝑐 (𝛼), and the

upper bound follows as before. From the first term in the summand of the upper bound of (7.147), one

arrives at the constraint (7.144), defining 𝑔𝑑𝑖𝑐 (𝛼). □

Theorem 7.5.5, together with the fact that 𝜆
𝑑𝑖

1 (𝛼) is a decreasing function of 𝛼, implies two possible

outcomes for the critical behaviour of the dilute loop model:

(i) 𝜆
𝑑𝑖

1 (𝛼) = 1
2 for 𝛼 = 1 only, the constraint (7.144) holds for all 𝛼 ∈ [0,1);

(ii) 𝜆
𝑑𝑖

1 (𝛼) = 1
2 for 𝛼 ∈ [𝛼0,1] where 0 < 𝛼0 < 1, constraint (7.144) holds for all 𝛼 ∈ [0, 𝛼0).

In the case of (ii) the critical behaviour of 𝑍𝑑𝑖 (𝑔,𝛼) for 𝛼 ∈ [𝛼0,1], in particular at the transition point

𝛼 = 𝛼0, would be an interesting subject of study.

At least for small 𝛼, the critical behaviour of the dilute loop model is distinct from that of the pure

CDT model, in particular, the critical exponent characterising the singular behaviour of the pure CDT

model is 1
2 and is shifted to −1 in the dilute case. This change proves influential on the large-scale

structure of the model where for 𝛼 = 0, a more detailed analysis carried out in [100], reveals that the

simple pole of 𝑍𝑑𝑖 (𝑔,0) at 𝑔𝑑𝑖𝑐 (0) implies that the Hausdorff dimension equals 1 in this case. It follows

from Theorem 7.5.5 that for at least 𝛼≪ 1, the singularity remains a simple pole, and we similarly

conclude that the Hausdorff dimension is given by

𝑑𝑑𝑖𝐻 (𝛼≪ 1) = 1 (almost surely). (7.148)
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7.6 Outlook

In this chapter, we defined a pure CDT model, a dense loop model and a dilute loop model on causal

triangulations, and formulated each in a planar-algebraic setting. By developing tree correspondences

in each case, we were able to apply tree techniques, together with the analysis of the transfer matrix,

to study the critical behaviour of each model. The dense loop model was found to be equivalent to

the pure CDT model up to a shift in the coupling, indicating no significant interaction between dense

loops and causal triangulations. While the dilute loop model was found to possess a distinct critical

behaviour and Hausdorff dimension, at least for small 𝛼. The origin of this behaviour owes to an

effective height coupling, absent in the pure CDT model. It should be noted that though the tree

correspondences are invaluable in the analysis of the partition functions, they may limit non-trivial

couplings between matter and geometry. To account for the absence of the tree correspondences, we

envisage an analysis whereby the transfer matrix has an increased role.

In light of these comments, we consider a natural generalisation of the dilute loop model that does

not readily admit a tree correspondence. Here, we assign a separate weight 𝛾 to arcs that intersect

time-like edges only, i.e. the second diagrams of each row in Figure 7.5, and let 𝑡 (𝐿) denote the

number of such arcs in 𝐿 ∈ L𝑑𝑖𝑚 . We define the fixed height partition functions as

𝑍𝑑𝑖𝑚 (𝑔,𝛼, 𝛾) :=
∑︁
𝐿∈L𝑑𝑖

𝑚

𝑔 |𝐿 |𝛼𝑠(𝐿)𝛾𝑡 (𝐿) , (7.149)

where for a given 𝛼,𝛾 ∈ [0,1], there exists a critical coupling 𝑔𝑑𝑖𝑐 (𝛼,𝛾) such that 𝑍𝑑𝑖𝑚 (𝑔,𝛼, 𝛾) is finite

for 𝑔 < 𝑔𝑑𝑖𝑐 (𝛼,𝛾) while divergent for 𝑔 > 𝑔𝑑𝑖𝑐 (𝛼,𝛾). Noting the inequality 𝑍𝑑𝑖𝑚 (𝑔,𝛼, 𝛾) ≤ 𝑍𝑑𝑖𝑚 (𝑔,𝛼,1) =
𝑍𝑑𝑖𝑚 (𝑔,𝛼), between dilute loop models, it follows that

𝑔𝑑𝑖𝑐 (𝛼,𝛾) ≥ 𝑔𝑑𝑖𝑐 (𝛼,1) = 𝑔𝑑𝑖𝑐 (𝛼). (7.150)

The relation between the loop configurations and underlying triangulations ensures that one cannot

perform an independent summation of loop configurations and triangulations in (7.149), as was

possible for the dense and the dilute loop model partition functions. While the inseparability of matter

and geometry of this new model suggests a deep connection between these structures, uncovering the

details of this interaction requires the development of new techniques.
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Chapter 8

Quantum field theory

Up to now, this thesis has focused on describing statistical mechanical models with planar algebras. In

this chapter, we sketch how planar algebras can describe quantum field theories (QFTs) and where

planar-algebraic models fit in. We introduce a new class of QFTs and identify Jones’ semicontinuous

models as ‘almost’ examples. After detailing some recent efforts to endow semicontinuous models

with the properties of fully-fledged examples, we outline the applicability of the planar-algebraic

framework in this context and find that the single-row transfer operator plays a central role.

8.1 Conformal nets

Algebraic quantum field theory (AQFT) provides a rigorous mathematical framework for quantum

field theory (QFT) [104–106]. To each region of the spacetime manifold, one associates an algebra

of observables which are subject to fundamental physical principles such as causality, relativistic

covariance and energy positivity. Conformal nets are versions of AQFTs where the spacetime manifold

is 𝑆1 and where relativistic covariance is enlarged to conformal covariance.

Let Diff+(𝑆1) denote the group of orientation-preserving diffeomorphisms of the unit circle and let

Rot(𝑆1) denote the subgroup of rotations of the unit circle. A conformal net consists of (i) a Hilbert

space H , (ii) a von Neumann algebra A(𝐼) acting on H for each open interval 𝐼 ⊂ 𝑆1, and (iii) a

continuous unitary representation𝑈 of Diff+(𝑆1) onH , subject to:

Isotony: A(𝐼) ⊆ A(𝐽), if 𝐼 ⊆ 𝐽
Locality: [A(𝐼),A(𝐽)] = 0, if 𝐼 ∩ 𝐽 = ∅

Covariance: 𝑈 (𝛼)A(𝐼)𝑈 (𝛼)∗ =A(𝛼(𝐼)), ∀ 𝛼 ∈ Diff+(𝑆1)
Positivity: Spec

(
𝑈 (𝜌)

)
⊂ N0, ∀ 𝜌 ∈ Rot(𝑆1)

(8.1)

where Spec denotes the set of eigenvalues of an operator. See Figure 8.1 for diagrams illustrating

Isotony, Locality and Covariance.

Inspired by Jones [20, 107], we define an analogue of conformal nets whereby the underlying

spacetime is not a smooth manifold but instead has an ‘atomic’ structure. In preparation for this
153
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𝐽(

)
𝐼 ()

(a) Isotony

𝐼

(
)

𝐽

(

)

(b) Locality

( )

𝐼

(

)

𝛼(𝐼)
(c) Covariance

Figure 8.1: For conformal nets, we present diagrammatic representations of the properties of Isotony,
Locality and Covariance.

definition, we introduce a few prerequisites. A direct system ⟨𝐴𝑖, 𝑓𝑖 𝑗 ⟩ consists of (i) a directed set

⟨𝑆,⪯⟩, (ii) a vector space 𝐴𝑖 for each 𝑖 ∈ 𝑆, and (iii) a homomorphism 𝑓𝑖 𝑗 : 𝐴𝑖→ 𝐴 𝑗 for each 𝑖 ⪯ 𝑗 ,
subject to:

𝑓𝑖𝑖 = id𝑖, ∀ 𝑖 ∈ 𝑆
𝑓𝑖𝑘 = 𝑓𝑖 𝑗 ◦ 𝑓 𝑗 𝑘 , ∀ 𝑖 ⪯ 𝑗 ⪯ 𝑘

(8.2)

where id𝑖 denotes the identity automorphism for each 𝑖 ∈ 𝑆. We say that the direct system ⟨𝐴𝑖, 𝑓𝑖 𝑗 ⟩ is

defined over 𝑆. A direct limit 𝐴, of a direct system ⟨𝐴𝑖, 𝑓𝑖 𝑗 ⟩ over 𝑆, is defined

𝐴 :=
⊔
𝑖∈𝑆

𝐴𝑖
/
∼, (8.3)

where the equivalence relation ∼ on
⊔
𝑖∈𝑆 𝐴𝑖 is defined as

(𝑥, 𝑖) ∼ (𝑦, 𝑗) ⇐⇒ 𝑓𝑖𝑘 (𝑥) = 𝑓 𝑗 𝑘 (𝑦). (8.4)

We denote elements in 𝐴 by [(𝑥, 𝑖)], which corresponds to the set of elements in
⊔
𝑖∈𝑆 𝐴𝑖 equivalent to

(𝑥, 𝑖) under the relation ∼.

Remark. Direct limits can similarly be defined when each vector space 𝐴𝑖 comes equipped with

additional structure, provided that each homomorphism respects this structure. For our purposes, we

will define the direct limits of two directed systems, one of Hilbert spaces and another of von Neumann

algebras.

Let D denote a set of countable subsets of 𝑆1. For each closed interval 𝐼 ⊂ 𝑆1, denote by D𝐼 the

set of all elements in D, containing the endpoints of 𝐼. A discrete conformal net consists of:

(i) a directed set ⟨D,⪯⟩ of countable subsets of 𝑆1;

(ii) a Hilbert spaceH𝑖 for each 𝑖 ∈ D;

(iii) a von Neumann algebra A𝑖 (𝐼) acting onH𝑖, for each closed interval 𝐼 ⊂ 𝑆1 and each 𝑖 ∈ D𝐼 ;

(iv) an isometry 𝑓𝑖 𝑗 :H𝑖→H 𝑗 for each 𝑖 ⪯ 𝑗 , i.e. 𝑓 ∗
𝑖 𝑗
◦ 𝑓𝑖 𝑗 = id𝑖;

(v) a discrete realisation of Diff+(𝑆1) denoted D;
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𝐽[

]
𝐼 []

(a) Isotony

𝐼

[
]

𝐽

[

]

(b) Locality

[ ]𝐼[

]

𝛼(𝐼)
(c) Covariance

Figure 8.2: For discrete conformal nets, we present diagrammatic representations of the properties of
Isotony, Locality and Covariance.

(vi) a continuous unitary representation𝑈 of D on the completion ofH (see below).

From these elements we defineH as the direct limit of the direct system ⟨H𝑖, 𝑓𝑖 𝑗 ⟩ over D, and define

A(𝐼) as the direct limit of the direct system ⟨A𝑖 (𝐼), 𝑔𝑖 𝑗 ⟩ over D, where

𝑔𝑖 𝑗 :A𝑖 (𝐼) → A 𝑗 (𝐼), 𝑥 ↦→ 𝑓𝑖 𝑗 ◦ 𝑥 ◦ 𝑓 ∗𝑖 𝑗 . (8.5)

Remark. We highlight that (i) H is a pre-Hilbert space, (ii) A(𝐼) is an algebra for each 𝐼 where

D𝐼 ≠ ∅, and (iii) there is an action of A(𝐼) onH . To illustrate the point (iii), see (8.7) below.

The algebras A(𝐼) and the pre-Hilbert spaceH are subject to

Isotony: A(𝐼) ⊆ A(𝐽), if 𝐼 ⊆ 𝐽
Locality: [A(𝐼),A(𝐽)] = 0, if 𝐼 ∩ 𝐽 = ∅

Covariance: 𝑈 (𝛼)A(𝐼)𝑈 (𝛼)∗ =A(𝛼(𝐼)), ∀ 𝛼 ∈ D
Positivity: Spec

(
𝑈 (𝜌)

)
⊂ N0, ∀ 𝜌 ∈ RotD

(8.6)

where RotD denotes the rotation subgroup of D. We highlight that the conditions (8.6) are discrete

analogues of the conditions (8.1). See Figure 8.2 for diagrams illustrating Isotony, Locality and

Covariance.

To illustrate how the direct limits A(𝐼) andH give rise to structures similar to conformal nets, we

show how the action of A(𝐼) onH is inherited from the corresponding direct systems over D. Let

[(𝑎, 𝑖)] ∈ A(𝐼) and [(𝑣, 𝑗)] ∈ H , we have

[(𝑎, 𝑖)]
(
[(𝑣, 𝑗)]

)
= [(𝑔𝑖𝑘 (𝑎), 𝑘)]

(
[( 𝑓 𝑗 𝑘 (𝑣), 𝑘)]

)
= [( 𝑓𝑖𝑘 ◦ 𝑎 ◦ 𝑓 ∗𝑖𝑘 ◦ 𝑓 𝑗 𝑘 ) (𝑣), 𝑘)], (8.7)

where 𝑖 ⪯ 𝑘 and 𝑗 ⪯ 𝑘 , and where the second equality uses the action of A𝑘 (𝐼) onH𝑘 . We proceed by

showing that the action (8.7) is independent of the representatives of each equivalence class. Consider

[(𝑎, 𝑖)], [(𝑎′, 𝑗)] ∈ A(𝐼) and [(𝑣, 𝑖)], [(𝑣′, 𝑗)] ∈ H , satisfying

𝑔𝑖𝑘 (𝑎) = 𝑔 𝑗 𝑘 (𝑎′), 𝑓𝑖𝑘 (𝑣) = 𝑓 𝑗 𝑘 (𝑣′), (8.8)

so [(𝑎, 𝑖)] = [(𝑎′, 𝑗)] and [(𝑣, 𝑖)] = [(𝑣′, 𝑗)]. Comparing the following two actions, we have

[(𝑎, 𝑖)]
(
[(𝑣, 𝑖)]

)
= [(𝑎(𝑣), 𝑖)], [(𝑎′, 𝑗)]

(
[(𝑣′, 𝑗)]

)
= [(𝑎′(𝑣′), 𝑗)], (8.9)
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and

[(𝑎, 𝑖)]
(
[(𝑣, 𝑖)]

)
= [(𝑔𝑖𝑘 (𝑎), 𝑘)]

(
[( 𝑓𝑖𝑘 (𝑣), 𝑘)]

)
(8.10)

= [(𝑔 𝑗 𝑘 (𝑎′), 𝑘)]
(
[( 𝑓 𝑗 𝑘 (𝑣′), 𝑘)]

)
= [(( 𝑓 𝑗 𝑘 ◦ 𝑎′ ◦ 𝑓 ∗𝑗 𝑘 ◦ 𝑓 𝑗 𝑘 ) (𝑣

′), 𝑘)]

= [(( 𝑓 𝑗 𝑘 ◦ 𝑎′) (𝑣′), 𝑘)]

= [(𝑎′(𝑣′), 𝑗)],

where in the second equality we have used (8.8), and in the fourth equality we have used that 𝑓 𝑗 𝑘 is an

isometry.

Stepping back, let us briefly describe the intuition behind the features of a discrete conformal

net. An element of D is a ‘discretisation’ of spacetime, to which we associated a Hilbert space of

states and a von Neumann algebra of observables. The direction defined on D indicates a ‘resolution’

or ‘scale’ of a given discretisation. Discretisations with a ‘finer’ resolution, better approximate 𝑆1.

It follows from the injectivity of 𝑓𝑖 𝑗 respectively 𝑔𝑖 𝑗 , that states, respectively, observables on one

resolution are present on a ‘finer’ resolution, so we have H𝑖 ⊆ H 𝑗 and A𝑖 (𝐼) ⊆ A 𝑗 (𝐼). Two states

or two observables defined on different resolutions, equivalent up to the action of the appropriate

maps, are considered ‘physically indistinguishable’. Direct limits of the Hilbert spaces, respectively,

von Neumann algebras, collect states respectively observables and identify those that are physically

indistinguishable. Moreover, direct limits facilitate the action among observables and the action of

observables on states across all scales.

To get a better feel for discrete conformal nets and their relation to planar algebras, we present

so-called semicontinuous models in the following section. As we will see, these are almost examples

of discrete conformal nets.

8.2 Semicontinuous models

8.2.1 Spacetimes

Starting with the directed setD, we proceed by introducing the components of semicontinuous models.

For 𝑘 ∈ N>1, a standard 𝑘-adic interval is an interval of the form[ 𝑚
𝑘𝑛
,
𝑚 +1
𝑘𝑛

]
, 𝑚,𝑛 ∈ N0. (8.11)

The partition of the interval [0,1] into standard 𝑘-adic intervals is called a 𝑘-adic subdivision of [0,1].
Similarly, if we define the unit circle 𝑆1 as [0,1]/{0 ∼ 1}, the partition of 𝑆1 into standard 𝑘-adic

intervals is called a 𝑘-adic subdivision of 𝑆1, and can be characterised by a tuple consisting of the

endpoints of each interval. Rotating, equivalently, shifting the points of a 𝑘-adic subdivision of 𝑆1 by a

𝑘-adic rational will, in general, result in a distinct subdivision. See Figure 8.3 for the enumeration of

dyadic subdivisions of 𝑆1 with up to four points.
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Figure 8.3: The enumeration of dyadic subdivisions of 𝑆1 with up to four points.

We refer to an annular 𝑘-tree, as a planar tree whose root is at the centre of 𝑆1, whose leaves

lie on 𝑆1, and where each vertex has valence 𝑘 +1. There is a one-to-one correspondence between

𝑘-adic subdivisions of 𝑆1 and annular 𝑘-trees. To illustrate this correspondence, we use the dual-tree

notation [108] and present the infinite annular 2-tree and the infinite annular 3-tree

0|1

· · ·

1
2

· · ·

, 0|1

· · ·
1
3

··
·

2
3

· · ·

,

. . .

≡
. . .

. (8.12)

Any 𝑘-adic subdivision of 𝑆1, equivalently, annular 𝑘-tree can be obtained by ‘filling out’ a finite

region and/or rotating the infinite annular 𝑘-tree. Taking 𝑘 = 2, we present some examples:

0|1

1
16

1
8

1
4

1
2

,

0|1

1
4

3
8

1
2

3
4

7
8

15
16

,

0|1
1

16

1
8

1
4

3
8

1
2

3
4

7
8

15
16

. (8.13)

We refer to an annular 𝑘-forest, as a disjoint union of planar trees whose roots lie on 𝑆1 × {0},
whose leaves lie on 𝑆1× {1}, and where each vertex has valence 𝑘 +1. An annular 𝑘-tree (equivalently

𝑘-adic subdivision of 𝑆1) with 𝑚 leaves (equivalently points) can be ‘refined’ to one with 𝑛 leaves

(where 𝑚 ≤ 𝑛), by filling out more of the infinite annular 𝑘-tree. This operation can be performed by

‘composing’ the corresponding annular 𝑘-tree with 𝑚 leaves with the appropriate annular 𝑘-forest with
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𝑚 roots and 𝑛 leaves. To illustrate, we present the following example:

𝑖 = , 𝑝 ◦ 𝑖 = = , (8.14)

where 𝑖 and 𝑝 ◦ 𝑖 correspond to the first and third diagrams in (8.13) respectively. The operation

(8.14) can be formalised as the composition of morphisms in the annular forest category 𝐴𝔉𝑘 where

Obj𝐴𝔉𝑘
= N and Mor𝐴𝔉𝑘

(𝑚,𝑛) is the set of all annular 𝑘-forests with 𝑚 roots and 𝑛 leaves, see [20]

for details.

Let D (𝑘) denote the set of all annular 𝑘-trees (equivalently 𝑘-adic subdivisions of 𝑆1)

D (𝑘) :=
⋃
𝑛∈N

Mor𝐴𝔉𝑘
(1, 𝑛), (8.15)

and define the partial order on D (𝑘) as

𝑖 ⪯ 𝑗 ⇐⇒ 𝑗 = 𝑝 ◦ 𝑖. (8.16)

For each 𝑘 ∈ N≥2, the directed set ⟨D (𝑘) ,⪯⟩ is a valid set of spacetimes for a semicontinuous model.

We proceed by introducing the relevant direct systems of Hilbert spaces and von Neumann algebras

defined over D (𝑘) .

8.2.2 Hilbert spaces

Let 𝑃 denote an involutive planar algebra (𝑃𝑛)𝑛∈N0 and let (𝑉𝑛)𝑛∈N0 denote a Hilbert representation of

𝑃. Denote by ℑ an element of 𝑃𝑘+1 that satisfies

. . .

ℑ

ℑ∗

= . (8.17)

For each annular 𝑘-forest 𝑝 with 𝑚 roots and 𝑛 leaves, we denote by Φℑ(𝑝), the corresponding element

in MorHilb(𝑉𝑚,𝑉𝑛), where each vertex in 𝑝 has been replaced by the element ℑ ∈ 𝑃𝑘+1, for example:

𝑝 = , Φℑ(𝑝) =
ℑ

ℑ

ℑ

ℑ

. (8.18)

Remark. Courtesy of the Hilbert representation of 𝑃, we will express linear maps in MorHilb(𝑉𝑚,𝑉𝑛)
diagrammatically as the corresponding affine tangles in MorAff (𝑃) (𝑚,𝑛).
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By construction, Φℑ(𝑝) is an isometry for every 𝑝, that is, Φℑ(𝑝)∗ ◦Φℑ(𝑝) = id𝑉𝑚 . Define the Hilbert

spacesH𝑖 :=𝑉|𝑖 |, and the maps

𝑓
(ℑ)
𝑖 𝑗

:H𝑖→H 𝑗 , 𝑎 ↦→Φℑ(𝑝) (𝑎), (8.19)

where 𝑗 = 𝑝 ◦ 𝑖. It follows from the properties of Φℑ(𝑝), that each 𝑓
(ℑ)
𝑖 𝑗

is an isometry and that

⟨H𝑖, 𝑓 (ℑ)𝑖 𝑗
⟩ is a direct system over D (𝑘) . Accordingly, we introduce the corresponding direct limit

H (ℑ) :=
⊔
𝑖∈𝑆
H𝑖

/
∼, (𝑥, 𝑖) ∼ (𝑦, 𝑗) ⇐⇒ 𝑓

(ℑ)
𝑖𝑘
(𝑥) = 𝑓

(ℑ)
𝑗 𝑘
(𝑦). (8.20)

Specialising to 𝑘 = 2 and 𝑉𝑛 = 𝑃𝑛, we can view a representative of a vector inH diagrammatically as

(𝑥, 𝑠) = 0

1
8

1
4

1
2

5
811

163
4

𝑥 ,
𝑥 = 𝑥 ∈ 𝑃7,

𝑠 = (0, 1
8 ,

1
4 ,

1
2 ,

5
8 ,

11
16 ,

3
4 ) ∈ D

(2) ,

(8.21)

and highlight the following relations inH (ℑ)

[(𝑥, 𝑠)] = 0

1
8

1
4

1
2

5
811

163
4

𝑥 =

7
8

15
16

0

1
8

1
4 3

4

1
2

5
811

163
4

𝑥
ℑ

ℑ

ℑ

ℑ

. (8.22)

8.2.3 von Neumann algebras

For each 𝑚,𝑛 ∈ N such that 𝑚 ≤ 𝑛 and each 𝑠 = 1, . . . , 𝑛, we define the inclusion map

𝜄𝑠,𝑛 : 𝑃𝑚→ HomHilb(𝑉𝑛,𝑉𝑛), 𝑎
· · ·

· · ·
↦→ 𝑎··

· ··
·· · ·

· · ·

1

𝑠−1

𝑠+𝑚 mod𝑛

𝑛

, (8.23)

and denote by 𝜄𝑠,𝑛 (𝑃𝑚) the subalgebra in HomHilb(𝑉𝑛,𝑉𝑛) induced by the inclusion map. For each

closed interval 𝐼 ⊂ 𝑆1 and each 𝑖 ∈ D𝐼 , denote by 𝑠(𝑖, 𝐼) the index of the starting point of 𝐼 in the tuple

𝑖. Define the von Neumann algebras A𝑖 (𝐼) := 𝜄𝑠(𝑖,𝐼),|𝑖 | (𝑃|𝑖∩𝐼 |−1) and the maps

𝑔
(ℑ)
𝑖 𝑗

:A𝑖 (𝐼) → A 𝑗 (𝐼), 𝑎 ↦→ 𝑓
(ℑ)
𝑖 𝑗
◦ 𝑎 ◦ ( 𝑓 (ℑ)

𝑖 𝑗
)∗. (8.24)

It follows from properties of 𝑓 (ℑ)
𝑖 𝑗

that ⟨A𝑖 (𝐼), 𝑔(ℑ)𝑖 𝑗
⟩ is a direct system over D (𝑘) , and we introduce the

corresponding direct limit

A (ℑ) (𝐼) :=
⊔
𝑖∈𝑆
A𝑖 (𝐼)

/
∼, (𝑥, 𝑖) ∼ (𝑦, 𝑗) ⇐⇒ 𝑔

(ℑ)
𝑖𝑘
(𝑥) = 𝑔(ℑ)

𝑗 𝑘
(𝑦). (8.25)
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Specialising to 𝑘 = 2, we can view a representative of an element in A(𝐼) diagrammatically as

(𝑎, 𝑠) = 0

1
8

1
4

1
2

5
811

163
4

𝑎

[

[

]]𝐼

𝐼

,
𝑎 =

𝑎

∈ 𝜄4,7(𝑃3),

𝑠 = (0, 1
8 ,

1
4 ,

1
2 ,

5
8 ,

11
16 ,

3
4 ) ∈ D

(2) ,

(8.26)

and we note that the representative (𝑎, 𝑠) has a natural diagrammatic action on the representative (𝑥, 𝑠)
in (8.21) as follows

(𝑎, 𝑠)
(
(𝑥, 𝑠)

)
= 0

1
8

1
4

1
2

5
811

163
4

𝑎

𝑥 = 0

1
8

1
4

1
2

5
811

163
4

𝑎(𝑥) = (𝑎(𝑥), 𝑠). (8.27)

By construction, this action extends to an action of A (ℑ) (𝐼) on H (ℑ) , see (8.7)–(8.10). It readily

follows from properties of planar algebras, that the algebras A (ℑ) (𝐼) satisfy isotony and locality.

8.2.4 Groups and representations

Let (𝑑,𝑟) denote a pair of 𝑘-adic subdivisions of 𝑆1 with the same number of points. To (𝑑,𝑟), associate

a piecewise-linear homeomorphism 𝑓 : 𝑆1→ 𝑆1 that acts by sending each subinterval of 𝑑 onto the

corresponding subinterval of 𝑟 . We refer to 𝑓 as a 𝑘-adic rearrangement of 𝑆1. Thompson’s group 𝑇𝑘
is the group of 𝑘-adic rearrangements of 𝑆1 [109, 110]. It is a remarkable fact that Thompson’s groups,

for each 𝑘 ∈ N≥2, offer a discrete realisation of Diff+(𝑆1) [111, 112], see also [113] for the case 𝑘 = 2.

Theorem 8.2.1. For each 𝑓 ∈ Diff+(𝑆1) there exists 𝑔 ∈ 𝑇𝑘 and 𝜖 > 0 such that

sup
𝑥∈𝑆1
| 𝑓 (𝑥) −𝑔(𝑥) | < 𝜖. (8.28)

The Jones action [107] defines an action of 𝑇𝑘 onH (ℑ) , which induces a unitary representation

of 𝑇𝑘 for each ℑ ∈ 𝑃𝑘+1. While this construction ensures semicontinuous models satisfy the unitary

requirement of (iv) in (8.6), it remains to show that these representations are continuous. For a semi-

continuous model based on a Temperley–Lieb planar subalgebra, Jones showed that representations of

the rotation subgroup are “hopelessly discontinuous” [20,107]. This result was later extended to tensor

planar algebras by Kliesch and Koenig [114], who showed that such representations are generically

discontinuous. Both results [20] and [114] were established for 𝑘 = 2 only.

We briefly mention some recent efforts to avert these ‘no-go theorems’. Our goal is to select

ℑ ∈ 𝑃𝑘+1 to endow the corresponding representations with continuity. We highlight that the dimension
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of 𝑃𝑘+1 grows at least exponentially for subfactor planar algebras. It is therefore conceivable that

as we consider larger 𝑘 ∈ N≥2 there are increasingly many ℑ giving rise to a continuous unitary

representation. It remains to identify these elements. For the rotation subgroup, we have developed

sufficient conditions, expressible in terms of planar-algebraic relations among ℑ,ℑ∗ ∈ 𝑃𝑘+1, that endow

the corresponding representations with continuity. We have found an infinite class of solutions for a

semicontinuous model based on the Brauer planar algebra for each 𝑘 = 2𝑛+3 where 𝑛 ∈ N.

8.2.5 Integrable operators on spacetime

Putting the continuity issue aside, we proceed by introducing some operators that act on the spacetime

of semicontinuous models. Denote by A𝑖 ≡ A𝑖 (𝑆1) the algebra of observables that act on all of

spacetime. Of immense physical interest is the Hamiltonian – the generator of infinitesimal time-

evolution. For each A𝑖, this element simply corresponds to the rotation

𝜌 |𝑖 | =

. . .

(8.29)

and by the positivity axiom (8.6),𝑈 (𝜌 |𝑖 |) necessarily has a positive spectrum.

A related class of operators are those with the property of integrability. Translating the planar-

algebraic models of Chapter 3 to this setting, we introduce two classes of integrable operators acting

on spacetime. Let (𝑃𝑛)𝑛∈N0 denote the planar algebra underlying the semicontinuous model and recall

the parameterisation of the 𝑅- and 𝐾-operators:

𝑢 =
∑︁
𝑎∈𝐵1

𝑘𝑎 (𝑢) 𝑎, 𝑢 =
∑︁
𝑎∈𝐵2

𝑟𝑎 (𝑢) 𝑎, 𝑢 =
∑︁
𝑎∈𝐵1

𝐾𝑎 (𝑢) 𝑎, (8.30)

where 𝐵1 and 𝐵2 denote bases for 𝑃2 and 𝑃4 respectively, and 𝑘𝑎, 𝑟𝑎, 𝑘𝑎 : Ω→ C. For each algebra

A𝑖, we introduce the global transfer operator

𝑇
(𝑠)
|𝑖 | (𝑢) =

𝑢

𝑢 𝑢

𝑢

..
.

..
. . (8.31)

It follows from Proposition 3.2.1, that if the 𝑅-operators satisfy a particular set of relations, then each

of the global transfer operators are integrable. In this case, following the prescription in Section 3.5,

we can associate to each A𝑖 a corresponding set of global Hamiltonians {𝐻 (𝑠)
𝑗
| 𝑗 ∈ 𝑆} that satisfy

[𝑇 (𝑠)|𝑖 | (𝑢), 𝐻
(𝑠)
𝑗
] = 0, [𝐻 (𝑠)

𝑗
, 𝐻
(𝑠)
𝑘
] = 0, ∀ 𝑗 , 𝑘 ∈ 𝑆. (8.32)
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Moreover, if the 𝑅-operator has an identity point (in the sense of Proposition 3.4.2), then 𝜌 |𝑖 | is among

the global Hamiltonians derived from the transfer operator 𝑇 (𝑠)|𝑖 | (𝑢)! It follows that the transfer operator

and each of the global Hamiltonians share a common set of eigenvectors with the generator of infinites-

imal time-evolution. Returning to observations made in Chapter 1, a solution to a statistical mechanical

model described by a transfer operator 𝑇 (𝑠)|𝑖 | (𝑢), can immediately be passed to the corresponding

semicontinuous model. We, therefore, regard the global transfer operator as playing an essential role

in describing the dynamics of semicontinuous models [115].

Similarly, for each A𝑖 (𝐼), we introduce the local transfer operator

𝑇
(𝑑)
|𝑖 | (𝑢) =

𝑢
𝑢

𝑢 𝑢

𝑢
𝑢

𝑢

𝑢

..
. ..
. ..
.

...

...

[

[

[

[
𝐼 𝐼 . (8.33)

It likewise follows from Proposition 3.2.2 that if the 𝑅- and 𝐾-operators satisfy a particular set of

relations, then each of the local transfer operators are integrable. In this case, we associate to each

A𝑖 (𝐼) a set of local Hamiltonians analogous to those in introduced (8.32).

While the results reported in this chapter are preliminary, they do indicate the applicability of

planar-algebraic models beyond statistical mechanical systems. In the following chapter, we outline

future projects that aim to strengthen the ties between the planar-algebraic framework and the QFTs

sketched here.
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Chapter 9

Conclusion

In this thesis, we developed a planar-algebraic framework to describe two-dimensional statistical

mechanical models defined on the strip and the cylinder. In each case, we introduced a set of sufficient

conditions implying integrability that are more general than is typically presented in the literature. For

integrable models, we have revisited the notion of integrals of motion algebraically and considered

algebraic relations among those that arise from the transfer operator, which we refer to as Hamiltonians.

To characterise one extreme, where each of the Hamiltonians is polynomial in a single algebraic

element, we have introduced the notion of polynomial integrability and have developed necessary

and sufficient conditions for a large class of planar-algebraic models to be polynomially integrable.

A simple corollary of this result is that models described by integrable and diagonalisable transfer

operators are polynomially integrable – indicating the ubiquity of this property.

We then applied this framework to planar-algebraic models encoded by the class of singly generated

planar algebras on both the strip and the cylinder. We showed that such models are homogeneous

Yang–Baxter integrable if and only if the underlying planar algebra satisfies a Yang–Baxter relation.

In establishing this result, we incorporated the well-known homogeneous Yang–Baxter integrable

models encoded by the Fuss–Catalan and Birman–Wenzl–Murakami algebras into our framework and

constructed a new integrable model based on the Liu planar algebra. We also showed that each of these

models on the strip is polynomially integrable, although we did not determine the explicit polynomials.

As another application of our framework, we considered two planar-algebraic models defined on

the strip, one underlied by the Temperley–Lieb planar algebra and the other underlied by the tensor

planar algebra. In each case, we highlighted when the model is polynomially integrable and determined

explicit polynomials in terms of which the transfer operator is expressible.

To demonstrate an application of the planar-algebraic framework beyond regular lattices, we

introduced a dilute loop model and a dense loop model underlied by the tensor planar algebra, defined

on causal triangulations of the cylinder. In each case, we showed that these models admit a description

as labelled planar trees. However, only for the dense model could the corresponding tree model

be solved exactly using standard methods. For the dilute loop model, we determined the critical

behaviour by developing transfer operator techniques, which revealed that this model induces a change
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in the Hausdorff dimension relative to the pure triangulation model. This result suggests a non-trivial

interaction between the dilute ‘matter fields’ and the ‘gravitation’ of the pure triangulations.

Last of all, we demonstrated the applicability of planar-algebraic models beyond statistical mechan-

ics by showing how these models relate to a particular class of QFTs. For this class, we introduced

Jones’ semicontinuous models as ‘almost’ examples and detailed some recent efforts to make them

fully-fledged examples. Within semicontinuous models, we highlighted the relevance of the planar-

algebraic framework and showed that the corresponding single-row transfer operator plays a crucial

role.

We conclude this thesis with a brief discussion of avenues for further research. Starting with

integrable planar-algebraic models, an immediate continuation of Chapter 5 would be to develop a

similar classification for doubly generated planar algebras. Indeed, this would require advances on

two fronts (i) a classification of the algebras themselves, analogous to Liu’s classification, and (ii) a

classification of those that admit solutions to the integrability sufficient conditions. An intermediate

step along these lines would be to develop singly generated extensions of the Fuss–Catalan, Birman–

Wenzl–Murakami and Liu planar algebras; and determine whether these give rise to Yang–Baxter

integrable planar-algebraic models. Another avenue is to develop an inhomogeneous Yang–Baxter

integrability framework, wherein the transfer operators are not spatially uniform. In principle, this

framework would incorporate the possibility of a shaded transfer operator.

Focusing on polynomial integrability, it would be interesting to consider the physical consequences

of this property. A natural approach would be to construct explicit models that are not polynomially

integrable and compare them to related models that are. Initial indications suggest that polynomial

integrability is less common on the cylinder. The reason for this is likely related to the natural

tendency for rotation on the cylinder, the generation of which requires an additional operator. Another

avenue of interest is to reinterpret known results in light of polynomial integrability, for example, the

𝑇-systems [116, 117] and 𝑌 -systems [118, 119], and functional relations more generally [46, 120–122].

A natural extension of the work in Chapter 7, is to consider the generalisation of the dilute loop

model outlined in Section 7.6, in addition to considering dense and dilute loop models where the

loop fugacity is different to one. An immediate consequence is that these models would no longer

admit a natural description in terms of the tensor planar algebra. An obvious replacement would be

the Temperley–Lieb planar algebra or a dilute version thereof. Why stop at Temperley–Lieb planar

algebras? One may also consider other types of loop models on causal triangulations, for example, the

so-called fused Temperley–Lieb loop models [61, 122, 123] based on [124, 125], and loop models with

an underlying Birman–Wenzl–Murakami algebraic structure [59, 126]. Thinking beyond loop models,

one may adapt vertex models [11, 34, 66, 67, 127] and RSOS models [128, 129] to the setting of causal

triangulations. In all of these cases, we envisage the applicability of the planar-algebraic framework.

In particular, the prominence of the transfer operator in analysing the partition functions, in addition to

correlation functions more broadly.

Finally, we consider projects strengthening the connections between the planar-algebraic framework

and QFTs sketched in Chapter 8. Of immediate interest is to construct semicontinuous models that are



examples of discrete conformal nets. A promising approach is to develop and solve sufficient conditions

endowing continuity to representations of 𝑇𝑘 via the Jones action. It would also be interesting to

consider semicontinuous models whose symmetry group is enlarged, i.e. replacing Thompson’s group

𝑇𝑘 with one of the so-called forest-skein groups introduced recently by Brothier [130, 131]. Planar

algebras need not be the only structures giving rise to discrete conformal nets, we envisage considering

other examples and studying their properties. It would also be appealing to develop a ‘continuum

limit’ that takes discrete conformal nets to conformal nets. This limit, if successfully developed, would

be a systematic procedure to associate a subfactor to conformal field theory [107]. We also note

that conformal nets are one example of AQFTs. It would be interesting to define discrete algebraic

quantum field theory and consider examples beyond discrete conformal nets.
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Appendix

A.1 TL algebra Baxterisation

We begin with the YBEs (3.31), and define

Δ𝑌,1 :=
𝑢

𝑣

1 −
𝑣

𝑢

1 (A.1)

Δ𝑌,2 :=
𝑢

𝑣

2 −
𝑣

𝑢

2 Δ𝑌,3 :=
𝑣

𝑢

3 −
𝑢

𝑣

3 . (A.2)

Similarly for the Invs (3.30), we define

Δ𝐼,𝑖 := 𝑖𝑖 − . (A.3)

Expanding 0 = Δ𝑌,1 and collecting coefficients, we arrive at the constraint:

𝑒1− 𝑒2 : 0 =
[
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) − 𝑟1(𝑢)𝑟1(𝑣)

]
𝑦
(1)
𝑒 +

[
𝑟1(𝑢)𝑟𝑒 (𝑣) + 𝑟𝑒 (𝑢)𝑟1(𝑣) + 𝛿𝑟𝑒 (𝑢)𝑟𝑒 (𝑣)

]
𝑦
(1)
1
. (A.4)

Similarly for 0 = Δ𝐼,1, we have:

1 : 0 = 𝑦
(1)
𝑒 𝑦

(1)
𝑒 −1 (A.5)

𝑒 : 0 = 𝑦
(1)
1
𝑦
(1)
𝑒 + 𝑦 (1)𝑒 𝑦

(1)
1
+ 𝛿𝑦 (1)

1
𝑦
(1)
1
. (A.6)

Applying the functions of Proposition 5.1.1 to the constraints 0 = Δ𝑌,1 and 0 = Δ𝐼,1, we indeed have a

homogeneous Baxterisation.
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A.2 FC algebra Baxterisation

Expanding 0 = Δ𝑌,1 and collecting coefficients, we arrive at the constraints:

𝐸1𝑃2−𝑃1𝐸2 : 0 =
[
𝑟1(𝑢)𝑟𝑃 (𝑣) − 𝑟𝑃 (𝑢)𝑟𝐸 (𝑣)

]
𝑦
(1)
𝐸
− 𝑟𝐸 (𝑣)

[
𝑟1(𝑢) +𝛾𝑟𝑃 (𝑢)

]
𝑦
(1)
𝑃

(A.7)

𝑃2𝐸1−𝐸2𝑃1 : 0 =
[
𝑟𝑃 (𝑢)𝑟1(𝑣) − 𝑟𝐸 (𝑢)𝑟𝑃 (𝑣)

]
𝑦
(1)
𝐸
− 𝑟𝐸 (𝑢)

[
𝑟1(𝑣) +𝛾𝑟𝑃 (𝑣)

]
𝑦
(1)
𝑃

(A.8)

𝑃1−𝑃2 : 0 =𝑟1(𝑢)𝑟1(𝑣)𝑦 (1)𝑃 −
[
𝑟𝑃 (𝑢)𝑟1(𝑣) + 𝑟1(𝑢)𝑟𝑃 (𝑣) +𝛾𝑟𝑃 (𝑢)𝑟𝑃 (𝑣)

]
𝑦
(1)
1

(A.9)

𝐸1−𝐸2 : 0 =
[
𝑟1(𝑢)𝑟1(𝑣) − 𝑟𝐸 (𝑢)𝑟𝐸 (𝑣)

]
𝑦
(1)
𝐸
−𝛾𝑟𝐸 (𝑢)𝑟𝐸 (𝑣)𝑦 (1)𝑃 (A.10)

− 𝑦 (1)
1

[
𝑟1(𝑢)𝑟𝐸 (𝑣) + 𝑟𝐸 (𝑢)𝑟1(𝑣) +𝛾

(
𝑟𝑃 (𝑢)𝑟𝐸 (𝑣) + 𝑟𝐸 (𝑢)𝑟𝑃 (𝑣)

)
+𝛾2𝑟𝐸 (𝑢)𝑟𝐸 (𝑣)

]
.

Similarly for 0 = Δ𝐼,1, we have:

1 : 0 = 𝑦
(1)
𝐸
𝑦
(1)
𝐸
−1 (A.11)

𝑃 : 0 = 𝑦
(1)
𝑃
𝑦
(1)
𝐸
+ 𝑦 (1)

𝐸
𝑦
(1)
𝑃
+𝛾𝑦 (1)

𝑃
𝑦
(1)
𝑃

(A.12)

𝐸 : 0 = 𝑦
(1)
1
𝑦
(1)
𝐸
+ 𝑦 (1)

𝐸
𝑦
(1)
1
+𝛾

(
𝑦
(1)
1
𝑦
(1)
𝑃
+ 𝑦 (1)

𝑃
𝑦
(1)
1

)
+𝛾2𝑦

(1)
1
𝑦
(1)
1
. (A.13)

Applying the functions of Proposition 5.3.2 to the constraints 0 = Δ𝑌,1 and 0 = Δ𝐼,1, we indeed have a

homogeneous Baxterisation.

A.3 BMW algebra Baxterisation

Expanding 0 = Δ𝑌,1 and collecting coefficients, we arrive at the constraints:

𝑒1𝑔2−𝑔1𝑒2 : 0 =
[
𝑟1(𝑢)𝑟𝑔 (𝑣) − 𝑟𝑔 (𝑢)𝑟𝑒 (𝑣) +𝑄𝑟𝑔 (𝑢)𝑟𝑔 (𝑣)

]
𝑦
(1)
𝑒 − 𝑟1(𝑢)𝑟𝑒 (𝑣)𝑦 (1)𝑔 (A.14)

𝑔2𝑒1− 𝑒2𝑔1 : 0 =
[
𝑟𝑔 (𝑢)𝑟1(𝑣) − 𝑟𝑒 (𝑢)𝑟𝑔 (𝑣) +𝑄𝑟𝑔 (𝑢)𝑟𝑔 (𝑣)

]
𝑦
(1)
𝑒 − 𝑟𝑒 (𝑢)𝑟1(𝑣)𝑦 (1)𝑔 (A.15)

𝑔1−𝑔2 : 0 =𝑟1(𝑢)𝑟1(𝑣)𝑦 (1)𝑔 −
[
𝑟𝑔 (𝑢)𝑟1(𝑣) + 𝑟1(𝑢)𝑟𝑔 (𝑣) +𝑄𝑟𝑔 (𝑢)𝑟𝑔 (𝑣)

]
𝑦
(1)
1

(A.16)

𝑒1− 𝑒2 : 0 =
[
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) −𝑄

(
𝑟𝑔 (𝑢)𝑟𝑒 (𝑣) + 𝑟𝑒 (𝑢)𝑟𝑔 (𝑣)

)
+𝑄2𝑟𝑔 (𝑢)𝑟𝑔 (𝑣) (A.17)

−𝜏𝑄
(
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝑟1(𝑢)𝑟𝑒 (𝑣) + 𝑟𝑒 (𝑢)𝑟1(𝑣)

)
− 𝑟𝑒 (𝑢)𝑟𝑒 (𝑣)𝜏2]𝑦 (1)

1
− 𝜏2𝑄𝑟𝑒 (𝑢)𝑟𝑒 (𝑣)𝑦 (1)𝑔

+𝜏𝑄
[
𝑟1(𝑢)𝑟1(𝑣) − 𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) +𝑄

(
𝑟𝑔 (𝑢)𝑟𝑒 (𝑣) + 𝑟𝑒 (𝑢)𝑟𝑔 (𝑣)

)
−𝑄2𝑟𝑔 (𝑢)𝑟𝑔 (𝑣)

]
𝑦
(1)
𝑒 .

Similarly for 0 = Δ𝐼,1, we have:

1 : 0 = 𝑦
(1)
𝑒 𝑦

(1)
𝑒 + (1+𝑄2)𝑦 (1)𝑔 𝑦

(1)
𝑔 −𝑄

[
𝑦
(1)
𝑒 𝑦

(1)
𝑔 + 𝑦 (1)𝑔 𝑦

(1)
𝑒

]
−1 (A.18)

𝑔 : 0 = 𝑦
(1)
𝑒 𝑦

(1)
𝑔 + 𝑦 (1)𝑔 𝑦

(1)
𝑒 −𝑄𝑦 (1)𝑔 𝑦

(1)
𝑔 (A.19)

𝑒 : 0 =𝜏𝑄
[
𝑦
(1)
1
𝑦
(1)
1
+ 𝑦 (1)𝑒 𝑦

(1)
1
+ 𝑦 (1)

1
𝑦
(1)
𝑒 +𝑄

(
𝑦
(1)
𝑒 𝑦

(1)
𝑔 + 𝑦 (1)𝑔 𝑦

(1)
𝑒

)
−𝑄2𝑦

(1)
𝑔 𝑦

(1)
𝑔

]
(A.20)

+ 𝜏2 [𝑦 (1)
1
+𝑄𝑦 (1)𝑔

] [
𝑦
(1)
1
+𝑄𝑦 (1)𝑔

]
− 𝑦 (1)

1
𝑦
(1)
1
.

Applying the functions of Proposition 5.4.2 to the constraints 0 = Δ𝑌,1 and 0 = Δ𝐼,1, we indeed have a

homogeneous Baxterisation.



A.4 Liu algebra Baxterisation

Expanding 0 = Δ𝑌,𝑖 for each 𝑖 = 1,2,3, we arrive at the constraints:

𝑒1𝑠2− 𝑠1𝑒2 : 0 =𝛿2 [𝑟1(𝑢)𝑟𝑠 (𝑣) − 𝜖𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)]𝑦 (1)𝑒 − [
𝛿2𝑟1(𝑢)𝑟𝑒 (𝑣) − 𝜖𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(1)
𝑠 (A.21)

𝑠2𝑒1− 𝑒2𝑠1 : 0 =𝛿2 [𝜖𝑟𝑠 (𝑢)𝑟1(𝑣) − 𝑟𝑒 (𝑢)𝑟𝑠 (𝑣)]𝑦 (1)𝑒 − 𝜖 [𝛿2𝑟𝑒 (𝑢)𝑟1(𝑣) + 𝜖𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)
]
𝑦
(1)
𝑠 (A.22)

𝑠1− 𝑠2 : 0 = − 𝛿2 [𝑟𝑠 (𝑢)𝑟1(𝑣) + 𝑟1(𝑢)𝑟𝑠 (𝑣)]𝑦 (1)1 + [
𝛿2𝑟1(𝑢)𝑟1(𝑣) − 𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(1)
𝑠 (A.23)

𝑒1− 𝑒2 : 0 = − 𝛿
[
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) − 𝑟1(𝑢)𝑟1(𝑣)

]
𝑦
(1)
𝑒 + 𝜖−1 [𝑟𝑠 (𝑢)𝑟𝑒 (𝑣) + 𝜖2𝑟𝑒 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(1)
𝑠 (A.24)

+
[
𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) − 𝛿

(
𝑟1(𝑢)𝑟𝑒 (𝑣) + 𝑟𝑒 (𝑢)𝑟1(𝑣)

)
− 𝛿2𝑟𝑒 (𝑢)𝑟𝑒 (𝑣)

]
𝑦
(1)
1

𝑒1𝑠2− 𝑠1𝑒2 : 0 = − 𝛿2 [𝑟𝑠 (𝑢)𝑟𝑒 (𝑣) − 𝑟𝑒 (𝑢)𝑟𝑠 (𝑣)]𝑦 (2)𝑒 + [
𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) − 𝛿2𝑟𝑒 (𝑢)𝑟𝑒 (𝑣)

]
𝑦
(2)
𝑠 (A.25)

𝑠2𝑒1− 𝑒2𝑠1 : 0 =𝛿2 [𝑟𝑠 (𝑢)𝑟1(𝑣) − 𝑟1(𝑢)𝑟𝑠 (𝑣)]𝑦 (2)𝑒 − 𝜖 [𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) + 𝛿2𝑟1(𝑢)𝑟1(𝑣)
]
𝑦
(2)
𝑠 (A.26)

𝑠1− 𝑠2 : 0 = − 𝛿2 [𝑟𝑠 (𝑢)𝑟1(𝑣) + 𝜖𝑟𝑒 (𝑢)𝑟𝑠 (𝑣)]𝑦 (2)1 + [
𝜖𝛿2𝑟𝑒 (𝑢)𝑟1(𝑣) − 𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(2)
𝑠 (A.27)

𝑒1− 𝑒2 : 0 = − 𝜖𝛿
[
𝑟1(𝑢)𝑟𝑒 (𝑣) − 𝑟𝑒 (𝑢)𝑟1(𝑣)

]
𝑦
(2)
𝑒 + 𝜖−1 [𝑟𝑠 (𝑢)𝑟𝑒 (𝑣) + 𝑟1(𝑢)𝑟𝑠 (𝑣)𝜖3]𝑦 (2)𝑠 (A.28)

+
[
𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) − 𝜖𝛿

(
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝑟1(𝑢)𝑟1(𝑣)

)
− 𝜖𝛿2𝑟1(𝑢)𝑟𝑒 (𝑣)

]
𝑦
(2)
1

𝑒1𝑠2− 𝑠1𝑒2 : 0 =𝜖𝛿2 [𝑟𝑠 (𝑢)𝑟1(𝑣) − 𝑟1(𝑢)𝑟𝑠 (𝑣)]𝑦 (3)𝑒 + [
𝜖2𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) − 𝛿2𝑟1(𝑢)𝑟1(𝑣)

]
𝑦
(3)
𝑠 (A.29)

𝑠2𝑒1− 𝑒2𝑠1 : 0 = − 𝛿2 [𝑟𝑠 (𝑢)𝑟𝑒 (𝑣) − 𝑟𝑒 (𝑢)𝑟𝑠 (𝑣)]𝑦 (3)𝑒 − [
𝛿2𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝜖2𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(3)
𝑠 (A.30)

𝑠1− 𝑠2 : 0 = − 𝛿2 [𝑟𝑒 (𝑢)𝑟𝑠 (𝑣) + 𝜖𝑟𝑠 (𝑢)𝑟1(𝑣)]𝑦 (3)1 + [
𝛿2𝑟𝑒 (𝑢)𝑟1(𝑣) − 𝜖𝑟𝑠 (𝑢)𝑟𝑠 (𝑣)

]
𝑦
(3)
𝑠 (A.31)

𝑒1− 𝑒2 : 0 = − 𝛿
[
𝑟1(𝑢)𝑟𝑒 (𝑣) − 𝑟𝑒 (𝑢)𝑟1(𝑣)

]
𝑦
(3)
𝑒 + 𝜖−1 [𝑟1(𝑢)𝑟𝑠 (𝑣) + 𝜖3𝑟𝑠 (𝑢)𝑟𝑒 (𝑣)

]
𝑦
(3)
𝑠 (A.32)

+
[
𝜖𝑟𝑠 (𝑢)𝑟𝑠 (𝑣) − 𝛿

(
𝑟𝑒 (𝑢)𝑟𝑒 (𝑣) + 𝑟1(𝑢)𝑟1(𝑣)

)
− 𝛿2𝑟1(𝑢)𝑟𝑒 (𝑣)

]
𝑦
(3)
1
.

Similarly for 0 = Δ𝐼,𝑖 we have:

1 : 0 = 𝑦
(𝑖)
𝑒 𝑦
(𝑖)
𝑒 + 𝜖−2𝑦

(𝑖)
𝑠 𝑦
(𝑖)
𝑠 −1 (A.33)

𝑠 : 0 = 𝑦
(𝑖)
𝑒 𝑦
(𝑖)
1
+ 𝑦 (𝑖)

1
𝑦
(𝑖)
𝑒 + 𝛿𝑦 (𝑖)1 𝑦

(𝑖)
1
− 𝜖−2𝛿−1𝑦

(𝑖)
𝑠 𝑦
(𝑖)
𝑠 (A.34)

𝑒 : 0 = 𝑦
(𝑖)
𝑠 𝑦
(𝑖)
𝑒 + 𝑦 (𝑖)𝑒 𝑦 (𝑖)𝑠 (A.35)

for 𝑖 = 1,2,3. Applying the functions of Proposition 5.5.2 to the constraints 0 = Δ𝑌,𝑖 and 0 = Δ𝐼,𝑖 for

each 𝑖 = 1,2,3, we indeed have a homogeneous Baxterisation.



A.5 TL𝑛(𝛿) polynomials

A.5.1 Principal hamiltonian ℎ0

For 𝑛 = 2, . . . ,7 and 𝛿 an indeterminate, the minimal polynomial for ℎ0 is given by

𝑚
(2)
0 (ℎ) = ℎ

2 + 𝛿ℎ, (A.36)

𝑚
(3)
0 (ℎ) = ℎ

3 +2𝛿ℎ2 + (𝛿2−1)ℎ, (A.37)

𝑚
(4)
0 (ℎ) = ℎ

6 +6𝛿ℎ5 +14
(
𝛿2− 2

7
)
ℎ4 +16𝛿

(
𝛿2− 7

8
)
ℎ3 +9

(
𝛿4− 16

9 𝛿
2+ 4

9
)
ℎ2 +2𝛿

(
𝛿4−3𝛿2+2

)
ℎ, (A.38)

𝑚
(5)
0 (ℎ) = ℎ

10 +12𝛿ℎ9 +63
(
𝛿2− 1

7
)
ℎ8 +190𝛿

(
𝛿2− 41

95
)
ℎ7 + . . . , (A.39)

𝑚
(6)
0 (ℎ) = ℎ

20 +30𝛿ℎ19 +423
(
𝛿2− 8

141
)
ℎ18 +3726𝛿

(
𝛿2− 106

621
)
ℎ17 + . . . , (A.40)

𝑚
(7)
0 (ℎ) = ℎ

35 +60𝛿ℎ34 +1740
(
𝛿2− 5

174
)
ℎ33 +32488𝛿

(
𝛿2− 701

8122
)
ℎ32 + . . . . (A.41)

In a matrix representation of 𝜌𝑛 (ℎ0), the off-diagonal elements are independent of 𝛿, whereas the

diagonal elements are of the form −𝑖𝛿, 𝑖 ∈ {0, . . . , ⌊ 𝑛2⌋}. Since the number of elements equal to −𝑖𝛿 is(⌊ 𝑛2 ⌋
𝑖

) (⌈ 𝑛2 ⌉
𝑖

)
, and

⌊ 𝑛2 ⌋∑︁
𝑖=0

(
⌊ 𝑛2⌋
𝑖

) (
⌈𝑛2⌉
𝑖

)
𝑖 =

⌊
𝑛
2
⌋
𝑐𝑛−1, (A.42)

it follows that

𝑚
(𝑛)
0 (ℎ) = ℎ

𝑐𝑛 +
⌊
𝑛
2
⌋
𝑐𝑛−1𝛿ℎ

𝑐𝑛−1 + . . . . (A.43)

We also note that the degree of the monic 𝛿-polynomial multiplying ℎ𝑖 in 𝑚 (𝑛)0 (ℎ) is given by 𝑐𝑛− 𝑖,
and that this 𝛿-polynomial is even (respectively odd) if the degree is even (respectively odd).

For 𝛿 = 0 and 𝑛 ≥ 2, there are spurious degeneracies in the spectrum of 𝜌𝑛 (ℎ0), so 𝑙 (𝑛)0,0 could be

smaller than 𝑙 (𝑛)0 . Through direct computation, we find

𝑚
(𝑛)
0 (ℎ)

��
𝛿=0 = 𝑚

(𝑛)
0,0 (ℎ), 𝑛 = 2,3,4, (A.44)

𝑚
(5)
0 (ℎ)

��
𝛿=0 = ℎ𝑚

(5)
0,0 (ℎ), (A.45)

𝑚
(6)
0 (ℎ)

��
𝛿=0 = ℎ

2𝑚
(6)
0,0 (ℎ), (A.46)

𝑚
(7)
0 (ℎ)

��
𝛿=0 = ℎ

2𝑈6
(
ℎ
2
)
𝑚
(7)
0,0 (ℎ). (A.47)

We thus have

𝑛 2 3 4 5 6 7

𝑙
(𝑛)
0,0 2 3 6 9 18 27

𝑙
(𝑛)
0 2 3 6 10 20 35

which confirms the following conjecture for 𝑛 = 2, . . . ,7.



Conjecture A.5.1. For 𝑛 ∈ N≥2, we have

𝑙
(𝑛)
0,0 = 1

2
(
3⌊

𝑛+1
2 ⌋ + (−1)𝑛3⌊ 𝑛−1

2 ⌋
)
. (A.48)

A.5.2 Principal hamiltonian ℎ- 2
𝛿

For 𝑛 = 2,3,4,5, the principal hamiltonian ℎ𝑛,- 2
𝛿

is given by

ℎ2,- 2
𝛿
= 𝑒1, (A.49)

ℎ3,- 2
𝛿
= − 1

2𝛿 (𝛿
2 +4) (𝑒1 + 𝑒2) + 𝑒1𝑒2 + 𝑒2𝑒1, (A.50)

ℎ4,- 2
𝛿
= 1

4𝛿2 (𝛿4 +4𝛿2 +16) (𝑒1 + 𝑒3) + 1
4𝛿2 (𝛿2 +4)2𝑒2− 1

2𝛿 (𝛿
2 +4) (𝑒1𝑒2 + 𝑒2𝑒1 + 𝑒2𝑒3 + 𝑒3𝑒2)

− 4
𝛿
𝑒1𝑒3 + 𝑒1𝑒2𝑒3 + 𝑒3𝑒2𝑒1 + 𝑒1𝑒3𝑒2 + 𝑒2𝑒1𝑒3, (A.51)

ℎ5,- 2
𝛿
= − 1

8𝛿3 (𝛿2 +4) (𝛿4 +16) (𝑒1 + 𝑒4) − 1
8𝛿3 (𝛿2 +4) (𝛿4 +4𝛿2 +16) (𝑒2 + 𝑒3)

+ 1
4𝛿2 (𝛿4 +4𝛿2 +16) (𝑒1𝑒2 + 𝑒3𝑒4 + 𝑒4𝑒3 + 𝑒2𝑒1) + 1

4𝛿2 (𝛿2 +4)2(𝑒2𝑒3 + 𝑒3𝑒2)

+ 2
𝛿2 (𝛿2 +4) (𝑒1𝑒3 + 𝑒2𝑒4) + 8

𝛿2 𝑒1𝑒4− 4
𝛿
(𝑒1𝑒2𝑒4 + 𝑒1𝑒3𝑒4 + 𝑒1𝑒4𝑒3 + 𝑒2𝑒1𝑒4) (A.52)

− 1
2𝛿 (𝛿

2 +4) (𝑒1𝑒2𝑒3 + 𝑒1𝑒3𝑒2 + 𝑒2𝑒1𝑒3 + 𝑒2𝑒3𝑒4 + 𝑒2𝑒4𝑒3 + 𝑒3𝑒2𝑒1 + 𝑒3𝑒2𝑒4 + 𝑒4𝑒3𝑒2)

+ 𝑒1𝑒2𝑒3𝑒4 + 𝑒1𝑒2𝑒4𝑒3 + 𝑒1𝑒3𝑒2𝑒4 + 𝑒1𝑒4𝑒3𝑒2 + 𝑒2𝑒1𝑒3𝑒4 + 𝑒2𝑒1𝑒4𝑒3 + 𝑒3𝑒2𝑒1𝑒4 + 𝑒4𝑒3𝑒2𝑒1,

and for 𝛿 an indeterminate, its minimal polynomial is given by

𝑚
(2)
- 2
𝛿

(ℎ) = ℎ2− 𝛿ℎ, (A.53)

𝑚
(3)
- 2
𝛿

(ℎ) = ℎ3 + 2𝛿
2𝛿 (𝛿

2 +2)ℎ2 + 1
(2𝛿)2 (𝛿

6 +3𝛿4 +12𝛿2−16)ℎ, (A.54)

𝑚
(4)
- 2
𝛿

(ℎ) = ℎ6− 6𝛿
(2𝛿)2

(
𝛿4 + 8

3𝛿
2 + 16

3
)
ℎ5 + 14

(2𝛿)4
(
𝛿10 + 38

7 𝛿
8 + . . .

)
ℎ4− 16𝛿

(2𝛿)6
(
𝛿14 + . . .

)
ℎ3 + . . . , (A.55)

𝑚
(5)
- 2
𝛿

(ℎ) = ℎ10 + 12𝛿
(2𝛿)3 (𝛿

6 +3𝛿4 +8𝛿2 +16)ℎ9 + 63
(2𝛿)6 (𝛿

14 + . . . )ℎ8 + 190𝛿
(2𝛿)9 (𝛿

20 + . . . )ℎ7 + . . . . (A.56)

We note that the numerators of the fractions multiplying the even monic 𝛿-polynomials in these

minimal polynomials are the same as the coefficients to the similar terms in (A.36)–(A.39). We also

note that the degree of the monic 𝛿-polynomial multiplying ℎ𝑖 in 𝑚 (𝑛)0 (ℎ) is given by (𝑛−1) (𝑐𝑛− 𝑖),
and that this 𝛿-polynomial is even (respectively odd) if the degree is even (respectively odd). For the

ℎ- 2
𝛿

counterpart to (A.43), we conjecture the following expression.

Conjecture A.5.2. For 𝑛 ∈ N≥2, we have

𝑚
(𝑛)
- 2
𝛿

(ℎ) = ℎ𝑐𝑛 − (−1)𝑛
⌊𝑛
2

⌋ 𝑐𝑛−1

2𝑛−2

(
𝛿𝑛−1 + 4(𝑛−2)

𝑛−1
𝛿𝑛−3 + . . .

)
ℎ𝑐𝑛−1 + . . . . (A.57)



A.5.3 Decomposition conjectures

Conjecture A.5.3. Let 𝑛 ∈ N≥3 and 𝛿 an indeterminate. Then, 𝑇𝑛 (𝑥) admits a unique decomposition

of the form

𝑇𝑛 (𝑥) =
[
𝛿𝑈𝑛 ( 𝑥2 ) +2𝑈𝑛−1( 𝑥2 )

]
1𝑛 + (𝛿2 +2𝛿𝑥 +4)

(
𝑥𝑛−3 [(𝛿− 𝑥)ℎ0 + ℎ2

0
]
+ 1
𝑓𝑛,0(𝛿)

𝑐𝑛−1∑︁
𝑖=1

𝑛−4∑︁
𝑘=0

𝑎̃
𝑛,0
𝑖,𝑘
(𝛿)𝑥𝑘ℎ𝑖0

)
,

(A.58)

where 𝑓𝑛,0(𝛿) is as in Conjecture 6.1.15 and 𝑎̃𝑛,0
𝑖,𝑘
(𝛿) are polynomials such that no root of 𝑓𝑛,0(𝛿) is a

root of 𝑎̃𝑛,0
𝑖,𝑘
(𝛿) for all 𝑖, 𝑘 .

The form of the contribution 𝑥𝑛−3 [(𝛿− 𝑥)ℎ0 + ℎ2
0
]

follows from continuing the expansion (6.43) to

third order in 𝜖 :

𝑇𝑛 (𝜖, 𝛿) =
[
𝛿+2𝜖 − (𝑛−1)𝜖2𝛿−2(𝑛−2)𝜖3]1𝑛
−2𝜖𝛿ℎ0 + 𝜖2 [2𝛿ℎ2

0 + (𝛿
2−4)ℎ0

]
+ 𝜖3(4+ 𝛿2) (ℎ2

0 + 𝛿ℎ0) +O(𝜖4). (A.59)

We have verified Conjecture A.5.3 for 𝑛 = 3,4,5,6, finding

𝑎̃
4,0
1,0(𝛿) =

1
2𝛿

4−2𝛿2 +2, 𝑎̃
4,0
2,0(𝛿) =

7
4𝛿

3− 7
2𝛿, 𝑎̃

4,0
3,0(𝛿) =

9
4𝛿

2− 3
2 , 𝑎̃

4,0
4,0(𝛿) =

5
4𝛿, 𝑎̃

4,0
5,0(𝛿) =

1
4 ,

(A.60)

and

𝑎̃
5,0
1,0(𝛿) = 16𝛿13−20𝛿11−1266𝛿9 + 20349

4 𝛿7− 16291
4 𝛿5− 13207

4 𝛿3 +1749𝛿, (A.61)

𝑎̃
5,0
1,1(𝛿) = −72𝛿12 + 1085

2 𝛿10− 1541
4 𝛿8− 29325

8 𝛿6 + 49671
8 𝛿4− 3815

8 𝛿2− 1331
2 , (A.62)

𝑎̃
5,0
2,0(𝛿) = 104𝛿12− 57

2 𝛿
10−7996𝛿8 + 46665

2 𝛿6− 21031
2 𝛿4− 16799

2 𝛿2 +1320, (A.63)

𝑎̃
5,0
2,1(𝛿) = −460𝛿11 + 11439

4 𝛿9 + 1901
4 𝛿7− 73429

4 𝛿5 + 72761
4 𝛿3− 3277

2 𝛿, (A.64)

𝑎̃
5,0
3,0(𝛿) = 292𝛿11 + 599

4 𝛿
9− 88045

4 𝛿7 + 178239
4 𝛿5− 31661

4 𝛿3−7096𝛿, (A.65)

𝑎̃
5,0
3,1(𝛿) = −1270𝛿10 + 52157

8 𝛿8 + 53071
8 𝛿6− 291349

8 𝛿4 + 152711
8 𝛿2− 627

2 , (A.66)

𝑎̃
5,0
4,0(𝛿) = 462𝛿10 +518𝛿8− 68991

2 𝛿6 + 89539
2 𝛿4 + 1515

2 𝛿2−2134, (A.67)

𝑎̃
5,0
4,1(𝛿) = −1977𝛿9 + 16893

2 𝛿7 +15452𝛿5− 73257
2 𝛿3 +8347𝛿, (A.68)

𝑎̃
5,0
5,0(𝛿) = 450𝛿9 + 2813

4 𝛿7−33643𝛿5 +24358𝛿3 +3106𝛿, (A.69)

𝑎̃
5,0
5,1(𝛿) = −1896𝛿8 + 54903

8 𝛿6 +17612𝛿4−19783𝛿2 +1254, (A.70)

𝑎̃
5,0
6,0(𝛿) = 276𝛿8 + 1021

2 𝛿6− 41757
2 𝛿4 +6328𝛿2 +924, (A.71)

𝑎̃
5,0
6,1(𝛿) = −1146𝛿7 + 14491

4 𝛿5 + 45761
4 𝛿3−5432𝛿, (A.72)



𝑎̃
5,0
7,0(𝛿) = 104𝛿7 + 829

4 𝛿
5− 32131

4 𝛿3 +315𝛿, (A.73)

𝑎̃
5,0
7,1(𝛿) = −426𝛿6 + 9827

8 𝛿4 + 34447
8 𝛿2− 1177

2 , (A.74)

𝑎̃
5,0
8,0(𝛿) = 22𝛿6 +44𝛿4−1747𝛿2−110, (A.75)

𝑎̃
5,0
8,1(𝛿) = −89𝛿5 +247𝛿3 + 1737

2 𝛿, (A.76)

𝑎̃
5,0
9,0(𝛿) = 2𝛿5 + 15

4 𝛿
3−164𝛿, (A.77)

𝑎̃
5,0
9,1(𝛿) = −8𝛿4 + 181

8 𝛿
2 + 143

2 . (A.78)

Although the polynomials 𝑎̃6,0
𝑖,𝑘
(𝛿) are not provided here, we note that, for 𝑛 = 4,5,6 and all 𝑖, 𝑘 ,

deg(𝑎̃𝑛,0
𝑖,𝑘
) = 𝑑𝑛,0− 𝑖− 1

2
(
1− (−1)𝑘

)
, 𝑑4,0 = 5, 𝑑5,0 = 14, 𝑑6,0 = 63, (A.79)

and that 𝑎̃𝑛,0
𝑖,𝑘
(𝛿) is even (respectively odd) if its degree is even (respectively odd). This is seen to

correspond to the parity of 𝑛+ 𝑖 + 𝑘 +1.

Conjecture A.5.4. Let 𝑛 ∈ N≥3 and 𝛿 an indeterminate. Then, 𝑇𝑛 (𝑥) admits a unique decomposition

of the form

𝑇𝑛 (𝑥) =
[
𝛿𝑈𝑛 ( 𝑥2 ) +2𝑈𝑛−1( 𝑥2 )

]
1𝑛 +

𝛿2 +2𝛿𝑥 +4
𝑓𝑛,- 2

𝛿
(𝛿)

𝑐𝑛−1∑︁
𝑖=1

𝑛−2∑︁
𝑘=0

𝑎̃
𝑛,- 2

𝛿

𝑖,𝑘
(𝛿)𝑥𝑘ℎ𝑖

- 2
𝛿

, (A.80)

where 𝑓𝑛,- 2
𝛿
(𝛿) is as in Conjecture 6.1.15 and 𝑎̃

𝑛,- 2
𝛿

𝑖,𝑘
(𝛿) are polynomials such that no root of 𝑓𝑛,- 2

𝛿
(𝛿) is

a root of 𝑎̃
𝑛,- 2

𝛿

𝑖,𝑘
(𝛿) for all 𝑖, 𝑘 .

We have verified Conjecture A.5.4 for 𝑛 = 3,4,5, where we note that, for all 𝑖, 𝑘 ,

deg(𝑎̃𝑛,-
2
𝛿

𝑖,𝑘
) = 𝑑𝑛,- 2

𝛿
− (𝑛−1)𝑖− 𝑘, 𝑑3,- 2

𝛿
= 9, 𝑑4,- 2

𝛿
= 54, 𝑑5,- 2

𝛿
= 235, (A.81)

and that 𝑎̃
𝑛,- 2

𝛿

𝑖,𝑘
(𝛿) is even (respectively odd) if its degree is even (respectively odd). This is seen to

correspond to the parity of 𝑛+ 𝑖 + 𝑘 .
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