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Abstract

This thesis studies algebraic aspects of two-dimensional statistical mechanical models. Centred around
the transfer operator, we develop a framework to describe such models with planar algebras, general-
ising features of the Quantum Inverse Scattering Method. To each planar algebra, we thus assign a

model on the strip and a model on the cylinder, and refer to these as planar-algebraic models.

Within this framework, we develop a set of sufficient conditions that imply a planar-algebraic model is
integrable, which include generalised Yang—Baxter equations. We refer to planar-algebraic models
satisfying these conditions as Yang—Baxter integrable. For each such model, we outline a general
procedure to identify a countable set of Hamiltonians that each share a set of eigenvectors with the
transfer operator. We consider the algebraic relations among the Hamiltonians, and for a particular
class of planar algebras, identify when they are all algebraically related to a single Hamiltonian. In this
case, the transfer operator is expressible as a polynomial in this same Hamiltonian, and we say that the

model is polynomialisable.

These general considerations are then applied to the class of so-called singly generated planar algebras.
We show that the planar-algebraic models on the strip and on the cylinder are Yang—Baxter integrable
if and only if the underlying planar algebra satisfies a Yang—Baxter relation. To establish this result,
we develop a new model whose algebraic structure owes to the recently introduced Liu planar algebra.
Moreover, we show that each such Yang—Baxter integrable model on the strip is polynomialisable,
although the polynomials are not determined explicitly. Again on the strip, we consider an eight-vertex
model and a model described by the Temperley—Lieb planar algebra. In each case, we determine
explicit expressions for the transfer operator as a polynomial in a Hamiltonian. Putting integrability
aside, we apply the planar-algebraic framework to determine the critical behaviour of two models of

non-intersecting loop segments defined on causal triangulations.
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Chapter 1

Introduction

We begin this thesis with a brief review of statistical and quantum mechanics and highlight some
analogies between the two formalisms. Turning to an example, we show that these analogies are
far deeper than initially presented if the statistical mechanical system possesses the property of
integrability. Moreover, this example will serve to introduce many objects that will reoccur throughout
the thesis including, transfer operators, R-operators, Yang—Baxter equations, integrals of motion and
quantum Hamiltonians. Distilling insights from this case, we present the statistical-quantum duality in
general and highlight the role played by integrability. We conclude by presenting an outline of the

thesis and a summary of the chapters to come.

1.1 Statistical and quantum mechanics

1.1.1 Statistical mechanics

In the canonical formulation of classical mechanics, a system with n degrees of freedom consists
of a 2n-dimensional manifold M called the configuration space and a differentiable function L
of M, known as the Lagrangian [5]. The space M is parameterised by generalised positions q =
(q1,---,q,) and generalised momenta q = (¢1,...,4,) Where the ‘dot’ notation indicates a time
derivative. The Lagrangian is a function of q and q, specifying the energy contributions to the system

and is decomposed as

L(q.q) =T(q,q) - V(q. ), (1.1)

where 7" and V are the kinetic and potential energies respectively. A state of the system is a point in M,

whose time evolution is governed by the Euler-Lagrange equations:

0=2L 4 (aL). (1.2)

S dq di\dq

From this simple set of equations, one can derive forces, momenta, torques or any other mechanical

property associated with the system.
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(a)d=0 (b)yd=1 (c)d=2

Figure 1.1: A Z%*! lattice can be constructed by a sequence of Z lattices that connect to neighbouring
subsystems only, here the first in the sequence is highlighted red.

While the Euler-Lagrange equations can, in principle, describe mechanical systems exactly, prac-
tical limitations arise as the number of degrees of freedom becomes large. Statistical mechanics
provides a powerful framework for analysing systems when solving the Euler-Lagrange equations
becomes intractable. Instead of evaluating the positions and momenta of every particle in a system,
statistical mechanics treats each particle and their interactions probabilistically, from which one derives
macroscopic properties such as energy, pressure and entropy.

All statistical mechanical systems considered here are assumed to be in thermal equilibrium with a

bath at temperature 7. With this in hand, the probability of a system occupying a state s is given by
1
p(s)=—e FWIT, (1.3)

where E (s) is the energy associated with s, kg is Boltzmann’s constant, and Z is a central object in
statistical mechanics [6]]. The partition function Z is defined such that the sum of all probabilities (I.3])

is equal to one, and can therefore be expressed as

Z= Z e EG)/ksT (1.4)

seS

~E@s)/kBT ig referred to

where S denotes the set of all states of the system. For each s, the quantity e
as the Boltzmann weight. Intuitively, the partition function can be thought of as a measure of the
energy content of state space. To illustrate the utility of the partition function, we present here some

thermodynamic properties that can be determined from this quantity [|6]:

3 02
F=—kzTInZ, § = == (ksTInZ), C =T (ksTinZ). (1.5)

where F, S and C are free energy, entropy and heat capacity respectively. To assist in the computation
of the partition function, it is often convenient to introduce a transfer matrix.
Consider a d + 1-dimensional system that can be decomposed into a sequence of d-dimensional

subsystems, each of which is connected to neighbouring subsystems only, and is spaced uniformly
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by a distance denoted by &7. For example, the Z¢*! lattice can be decomposed into a sequence of Z¢
dimensional lattices where 67 = 1, see Figure [I.T]illustrating this example for d = 0, 1,2. For systems
that can be decomposed in this way, we introduce the transfer matrix 7 as the algebraic object that
generates each configuration of a d-dimensional subsystem and assigns the appropriate Boltzmann
weights. By construction, the product of m transfer matrices generates each d + 1-dimensional
configuration consisting of m, d-dimensional subsystems, up to boundary conditions. Accordingly, the

partition function can be written as
Zyp=Vo-T" Vi1, (1.6)

where if 7" is a k X k matrix, then vg and v,,;1 are 1 X k and k X 1 vectors respectively, which encode
the boundary conditions of the system. As a special case of (I.6)), the partition function of systems

with periodic boundary conditions can typically be expressed as
Zy =tr(T™) =27 +...+ 47, (1.7)

where tr denotes the matrix trace and A1, ..., 4, are the eigenvalues of 7. It is transparent in (|1.7)
that the eigenvalues of 7 provide a great deal of insight into determining the partition function Z,,.
Moreover, under reasonable physical circumstances, the matrix elements of the transfer operator are
strictly positive. In this case, it follows from the Perron—Frobenius theorem [7]], that the transfer
operator has a unique largest eigenvalue which dominates the behaviour of the partition function as

m — oo. To see this, we express (1.7) as

Ax\m Ap\m
Zy =T 1+(—) +...+(—) 1.8
m 1 /ll /11 ( )
where A; > A; for alli =2,..., k, and observe that the terms inside the square brackets tend to one in

the limit m — oo. We note that the eigenvalues of the transfer matrix are similarly illuminating for

arbitrary boundary conditions (I.6), with details depending on the form of vy and V1.

1.1.2 Quantum mechanics

A Hilbert space H is an inner product space, that is complete with respect to the metric induced by
the inner product. Dirac notation expresses elements of H by |¢) and the inner product between two

elements by (@[ ). Define the equivalence relation ~ on H as

) ~1#) = ) =2alg), AeC™ (1.9)

A ray in H is the set of all ) € H related by ~. A Hilbert space is separable if it admits a basis
{l¥i)|i € S}, satisfying

Wil ;) =96ij, Vi,jeS, (1.10)

where 6;; is the Dirac delta function and S is a countable set.
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A quantum mechanical system consists of a separable Hilbert space H and a self-adjoint operator
H that acts on H, known as the Hamiltonian [§]. Similar to the role of the Lagrangian in classical

mechanics, the Hamiltonian defines the energy of the system and is decomposed as
H=T+V, (1.11)

here T,V € End(H) are the kinetic and potential energy operators respectively. A state of the system

is aray in H, whose time evolution is governed by the Schrodinger equation

i 00) = Iy (), (1.12)

where 7% is Planck’s constant. For a time-independent Hamiltonian, the Schrédinger equation is solved
by

Y (1)) =U (01 (0)), Ur)=e ", (1.13)

where U (¢) is a unitary operator that generates time-evolution.
Physical quantities such as position and momentum, correspond to self-adjoint operators that act
on H and are known as observables. Measurements of these quantities correspond to expectation

values. For an observable A and a state |), the corresponding expectation value is given by

(A = (W|AlY). (1.14)

At face value, the differences between classical and quantum systems are stark. Despite these
initial appearances, there exist formal analogies between statistical and quantum mechanics, these are

discussed in the following section.

1.1.3 Analogies

Let 7 denote the transfer matrix for a statistical mechanical system in d + 1-dimensions, and let
U(t) denote the unitary operator generating time translations for a quantum system in d-dimensions.
Similarities between these formalisms arise when considering the roles of 7~ and U (¢) in their respective
domains — each generates a dimension of sorts. On the quantum side U(t) generates the time dimension,
while on the statistical side, 7~ generates a spacial dimension. Taking a ‘quantum’ view of the transfer

operator, we can think of this object as the Euclidean time-evolution operator
7— “_» e—éTH/kBT’ (115)

where 07 denotes the lattice spacing and H denotes a d-dimensional quantum Hamiltonian [9]. We
use “ =" to indicate that the equality should not be taken literally. Contrasting (I.13]) and (1.13)), we

can read off the following analogies:

U(t) oT™, it & moT, h— kgT, (1.16)
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where U(t) and 7™ generate time-evolution and imaginary time-evolution respectively, and where #
and kpT parameterise quantum and thermal fluctuations respectively [9].

The relation between d + 1-dimensional statistical mechanics and d-dimensional quantum mechan-
ics discussed here has been purely analogical. As will be demonstrated in the following section, if we
endow a statistical mechanical model with integrability, the correspondence is far deeper than just a
formal analogy. While we have stressed that (I.15]) should not be taken literally, integrability implies,

at least to linear order, that the equality holds up to an overall factor.

1.2 A motivating example

1.2.1 Six-vertex model

Let S, denote the set of all m X n square lattices with periodic boundary conditions in both the

horizontal and vertical direction, and where each vertex corresponds to one of the following states:

L TR U SURT SENR U SR
1 f 1 i 1 1

as indicated, each of the above vertices is labelled from one to six. The six-vertex model is defined

by assigning the energy Ej to each k-labelled vertex in a given configuration. For each m,n € N, the

partition function of the model is given by

nx(C)Ex, (1.18)

M=

Zyn= ), eHOMT, E(C)=
CeSp,n k=1
where ny (C) denotes the number of k-labelled vertices in the configuration C. See Figure for an
example of a six-vertex model configuration.
Physically, this model can be interpreted as an idealisation of crystalline H>O, and is often referred
to as an ice-type model. To see this, we identify each vertex of the lattice with an oxygen atom and each
incoming arrow with a hydrogen atom — covalently bonded to the oxygen at that site. Reinterpreting

the states in ((1.17]) accordingly, we have:

9 @0 v8 @ ces @ un

which are viewed as orientations of a H,O molecule. Arranging these states on a square lattice,
hydrogen-oxygen neighbours that are not bonded covalently represent hydrogen bonds between
adjacent H,O molecules, giving rise to the crystalline structure characteristic of ice. See Figure [I.2b]
for an example of a six-vertex model configuration interpreted as ice. The ice model is defined as the

following specialisation

E =Ey=E3;=E;=E5=Eg=0, (1.20)
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(a) (b)

Figure 1.2: An example configuration of the six-vertex model; in (a) the configuration is expressed
using the arrow notation of (I.17), while in (b) the configuration is expressed using the molecule

notation of (T.19).

where the Boltzmann weight of each state in (I.19) is one, and the corresponding partition function
simply counts the number of possible configurations.

Another specialisation of the six-vertex model relevant to our analysis employs the so-called
zero-field assumption. In the absence of an external electric or magnetic field, which would serve to
privilege a given direction, the energy of a configuration remains invariant under the reversal of all

arrows. Accordingly, the energies of the zero-field six-vertex model are defined such that
E| =E>, E3=Ey4, Es =Es. (1.21)

We will return to this model in Section

To determine the partition function of the six-vertex model, we introduce the corresponding
transfer matrix. By construction, this algebraic object generates each single-row configuration of the
model (with periodic boundary conditions in the horizontal direction only) and assigns the appropriate

Boltzmann weights. The transfer matrix of the six-vertex model is given by

. bian bras bu_1ap b, ay by by bn_1 b,
Toi= ) (RDGRRZG..Ryw Rt )ebi@elo.. .och e, (1.22)
Ay ==
Alyenny ap==+
b] ..... bn—i
where
Rt = Er/ksT R = e B/keT Rt = e EslksT (1.23)
R™ := ¢ E2/ksT | R*, = ¢ Eu/ksT Rt := ¢ EolksT (1.24)

are the Boltzmann weights associated with the model, and

., 1o o1 . oo ~lo o (125)
e, = , e, = , e’ = , e_ = . .
T lo oo 1o oo 10 0 1
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The transfer matrix can be expressed diagrammatically as

b
by by bn—ll by |
3] a3 a3 p-| @y @] bBy B b
T, = Z , (R L el = o g . (1.26)
al,...,ap=%
at,...,an==% a az Aan-1 an
bl ----- bn—+ a

The transfer matrix admits an equivalent, arguably neater, description in terms of R-matrices. For
the six-vertex model, the relevant R-matrix is defined

R:= Ritei®ei+R.Tei®e_+R“e.®e'+R e ®e, +Re_®et+R “e_®e”, (1.27)

and corresponds to the matrix

RY 0 0 0

< 0 R*Y RZ O
R= T . (1.28)

0 R* R= 0

0 0 0 RZZ

By definition Re End(V ® V) where V = C2. Now consider Vy @V, ®...®YV, where V; =V for
all k =0,...,n, we define Ié,-j € End(Vh®...®%V,) as the operator that acts as R onV, ®V; and
as the identity elsewhere. To avoid excess notation, we have not indicated the n dependence of the
operator R; ;- In places where this may be confusing, we have included a remark. Expressing the

transfer operator (1.22)) in terms of R-matrices, we have
Tn =tro(Ly), L,:=Ro1Ro2...Ron, (1.29)
where 7, € End(V)®...9V,) and L, € End(Vp®...®YV,), and try denotes the matrix trace over the

tensor factor Vj. As in (1.26)), the transfer matrix and the R-matrix can be expressed diagrammatically

as

=

, Rij=J i, (1.30)

where we identify the left- and right-most horizontal edges. In (1.30), we have indicated the factors
in Vp®...®YV, where the operators act non-trivially, accordingly, the identification of the left- and

right-most horizontal edges implement the trace over V}.

The natural algebraic structure of 7, facilitates the construction of m-row configurations by taking
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the product of m transfer matrices, which can be expressed diagrammatically as

Am+11] Am+12 Am+1n—1| Am+1n . .
(67781 A2 Um3 Umn-1 Amn (67781 R R
am1 am?2 Amn-1 Amn . .
Um—11 | =12 |U¥m-13Um—-1n-1| ¥m—1n | ¥m-11 R R
m Am-11" Am-12 Am—1n-1" Am—-1n
7; = : : : : = : : (131)
a 7 - as| asn a3p-1 asp . .
(illl """"""" C’x”n‘;;":i— @1 | @ | @3 @p1 | @2n | @21 R R
azg azn azn-1 azn \ «
aip | a2 | @13 e | a1n | an R R
ari a2 aln-1 din
By imposing periodic boundary conditions in the vertical direction, we have
— ny\ __ m m m
Znp =tw(T,") = A |+ 4+ o+ A s (1.32)
where tr denotes the matrix trace and A, 1,4,2,...,4, 2 are the eigenvalues of the transfer matrix

7. As indicated in (1.7) and again in (1.32)), the thermodynamic details of the six-vertex model are

encoded in the spectrum of the transfer matrix.

1.2.2 XXZ model

Following Section quantum systems are distinguished from their classical counterparts by occupy-
ing states in a Hilbert space. We consider here a two-dimensional Hilbert space H = C2. The space

End(H) is spanned by Pauli matrices:

1 0 01 i 0 -i 1 0
1:= , ot = , o) = , oti= ) (1.33)
01 1 0 i 0 0 -1

Accordingly, an arbitrary quantum state /) € H admits a geometric interpretation as a vector in R>

with coordinates ({o*)y, (0 )y, {(0%)y). Define

: 1) := 0 (1.34)
ol =1 .

which form an orthonormal basis for /. An arbitrary quantum state is a ray in H, and can therefore

|0) :=

be represented by
W) =rol0) +r1€¥|1), (1.35)

where rg, 71, ¢ € R satisfy ré + r% = 1. Note that we have conveniently selected the representative to
satisfy (¢|¢) =1 and have no global phase. Parameterising trigonometrically, each quantum state in

H can be expressed uniquely as

) =cos(§)|0) +e¥sin(§)1), (1.36)
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(o)

(a) (b)

Figure 1.3: In (a) we present an example of a quantum state in 7. While in (b) we present an example
of a quantum state in the four-site XXZ vector space H®*.

where 6 € [0,7] and ¢ € [0,27). Computing the coordinates ({o)y, (o )y, (0%)y) of a state parame-

terised as (1.36)), we have
(o)y = cos(gp)sin(h), (0)y = sin(¢) sin(0), (o%)y =cos(0), (1.37)

which corresponds to an angular parameterisation of the unit sphere. It follows that a quantum state in
H can be represented by a point on the unit sphere, often referred to as the Bloch sphere [10]. See
Figure for an example of a state expressed on the Bloch sphere.

We now consider a one-dimensional chain with n sites, each of which occupies a state in H.
The periodic XXZ model describes the interaction of sites within the chain when equipped with a

nearest-neighbour interaction described by the Hamiltonian

1< . .
Hxxz = -3 Z (o707 +0i 0 +Acia,)), ol = 1 '®o? @ 18", (1.38)
i=1

where 0'5 = O'f’ and A € R, and we note that Hxxz € End(H®"). See Figure for an example of
an XXZ model configuration. Physically, the XXZ model offers a quantum mechanical treatment of an
idealised magnet, consisting of spin-% particles dominated by a nearest-neighbour interaction induced
by the spin-statistics theorem. This model has been shown to exhibit ferromagnetism, a feature absent

in classical counterparts.

1.2.3 Duality

At face value, the zero-field six-vertex model and the periodic XXZ model appear mathematically
and physically distinct. On the one hand, we have a two-dimensional classical statistical mechanical
model and on the other, a one-dimensional quantum mechanical model. Despite this, we show that a
six-vertex model with the property of integrability, is intimately related to the XXZ model.

A statistical mechanical model is considered integrable if it is described by a transfer matrix 7 (u)

satisfying

[T (u), T (v)] =0, Yu,veQ, (1.39)
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where Q C C is some suitable domain. Consider a transfer matrix 7, (u«) of the form (1.30)), where the

u-dependence of the R-matrix is expressed diagrammatically as

T (u) = %—% +—+— Rij(u) = ~+— (1.40)

A model described by 7,(u) is integrable if the R-matrix satisfies the Yang—Baxter equation (YBE)

and inversion identity (Inv):

v

u
YBE: »>-< . = »>< Inv: ><>-<: (1.41)

where w is a function of u# and v, and u is a function of u. To illustrate, we use the following

diagrammatic manipulations

v v v v v 1%
(Inv)
= w (1.42)
u u u u
u u u u

) - W><>< O . o EROTw).

Let u,A € C and parameterise the zero-field six-vertex model as

R I
u c\u .

R(u) = , b(u) = Snh@) 1.43

(u) 0 C(Lt) b(u) 0 (”) sinh(2) ( )
0 0 0 a c(u) =1

we observe that this R-matrix satisfies (1.41)), and that the model is integrable [11]]. Expanding the

transfer matrix in powers of u, we have
To(u) = Y u'Q;, (1.44)
i=0
where Q; € End(V®"). Integrability implies that

[%(u)’Q]] =0, [Ql,Qj] =0, Vl’] € No, (145)

and we refer to each Q; as an integral of motion of the model. It follows from (1.45)) that the transfer

matrix and the integrals of motion are closely related — each sharing a common set of eigenvectors.
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Following [12], we will make contact with the XXZ model by determining Qg and Q; of the

six-vertex model. To this end, it is convenient to expand the R-matrix to linear order in u as

R(u) =P +uR® +0®u?), (1.46)
where
sh(2)
1000 -8 0
1
P 0010 so_| O s O 0 (1.47)
: : : 1 . .
0100 0 0 s O
h(1)
000 1 0 0 0  -FnaT

Note that £ and R satisfy

P2 =12, R((S)P0]+1 PO]PO]‘HP]']'HRE?H, [R;i)H,POk] =0, Vk<j,j+l<k. (1.48)

Expanding the L, operator in (I.29)) to linear order in u, we have
]_[(500, +uR)+0(2) = ]—[500, +uZ (]—[ Por) R ]_[ Poi)+O?).  (149)
i=j+1
Remark. Here and elsewhere we use left-to-right ordering of products i.e. [T, x; = x1x2...x,

Applying the relations (1.48]), we have

n n-1 Jj+1
L,= 1_[?0,‘(1®(n+1)+u?0nﬁ(()‘i))+u (I—IPO’) JJ+1R]((§)+1( l—[ P(),)+O(u2) (1.50)
i=1 Jj=1 i=j+2
n—1
( l_l Poi ) (]l®("+1) + uR(é) +u Z R;i)ﬂ) +O(u2)
l— ]_1

where we have introduced R(®) := PR Tracing over the zeroth tensor factor, we have

T (1) _tro((]_[soo )(]1®(”+1)+MR(6)+MZR(6) )) +O(u) (1.51)

jj+l

_tro((npo,))(n®n+uzze<é> ([ T )33 +0

i=1 i=1

and note the relations

n n "
tr()((l_l?()i)) =Ty, trO((l_[POt)R(()i)) :THR;(SI), T, = npﬂ—il’l+1—i~ (152)
l=1 l=1 l=1

Remark. We highlight that in equations (1.51]) and (1.52]), operators within the partial trace operation

act on V&1 while the operators outside the partial trace operation act on V",

Applying (1.52) to the transfer matrix, we have

JJj+l
J=1

T (u) :Tn(]1®<"+1>+u21e<5> )+O(u2), Rumet = Ry 1. (1.53)
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and read off the first two integrals of motion as

Qo =1y, 01=7) RY. (1.54)
j=1
Expressing R}i{r , in terms of Pauli matrices, we have
1 1
s
R;.j)ﬂ ) cosh(1)1®" + 3 (0';‘0';“+1 + O']}.)O';H —~ COSh(/l)O';O';H) +0(u?), (1.55)
and we recognise the appearance of the XXZ model in Q;
0, =-1, (g cosh(2)1®" +HXXZ), A = —cosh(A). (1.56)
It immediately follows from (I.43) that [7,(u),7,] =0 and
[7n (1), Hxxz] = 0. (1.57)

Consequently, the transfer matrix of a zero-field six-vertex model and the Hamiltonian of the XXZ
model share a common set of eigenvectors! This is a remarkable result. From a practical perspective, a
solution to one of the models can be immediately passed to the other via the ‘duality’ (I.57). In fact,
this approach was the first to yield a solution to the XXZ model, where the initial breakthrough was

achieved via an application of the algebraic Bethe ansatz to the six-vertex model [11].

1.3 Statistical-quantum duality

Taking lessons from the six-vertex and XXZ example, we proceed by stating the statistical-quantum
duality in a general setting. Let 7~ denote the transfer matrix describing a d + 1-dimensional statistical
mechanical system, and let V denote the vector space acted on by 7. Let H denote the Hilbert space
of a quantum system described by a Hamiltonian H. These two systems are dual if V’ can be viewed

as a Hilbert space such that V = H, and if the transfer operator and Hamiltonian satisfy
[7.H] =0. (1.58)

As illustrated in Section the integrability of a statistical mechanical model described by 7 (u)
naturally gives rise to a statistical-quantum duality (1.38]), provided that <V is a Hilbert space. For
an arbitrarily parameterised transfer matrix 7 (), we demonstrate how to determine a countable set
of dual Hamiltonians. Let B denote a basis for End(‘V), expressing the transfer matrix in terms of

elements in the basis 8, we have

T ()= ta(w)a, (1.59)

aeB

where 7, : Q — C for each a € 8. Define the space of scalar functions

F :=spanc{t, : Q@ — C|a € B} (1.60)
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and denote by By a basis for . Determining the dual Hamiltonians associated with 7 (u), it is

convenient to express the transfer matrix in terms of elements from the basis B

T()= ) fW0y, (1.61)

feBr

where Oy € End(V) for each f € B. The integrability of the model implies that

[T(H), Qf] :O’ [Qfan] = 07 vf’g € BT (162)

It follows from (I.62)) that any Hamiltonian defined as a multi-variate function of elements in {Q | f €

By}, is dual to the statistical mechanical system described by 7 (u). We return to the analysis

(1.59)—(I.62) in a general setting in Chapter 3]

1.4 Outline

This thesis describes two-dimensional statistical mechanical models in a planar-algebraic setting.
We develop a framework, centred around the transfer operator (which takes the role of the transfer
matrix) but is not necessarily a matrix, instead it is an element of a so-called planar algebra. Planar
algebras were developed by Vaughan Jones to study inclusions of von Neumann algebras [13]], but have
found applications ranging from knot theory [[14-16] to various areas of mathematical physics [17-20]].
Intuitively, planar algebras describe the ‘multiplication’ of vectors in the plane and therefore are
natural objects to describe two-dimensional statistical mechanical systems. While we are not the first
to observe the utility of planar algebras to describe statistical mechanical systems [13}/17]], nor are
we the first to express the transfer operator as an element of a planar algebra [21]; the novelty in
this thesis owes to the generality of the framework, which can be summarised in the following: to
each planar algebra, we assign a model on the strip and a model on the cylinder. We refer to these as
planar-algebraic models.

Within this framework, we develop sufficient conditions that imply that a planar-algebraic model
is integrable, which generalises and translates the Yang—Baxter equation and inversion identities
introduced in Section [I.2]to the planar-algebraic setting. We present an algebraic characterisation of
integrals of motion of a planar-algebraic model and consider algebraic relations among them. For a
general class of planar algebras, we identify when each integral of motion arising from the transfer
operator is algebraically related to a single element of the planar algebra. In this case, we can express
the transfer operator as a polynomial in a single algebraic element, suggesting that, in some instances,
may be taken literally. We also highlight that the planar-algebraic framework recovers the
standard formulation of transfer operators as matrices by specialising to the tensor planar algebra.

Stepping back, we present three motivations for studying planar-algebraic models. The first and
most straightforward is that planar algebras offer an inherently two-dimensional setting to describe
models native to the plane. The second is that the planar-algebraic framework is more general than the

standard matrix formalism. To see this, observe that planar-algebraic models can only be described in
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the standard formalism via a representation, which is typically unable to capture the structure of the
underlying planar algebra. On the other hand, each model in the standard formalism is expressible as a
planar-algebraic model by specialising to the tensor planar algebra. Finally, planar-algebraic models
offer new perspectives on statistical mechanical systems, in particular, by suggesting new integrable

models and connections to other areas of mathematics.

To conclude this section, we present an overview of the upcoming chapters. Chapter [2] serves
to introduce many of the planar-algebraic objects used throughout the thesis. We begin by defining
shaded and unshaded planar algebras. Imposing additional structure on shaded planar algebras, we
introduce subfactor, singly generated and Yang—Baxter relation planar algebras. Using [22], we show
that shaded planar algebras consistent with our Yang—Baxter integrability framework necessarily admit

an unshaded description. We conclude by presenting planar algebras in a categorical setting.

In Chapter 3] we develop the planar-algebraic framework. We begin by defining R- and K-operators
from which we construct a transfer operator on the strip and a transfer operator on the cylinder. For
each of these transfer operators, we develop a finite set of relations, including generalised Yang—Baxter
equations, that serve as sufficient conditions for integrability. A planar-algebraic model satisfying
these sufficient conditions is referred to as Yang—Baxter integrable. Integrals of motion of each model
are determined by identifying identity points, about which a power series expansion of the transfer
operator is performed. We refer to the linear order term in this expansion as the principal Hamiltonian
of the model. We conclude this chapter with an algebraic characterisation of the integrals of motion
and quantum Hamiltonians associated with a planar-algebraic model and introduce the notion of
polynomial integrability.

Chapter [4] develops the groundwork to establish algebraic relations among integrals of motion
arising from the transfer operator of an integrable planar-algebraic model. Specifically, we identify
necessary and sufficient conditions for a parameter-dependent matrix to be expressible in terms of a
polynomial in a parameter-independent matrix. This result is then extended to parameter-dependent
elements of a semisimple algebra. We also review cellular algebras and establish results relevant to

the spectral analysis of planar-algebraic models.

In Chapter [5] we apply the planar-algebraic framework to show that a singly generated planar
algebra underlies a Yang—Baxter integrable model if and only if it is a Yang—Baxter relation planar
algebra. According to a result by Liu, there are three singly generated Yang—Baxter relation planar
algebras: the well-known Fuss—Catalan and Birman—Wenzl-Murakami planar algebras, in addition to
a new planar algebra, that we refer to as the Liu planar algebra. The Fuss—Catalan and Birman—Wenzl-
Murakami planar algebras have long been known to admit integrable models, which we review and
place within our framework. While, to the best of our knowledge, no such model has been introduced
for the Liu planar algebra. We address this absence by constructing an integrable model from the Liu
planar algebra, which fits naturally within our framework. We conclude this chapter by showing that
all of the singly generated Yang—Baxter relation planar algebras encoding Yang—Baxter integrable
models on the strip are polynomially integrable, that is, the transfer operator is expressible in terms of

a polynomial in a single Hamiltonian.
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In Chapter [0 we focus on an eight-vertex model and a model with an underlying Temperley—
Lieb planar-algebraic structure, both defined on the strip. In each case, we determine the principal
Hamiltonians of the model and establish conditions for which the model is polynomially integrable.
For the eight-vertex model, we find that it is polynomially integrable for all n € N, while for the
Temperley—Lieb model, we show that it is polynomially integrable for all but finitely many 6 € C and
all n < 17. For both models, we find that the transfer operator can be expressible as a polynomial in
the corresponding principal Hamiltonian, and we determine these polynomials explicitly in each case.

Chapter [7)is distinct from the preceding chapters in two main ways: (i) we consider models defined
on causal triangulations, and (ii) our primary interest is the critical behaviour of the model, not whether
it is integrable. We introduce a dense and a dilute loop model on causal triangulations and describe
each model by a transfer operator different from those introduced in Chapter [3] We show that the
dense loop model can be mapped to a planar tree model, which can be solved exactly to determine
the critical behaviour. The dilute loop model can similarly be mapped to a planar tree model, albeit
one that cannot be solved exactly using the methods employed in the dense case. Instead, we develop
transfer operator techniques to determine the critical behaviour of the dilute loop model, which we
show to be distinct from the dense loop model.

In Chapter [8] we extend the scope of planar-algebraic models beyond statistical mechanics by
showing how such models relate to quantum field theories (QFTs). After defining the relevant class of
QFTs, we introduce Jones’ semicontinuous models as ‘almost’ examples of this class and detail some
recent efforts to endow these models with the properties of actual examples. Within semicontinuous
models, we outline the relevance of the planar-algebraic framework and highlight the central role
played by the single-row transfer operator.

We conclude in Chapter [9] by summarising the main results and by offering some directions for

future study. The Appendix consists of technical details deferred from Chapter [S|and Chapter [0
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Chapter 2

Planar algebras

In this chapter, we introduce planar algebras and define much of the planar-algebraic machinery used in
subsequent chapters. We begin by defining planar algebras and their shaded incarnation. We follow up
by constructing planar-algebraic versions of familiar linear-algebraic operations such as multiplications,
traces and inner products. By imposing additional structure on shaded planar algebras, we introduce
subfactor planar algebras as a planar-algebraic version of a C*-algebra, and present singly generated
and Yang—Baxter relation variants of these. We show that singly generated planar algebras relevant to
our integrability framework (introduced later in Chapter [3)) must admit an unshaded description. We
conclude by presenting planar algebras in a categorical setting that will be convenient for describing

models on the cylinder.

2.1 Planar algebras

Informally, an (unshaded) planar algebra is a collection of vector spaces (P,)qcn, Whose elements
can be combined in the plane such that the resulting object is identified as an element of a given Py for
the appropriate k € Ny. A basis for P, consists of a set of disks whose boundary is decorated by n
connection points or nodes and a marked interval, basis vectors are distinguished by some internal
structure specific to the particular planar algebra. Vectors are combined in the plane by connecting
each available node to a single non-intersecting loop segment defined up to ambient isotopy, that is,
the loop segments can be bent or stretched without affecting the result but cannot be cut or made to
intersect. Planar tangles are the diagrammatic objects that facilitate the combination of vectors, for

example:

loop segments - P / _ disk
. )/. ‘ - Input disks

/ output disk 2.1)
N

- 0
marked intervals - \ closed loop
7
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Definition 2.1.1. An (unshaded) planar tangle T consists of the following components in R?:
* Adisk Dg, called the output disk.
* A finite set of non-overlapping disks Dr in the interior of D, called input disk(s).

* A finite number of non-intersecting loop segments within the output disk and outside of the
input disk(s), connecting pair-wise, distinct points on the boundary of the disks in {Dg} UDr
called nodes, or closing on themselves forming loops. Denote by n(D) the number of nodes
on the boundary of D € {Dg} U Dr. The boundary of each disk is thus composed of nodes and
boundary intervals: the open intervals between the nodes or if there are no nodes, a whole

circle.

* For each disk in {Dg} U Dr, a choice of boundary interval, here marked graphically by a red

rectangle.
Each planar tangle T is defined up to ambient isotopy of Dg c R2

Remark. One can consider variants of planar algebras by equipping the planar tangles with additional
structure, for example, by assigning each loop segment a label. After introducing the simplest version

here, Section [2.2]is devoted to so-called shaded planar algebras.

There exists a natural product structure among planar tangles known as glueing or composition.
Consider two planar tangles T and S, we say S is D-compatible with T if D € Dy satisfies n(D) =
n(Dg), in this case, it is possible to deform S so that it takes the place of D in such a way that the
nodes and marking of both are aligned. The image of the product, denoted by T op S, is identified as a
planar tangle by replacing D with S and by removing both the output disk and associated marking
of S. If § is not D-compatible, then 7 op S = 0. To illustrate, the following quadratic tangle S can be
glued inside the cubic tangle 7

N — RN IR

T:->.I/\-D/, o C\\ TODS:,>I/ e

|
Definition 2.1.2. The set of planar tangles endowed with compositions is called the planar operad.

Planar tangles also act naturally as multilinear maps on the vector spaces (P,)nen,. To each planar

tangle, we associate the linear |Dr|-ary operator

Pr: X Pyo) = Py, (2.3)
DeDr

where we note that for D7 = @ there is no domain, in which case P is a 0-ary operator (or nullary)

and we denote its image by Py (). The action of Pz is similar to the composition of tangles but at the
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level of vectors. Each input disk D of T is replaced with elements of the vector space P, (p) in such a

way that the nodes and the marking of both are aligned, for example:

2% 1 O o
/ C: Pr(vi,va,v3) = O/ .C:epg. (2.4)
N

F\ /\o

The markings of the input disks are then removed and the resulting vector is identified in P, DIy

T=" o
/

Remark. Unlike in the picture of T in (2.4)), disks in D7 are not labelled; however, to apply the
ordered-list notation for the vectors in Pz (v,v;,v3), it is convenient to label the disks accordingly.

Once drawn as in the second picture in (2.4)), no labelling is needed.

The identification of an appropriate output vector depends on the specific action of the planar tangles
as linear maps, which is specified when defining a particular planar algebra. To illustrate, consider a
planar algebra whose vector spaces (P2,),en, are spanned by planar tangles with zero input disks, and
take the action of the planar tangles to be the composition of tangles. Revisiting (2.4) with a particular

set of input vectors, we identify the image of Py in Pg as

DS
vips-t of Co-Tf Cog es
— \\
\

Having defined both the action of planar tangles on themselves and on arbitrary vector spaces, we
now consider their interaction. A basic requirement is that these actions are consistent, that is, for any

tangle S that is D-compatible with 7', we have
Props = Prop Py, (2.6)

where the right-hand side is defined concretely after (2.7)). The condition (2.6) is known as naturality
and 1s much akin to a homomorphism property among planar tangles and their associated linear maps.

To specify the action of the right-hand side, we introduce

g:(><Pn<d>)X( >< Pn(d))—’in)X( >< Pn(d))’ (x,y) = (Ps(x),y). (2.7)

deDs deDr\{D} deDr\{D}

We can now write the right-hand side as Py op Pg := Pr o g, where here o denotes standard function
composition, and the domain of Pr is ordered such that the input D is first, followed by the inputs
Dr\{D}. Toillustrate, suppose that the domain of Pz, s is ordered such that all of the Dy inputs come
first and are denoted by vg, followed by the D7 \ {D} inputs denoted by vy+. For Dg, D\ {D} # 0,

we can express the naturality condition as

Prons(vs,vrr) = Pr(Ps(vs),vr). (2.8)
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We also list the exceptional cases

Props(vs) = Pr(Ps(vs)), Ds+#0, Dr\{D}=0 (2.9
Props(vrr) =Pr(Ps(),vr), Ds=0, Dr\{D}#0 (2.10)
Props() = Pr(Ps(), Ds, Dr\{D}=0 (2.11)

which, together with (2.8), must hold for all vg € X jepg Py(a) and vz € Xep,\(py Pn(a), and all
tangles 7" and S.

We now give a precise definition of planar algebras.

Definition 2.1.3. A planar algebra is a collection of complex vector spaces (Pp)nen,, together with

the action of each element of the planar operad as a multilinear map, such that naturality is satisfied.

In the following section, we describe a type of planar algebra whose planar tangles (and consequently

vector spaces) are equipped with additional structure.

2.2 Shaded planar algebras

Shaded planar algebras are a simple variant of planar algebras where the planar tangles possess a
‘checker-board’ shading. A planar tangle is shaded if each region (excluding the interior of input disks)
is one of two colours, such that two regions separated by a single loop segment do not possess the
same colour. For a planar tangle to admit a shading, the output disk and each input disk must have an
even number of connection points. Each planar tangle admitting a shading can be shaded in exactly

two ways, for example:

o i A7

] (\/ Y and ' / N . (2.12)
N N

[ \ 0 \ 0]
Accordingly, each disk in a shaded planar tangle carries both node information and shading infor-
mation. As for planar tangles in Definition [2.1.1] we denote the output disk of the shaded planar

‘s
/

tangle 7' by Dg and the set of input disks by Dr. The number of nodes on the (exterior) boundary of
De {Dg} U Dr is denoted by (D) and is even, while the shading of D is denoted by £ (D) and is +,
respectively —, if the (exterior) marked boundary interval corresponds to a white, respectively blue,
region.

Composition among shaded planar tangles works much in the same way as for planar tangles.
Let T and S be shaded planar tangles and suppose there exists D € Dy satisfying (D) = n(Dg) and
{(D)=¢ (D(S)). It is then possible to isotopically deform S such that it can take the place of D, as
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illustrated by

: N Q
T:'>./\'(<’ S:/C\\ ToDS—> /< . (2.13)

\ //\

Definition 2.2.1. The set of shaded planar tangles endowed with compositions is called the shaded
planar operad.

ee{+,~}
neNy

which is commonly abbreviated as (A 1+ )nen,. A basis for A, . consists of disks with 2n nodes

To accommodate the presence of shading, the relevant collection of vector spaces is (A, ¢)

(connection points) on their boundary, whereby a boundary is composed of nodes and boundary
intervals, and the boundary intervals are labelled alternatingly by + or —. Shaded planar tangles act
naturally as multilinear maps on the vector spaces (A, +)nen,. To each shaded planar tangle 7', we

associate the linear |Dr|-ary operator

Pr: >< An)/2.2(D) = Ap(p)/2.£(DT)> (2.14)
DeDr

where for D7 = 0, we denote the image by P7(). The action of Py is similar to the unshaded case,
each input disk D of T is replaced with elements of the vector space A (p)2,¢(p) In such a way that

the nodes, the shading, and the marking of both are aligned, for example:

_) A _) L7
T=": (_\/ .C:, Pr(vi,vo,v3) = & / g: € Pg. (2.15)
3 ) N

13 \ |V3 —
/ \ 0 / \ 0
The markings of the input disks are then removed and the resulting vector is identified in A, ( DT)/2.£(DT)*

Naturality for shaded planar tangles can be stated as in (2.8)) as
Props(vs,vr) = Pr(Ps(vs),vr), (2.16)

where vs € X jeps Ap(d)/2.2(a) a0d v € Xgep,\(py An(d)/2.2(a)- For the exceptional cases, translate

(2.9)—(2.11) accordingly.

We now give a precise definition of shaded planar algebras.

Definition 2.2.2. A shaded planar algebra is a collection of complex vector spaces (Ap 1 )nen,, together
with the action of each element of the shaded planar operad as a multilinear map, such that naturality

is satisfied.
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The naturality condition is quite restrictive, it allows us, under very mild conditions, to determine

the action of some of the shaded planar tangles. For each n € Ny, the identity tangles are defined

NS NS

idy 4 = = ' Pl id,, _ :

N\ NV

each having 2n ‘spokes’. We say that a nonzero v € A,, . is a null vector if Pr(v) = 0 for every shaded

planar tangle 7 for which Pz has domain A, .. With that, we have the following result.
Proposition 2.2.3. If A, + has no null vectors, then Piq, , is the identity operator.

Proof. Letv € A, and T be a shaded planar tangle for which P7 has domain A, .. By naturality, we

then have

Propid,. (V) = Pr(Pig,. (v)), (2.18)

hence
PT(v - Pidn,i(v)) =0, (2.19)

so v —Piq, . (v) € ker(Pr). Since A, . has no null vectors, it follows that Pig, , (v) =v for all v €

Aps. |

Remark. An analogous result holds for unshaded planar algebras by considering unshaded planar

tangles and elements of the graded vector space (Pp)nen,-

In general, there are no constraints on the dimensions of the vector spaces A, ., but a planar algebra

is called evaluable if dim(Ap ) = 1 and dim(A, ) < co for all n € N. In that case, the evaluation map
e:Ap+ —C, (2.20)

which acts by mapping the ‘empty disk’ to the scalar 1, provides an isomorphism, Ag + = C, for each
shading +/—.

Many familiar linear algebraic operations have counterparts in shaded planar algebras. We proceed
by introducing the shaded planar tangles and corresponding linear maps that implement operations

relevant in forthcoming sections.

Remark. Omitting the subscript indicating the shading of a given shaded tangle, we are referring to

the corresponding unshaded version of the tangle. A similar convention is adopted for vector spaces.

For each n € Ny, the planar tangles

, tr,(j’)_:: '
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induce notions of left and right traces respectively

P.o tAns = Aoz, P i Aps > Aoz (2.22)

)
tr, £

Remark. If the shading of a region is unspecified, as it may depend on the parity of n, we use the

banded pattern illustrated in (2.21)). For simplicity, the region containing the ‘dots’ is coloured white.

A planar algebra is said to be spherical if

Ptr(l) =P (2.23)

n,+ trn,i

for all n € Ny. We note that sphericality requires Ao+ = Ag —.

Similarly, the partial trace tangles

B P PR V.

5 n,— '

CON TN TN TN

induce notions of left- and right-partial traces respectively

PT;(lll An,i i An_17¢, PT,YE An,i — A}’l—l,i’ (225)
where 'ur,(ll,)i = Tl(li(_)n-l o Tz(lj_(_)n_z 0---0 T,Eli and trf:i = Tl(ri)_ o Tz(ri)_ 0---0 7,52

For each n € Ny, the planar tangles
<\ N
My, = - (() . M= (() . Pu,. AnsXAns = Ans. (2.26)

AN IS

induce a multiplication on A, ., and we write vw = Py (v,w) € A, ; for v,w € A, ., where v,
respectively w, is replacing the lower, respectively upper, disk in M, .. Naturality ensures that the
resulting algebra A, . is associative, and under mild conditions (see Proposition 2.2.4| below), also

unital, with unit

whose dependence on n may be suppressed by writing 1., for 1, ..

Proposition 2.2.4. If A, . has no null vectors, the algebra induced by the multiplication tangle M,

is unital, with unit 1,, 4.
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Proof. Observe that naturality implies
Py ootdy . (V) =P, (v, i), P, .oitd,. (V) =P, (1n2,v), (2.28)
which can be simplified to
Pig,.(v)=v=v1,z, Pig,.(v)=v=1,2v, (2.29)

and holds for all v € A, .. Note that in the first equality of both expressions, we have applied
Proposition [2.2.3] m|

Remark. A zero planar algebra [23]], where the vector spaces (A, +)en, are arbitrary and all planar
tangles act as the zero map, exclusively contains null vectors. We note (i) that each vector space of a
planar algebra can be extended to include arbitrarily many null vectors, and (ii) for each planar algebra
with null vectors, except for a zero planar algebra, there exists a corresponding planar algebra without

null vectors (obtained by omitting them).

In this section, we have considered shaded planar algebras in a general setting. In the following,
we impose additional structure on the vector spaces and linear maps to define variants of shaded planar
algebras. For us, this will culminate in the definition of Yang—Baxter relation planar algebras. But
first, we meet subfactor planar algebras, which play a significant role in the theory of von Neumann

algebras. For more on this, see [24].

2.3 Subfactor planar algebras

One can endow (shaded) planar algebras with a *-algebraic structure by introducing two involutions,
one acting on (shaded) planar tangles and the other acting on vectors. First, let -7 denote the operator
that acts by reflecting a planar tangle about a line perpendicular to the marked exterior boundary
interval, and let * : A, + — A, 1, n € Ny, denote a conjugate linear involution. Analogous to naturality,

compatibility between the two maps manifests itself in a simple relation,

PT‘L(VT""’VTDﬂ) =PT(V1,...,V|@T|)*, (2.30)

which must hold for all planar tangles T and all (vy,...,v|p;|) € X pep, An(D)/2,¢(p)- A planar algebra
(Ap,+)nen, endowed with the maps T and -* satisfying 1) 1s known as involutive. In that case,

Py 0=Pu0,. 0" Taa=T)., (231)

and for p € A, ., we have
p=p = (p)=p" (232)
with the indicated multiplication induced by M, ...

An involutive planar algebra (A, +)qen, admits the sesquilinear maps

oD A e X Ape = Ag o ynoas (aib) > P (D), (2.33)
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labelled by ¢ € {/,r} and known as the left and right trace map for ¢ = [ and ¢ = r, respectively. Here,
0c =1for c=1,and 6. =0 for ¢ = r. Composed with the evaluation map (2.20) for dimAg . = 1, we

obtain the sesquilinear trace forms
o (-, W) ApsXAps — C. (2.34)

An involutive planar algebra inherits the qualifier positive (semi-)definite if both trace forms enjoy it
for all n € Ny. If the involutive planar algebra is spherical, then the two trace maps (and hence trace
forms) are identical.

We now give a precise definition of a subfactor planar algebra.

Definition 2.3.1. A subfactor planar algebra is an evaluable, spherical, positive-definite and shaded

planar algebra.

The properties of subfactor planar algebras endow each vector space A, . with a unique trace form
(2.34) as an inner product which, together with the corresponding multiplication tangle (2.26)), make
each A, . afinite-dimensional semisimple algebra, see e.g. [25]. Consequently, each A, . is isomorphic,
as an algebra, to a direct sum of matrix algebras, which facilitates the use of linear algebraic techniques

in the analysis of subfactor planar algebras. To this end, we introduce

P’ :=eoP (2.35)

Apns+ — R, a— /P: o (a*a), (2.36)

As a concrete example, we introduce here the Temperley—Lieb subfactor planar algebra (T, +)nen,s

and refer to the map

as the trace norm.

and revisit it later in Section[5.T]and again in Section[6.1] In some respects, this example is the simplest
subfactor planar algebra as it is generated by the intrinsic properties of planar tangles and therefore
requires no external input. To illustrate this point, we define the Temperley—Lieb subfactor planar
algebra in a roundabout way, see Section |3.1|for the standard definition. Let T, . denote the span of
all planar tangles 7' with zero input disks, and with n(Dg) =2nand ¢ (Dg) = +. Planar tangles act on
vectors in (T, +)nen,, as the composition of tangles, see for example (but here shaded). Vectors
in (T, +)nen,, satisfy additional relations making the corresponding planar algebra a subfactor planar
algebra. We proceed by deriving these relations.

Evaluability requires dim Tg » = 1, and consequently, the empty diagram and the diagram with a

closed loop are not linearly independent, so we have
Q) =0, |, QO =6_+ (2.37)

where 0. € C is called the shaded loop fugacity. Naturality implies that the appearance of a closed loop

within any vector can always be removed and assigned a weight ¢, or 6_. It follows that dim T, + < o0
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for all n € N. The spherical property follows by enforcing

O :.O , (2.38)

0+ =0_ and ' = . (2.39)

which implies

To be convinced that sphericality is satisfied, observe that applying either the left or right trace does not
change the number of closed loops formed. From here onward we use ¢ to denote . equivalently o_.
It follows from the closure of shaded planar tangles under the involution -7, that the Temperley—Lieb
subfactor planar algebra is readily involutive. Deriving relations following from the positive-definite
condition is more involved than the previous conditions. It can be shown that the trace form of the
Temperley—Lieb subfactor planar algebra is positive definite for § € { 2cos (F) |k =3,4,...}U[2,00)
[26]. For 6 € { 2cos (%) |k =3,4,...}, each T, . is defined such that a collection of so-called Jones-
Wenzl idempotents are set to zero, while for § > 2 no additional relations are imposed [27,28]. To
illustrate the case 6 > 2, each T, . is spanned by disks with 2z nodes, such that each node is connected
to another node via a non-intersecting loop segment — defined up to ambient isotopy, and a + checker-

board shading. Accordingly, the canonical bases of T ;, T, _ and T3, are given by
~ -/ N~ -
VI {ae) wa = 2095 e

respectively.

It is a remarkable fact that every subfactor planar algebra possesses the Temperley—Lieb subfactor
planar algebra as a planar subalgebra [13,26]. To define more subfactor planar algebras, it is natural
to supplement the Temperley—Lieb vector spaces with additional vectors. Singly generated planar
algebras (Ap.+)nen, are a class of subfactor planar algebras defined accordingly. Here, Ag » and A .
are defined as in the Temperley—Lieb subfactor planar algebra, while A, . has a basis consisting of
the two canonical Temperley—Lieb basis vectors and one additional vector. The remaining vector
spaces A, . for n > 2, are generated by the action of the planar tangles on A, .. The properties of
subfactor planar algebras place constraints on the interaction between the Temperley—Lieb vectors
and the new element. While a general classification of singly generated planar algebras has been
considered unfeasible [[13]], a program set about by Bisch and Jones has succeeded in classifying
all singly generated planar algebras satisfying the dimensionality constraint dim A3 ;. < 14 [29-31]].
We will revisit singly generated planar algebras in Section where we present a unified algebraic
framework for unshaded singly generated planar algebras. Indeed, one can impose other constraints,
apart from those on dimensionality, that give rise to new planar algebras. To one such class, we devote

the next section.
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2.4 Yang-Baxter relation planar algebras

The Yang—Baxter equation (YBE) [[32-34]] appears in many contexts in mathematics and physics,
from quantum groups and low dimensional topology to high-energy particle scattering and statistical

mechanics [[11,35-37]. The parameter-dependent form of the YBE is typically presented as
(Rw)®1)(L®R(u+v))(R(v)®1)= (L®R(v))(R(u+v)®1)(1®R(1)) (2.41)

where u,v € Q C C for some suitable domain Q, 1 € End(C?) is the identity matrix, and R(u) €
End(C? ® C?) is referred to as the R-matrix. The corresponding parameter-independent version of the
YBE can be established from (2.41)), via a sufficiently well-defined limit, for example, R =1lim,_,o R (1)
or R =1lim, i R(u) [38]]. The expression (2.41)), together with the notation developed in Section

2.1} suggest natural counterparts to the YBE native to shaded planar algebras:

I
NV TN NV TEN
. aWw I = I W . AW | = | "W N wW=u+v (242)
SN = = SN 7
I

where 1. € Aj . are the identity operators, and R (u) = :u: €Ayyand R_(u) = :u: € Ay _ are
referred to as R-operators. A solution to either YBE in (2.42)) is considered specious if R..(u) = f(u)a=
for some a. € Ay, and some scalar function f. Specious solutions are simply a consequence of
as € A, . satisfying the parameter-independent version of the corresponding YBE. Indeed, it need not
be the case that a general planar algebra possesses a non-specious solution to either YBE.

For subfactor planar algebras, there always exists a non-specious solution to both YBEs (2.42),
however, this is true in a rather superficial way. To see this, note that within the Temperley—Lieb

subfactor planar algebra, the following R-operators are solutions to the YBEs

:u: =sin(A—u) ¢) () +sin(u) « _, :u: =sin(A-u) &) ( +sin(u) o, §=2cos(1).
(2.43)

The claim follows from the observation (2.43)), together with the fact that every subfactor planar algebra
contains the Temperley—Lieb subfactor planar algebra. To define subfactor planar algebras admitting
new YBE solutions, one approach is to restrict to solutions satisfying span{R.(u) |u € Q} = A ..

To this end, we may naively impose the YBEs on subfactor planar algebras and use skein
theory to classify the resulting algebras satisfying this condition. Though practical, it is not clear how
one would incorporate the u and v parameter dependence. Instead, we consider a possibly larger class
of subfactor planar algebras, introduced by Liu [39]], satisfying necessary conditions common to those
supporting YBE solutions satisfying span{R. (u) |u € Q} = A, ... One can then consider whether these
planar algebras admit new YBE solutions.

Let (Apn,+)nen, be a shaded planar algebra, with B, . denoting a basis for A, .. Following [39],
a triple (x,y,z) € Ap— X Ay 4 X Ay _, respectively (x,y,z7) € Ay 4y X Ax— X Ay 4, is said to satisfy a
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Yang—Baxter relation (YBR) if

I |
Vet TENs A S mENr
I Y I = Z C;::yb”zc ' I v h . P sy | = Z Dz:)l;:; [ | v h s (2.44)
‘/\,x 7 a,ceBy —‘a < -/\QC _— a,ceBy _ —‘a
1 beB, _ 1 I beBy 4 l

respectively, for some C)ijb,f, D,‘C’jf,’zc eC.

Definition 2.4.1. A Yang—Baxter relation planar algebra (A, +)nen, is a subfactor planar algebra

where every triple of vectors in Ay - X Az X Ay and Az X Ax_ X A, satisfy a Yang—Baxter relation.

Remark. Although a YBR planar algebra is a subfactor planar algebra, we are suppressing that

qualifier, in line with the convention in [39].

While we adopt the form of the YBRs introduced in [[39]], the characterisation of a planar
algebra as a YBR planar algebra does not depend on the particular choices of input disk markings (and
consequently shadings) in (2.44)), on either side of any of the two YBRs. However, we do need a YBR
for each shading of the output disk, as in (2.44]).

In Chapter 3] we describe how one can associate a homogeneous Yang—Baxter integrable model
to any planar algebra satisfying a particular set of sufficient conditions, including YBRs. It is thus
natural to expect that YBR planar algebras play an important role in the classification of Yang—Baxter
integrable models. Indeed, we find (Proposition in Section that a singly generated planar
algebra that is not a YBR planar algebra does not encode the structure of a homogeneous Yang—Baxter

integrable model.

2.5 Unshaded planar algebras

The shading of a planar algebra (A, +),en, need not carry any non-trivial information. In that case, the
shading can be ignored, giving rise to the corresponding unshaded planar algebra (A;),en,. Consider

the following linear maps that reverse the shading on the vectors in A, + and A, _:

\N 7/ N/ \-/ \N /7
N = 5 ln,— An,— - An,+, N = /' > (245)
N\

s Aps — A, '
VAR VAR 7\

here illustrated for n = 2. Following [22], there exists an unshaded planar algebra (A,),en, correspond-
ing to (A, +)nen, if and only if the map ¢, 7 o, + acts as the identity on A, . for all n € Ny.

A key observation for us is that singly generated planar algebras that do not admit an unshaded
description cannot encode a homogeneous Yang—Baxter integrable model within the algebraic integra-
bility framework developed later in Chapter 3] To see this, let (A, +)en, denote a singly generated
planar algebra encoding a homogeneous Yang—Baxter integrable model, and consider the shaded

R-operators of a model defined for each u € Q

\N 7/
Ru(u)= Ju € Ao, R_(u) = :u: € As_. (2.46)



2.6. THE AFFINE CATEGORY OF A PLANAR ALGEBRA 29
By homogeneity, introduced in Chapter 3] these R-operators satisfy
1+[Re(u)] = Rs(u), YueQ. (2.47)

As the planar algebra encodes the integrability of the model, {R.(u) |u € Q} together with the action
of planar tangles, generates the vector space A, . (see Section [3.1]for more details). Using (2.47), it
follows that ¢ + o7 + acts as the identity on A, ., so the corresponding singly generated planar algebra
(Ap,+)nen, admits an unshaded description.

For our homogeneous Yang—Baxter integrability purposes, it thus suffices to consider unshaded
planar algebras only. We stress that a shaded planar algebra not admitting an unshaded description
could encode the structure of an integrable model; however, the corresponding transfer operator would
necessarily be inhomogeneous, see the Remark following (3.10).

We conclude this chapter by presenting one final planar-algebraic construction. Up to now, the
action of planar tangles on themselves via composition and on the vector spaces as multilinear maps
have been performed within the topology of a disk. The affine category of a planar algebra, provides
a setting whereby planar-algebraic operations can be performed on the annulus, or equivalently, the
cylinder. It is convenient to present this construction for unshaded planar algebras only, the shaded

variant is a straightforward generalisation.

2.6 The affine category of a planar algebra

Affine tangles are the diagrammatic objects, defined up to affine isotopy, that facilitate the combination
of vectors on the annulus. Affine isotopies are a subset of all ambient isotopies that act as the identity

on the boundaries of the annulus. For example, we present two inequivalent affine tangles:

</ </

— O\ <
' ' and - C . (2.48)

The boundaries of affine tangles can be thought of as being ‘rigid’, that is, they cannot be freely rotated

relative to each other.
Definition 2.6.1. An (unshaded) affine tangle S consists of the following components in R?:
* An annulus defined by an inner disk Dg and an outer disk Df, called the output annulus.
* A finite set of non-overlapping disks Dy in the interior of the output annulus, called input disk(s).

* A finite number of non-intersecting loop segments within the output annulus and outside of the
input disk(s), connecting pair-wise, distinct points on the boundary of the disks in {D?, Df U Dy

called nodes, or closing on themselves forming loops. Denote by n(D) the number of nodes
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on the boundary of D € {D3, Df YU Dyg. The boundary of each disk is thus composed of nodes
and boundary intervals: the open intervals between the nodes or if there are no nodes, a whole

circle.

* For each disk in {DS,D‘f }U Dy a choice of boundary interval, here marked graphically by a

red rectangle.
Each affine tangle S is defined up to affine isotopy of Df \ Dg c R

Remark. As with planar tangles, one can consider variants of affine tangles that have additional

structure, for example, by imposing a checker-board shading.

Annular tangles are affine tangles defined up to ambient isotopy. Accordingly, annular tangles
share all the features of affine tangles. Unlike affine tangles, two annular tangles that differ by a relative
rotation of one’s boundary disks are equivalent. Accordingly, the two tangles in (2.48]) are equivalent

as annular tangles.

Remark. As both annular tangles and planar tangles are defined up to ambient isotopy, annular tangles
can be defined as a planar tangle with a distinguished internal disk. This is the definition of annular

tangles presented in [40].

We proceed by presenting the affine case only and note that the annular case can be obtained as a
quotient. An m-tangle is a planar tangle T such that n(Dg) = m, while an (m,n)-affine tangle is an
affine tangle T such that n(Dg) =m and n(D{) =n. An (m,n)-affine tangle 7" can be composed with
an ([, m)-affine tangle S by replacing the inner disk of 7" with S, removing the shared boundary and
marked interval, and identifying the image, which we denote by 7 o S, with an (/,n)-affine tangle. A

tangle, affine or otherwise, is called P-labelled if each input disk D is filled with a vector in P, (p).

Remark. While similar, we highlight that a P-labelled m-tangle T is distinct from the image of the
multilinear map P7(vy,...,v,) where vy,..., v, are the vectors corresponding to the P-labelling. The
image P7(vy,...,v;) is the identification of the P-labelled tangle T as an element of the vector space

P, given the action of T. This motivates the following map.

Let 7,,(P) denote the vector space spanned by the set of all P-labelled m-tangles. For each m € Ny,

define the linear map
Tw:Tm(P) > Py, (2.49)

that acts as by identifying each P-labelled m-tangle T with the image of the map P7(vy,...,v;) where
Vi,...,v; are the vectors corresponding to the P-labelling. Let A, ,(P) denote the vector space

spanned by the set of all P-labelled (m,n)-affine tangles, and for each m,n, o € Ny, define the linear
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map
n
\Pmo,n  Tmns20 (P) = Apn(P), o {L'V ‘_5}0 > s (2.50)
m

For any S € A, ,(P) there exists an 0 € Ny and a T € 740420 (A) such that S = ‘I’,Sf L(T), where the o
and the 7" are not necessarily unique [41].
We are now in a position to define a vector space, spanned by P-labelled (m,n)-affine tangles, that

satisfies the relations within the planar algebra P. In preparation, we define
Wi = {a € Apn(P)|a =P, (b), b € Ker(Tpinzo)} (2.51)
and note that ‘W, , is a vector subspace of A, ,(P). For each m,n € Ny, we define
QP = Apn(P) Wi, (2.52)

and identify QP,, , with the vector space of interest.

To each affine tangle 7', we associate the linear |Dr|-ary operator

Pr: X Pyp) = QPypr) yor): (2.53)
DeDr

which acts by replacing each of the input disks D of T" with elements from the vector space Py (p) in

such a way that the nodes and the marking of both are aligned, for example:
Ll V]

2 2
T= /( -).2: Pr(vi,vo,v3) = X -)M‘ €QPsgs. (2.54)

ra N\ N NN\

/ /

Analogous to the partial trace tangles (2.24), for each n € Ny, we introduce the affine partial trace

tangle

s PT(a) : PZn - QPn—l,n—l- (255)

We proceed by defining some categories of interest.
Definition 2.6.2. Denote by Aff(P) the affine category of a planar algebra P where
ObjAPf(P) = N, MorAff(P) (m,n) = QPm,n, (2.56)

for each m,n € Ny, and the composition of morphisms is defined as the composition of affine tangles.
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Denote by Vect the category of vector spaces.

Definition 2.6.3. An affine representation of a planar algebra P is a collection of vector spaces

(Vi)nen, and a functor
F Aﬂ:(P) — Vect, (257)

such that Fo(n) =V, for all n € Ny, and F)(x) € Moryect(Vin, Vyy) is a linear map for all x € QP,, ,,

and all m,n € Ny.

Each planar algebra P admits a ‘trivial’ affine representation induced by itself, where V,, = P,, for all

n € Ny, and where
Fi(x):V, >V, (2.58)

acts by treating the central disk of x as an input disk, inputting vectors from V,, and identifying the
image in V), for all x € QP,,, and all m,n € Ny. To demonstrate the action of the affine tangles as

linear maps, we present the example

V]

N e

/

(2.59)

where x € QP43 and v € V4. Another representation is induced by the affine tangles themselves.
Define QP := U e, QP> set V,, = QP for all n € Ny, and let Fi(x) act on vectors in V,, via the
composition of affine tangles for all x € QP,, ,. The action of affine tangles as linear maps is inherited

by the composition of tangles, for example

\V /
~— Ny Ny
\ £ |V1\ £ V] klvz
%] 1
F](.x)(v): ] 1] (.\ :6- (Tl vy X =1

Po M T O

(2.60)

where x € QP44 and v € V.

Define the following (n,n)-affine tangles

) eSS
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each having n ‘spokes’, and let Q¥ denote the composition of Q! with itself k times, with k € N, it
follows that

QfoQl =k, Vk,leZ. (2.62)

Note that Q™" and QF are equivalent as annular tangles. An affine representation of P is called
annular if the linear map F;(Q!) acts as the identity for all n € N. Affine tangles within an annular
representation act as if they are annular tangles. It follows from the ambient isotopy of planar algebras
that the trivial representation is annular, while the representation induced by affine tangles is not.

Let P be an involutive planar algebra, and denote by - the involution that acts on planar tangles,
and by -* the involution that acts on vectors. An equivalent to - for affine tangles (which we also
denote by -*) is defined by reflecting the affine tangle about a circle with the same centre as the annulus

but with a larger radius, for example:

| ;) (T.\;.f) .

The involutions - and -*, induce the involution * : A, ,(P) — A, (P) that acts by -* on the affine
tangle and by -* on the P-labels. As P is involutive, we have (‘W) ,)* = W, the involution passes to
the quotient * : QP,, , — QP (P), and it follows that Aff(P) is a x-category [41]. By construction,

we have

Pr(vi,...,vjp, )" = Pﬁ(VT,...,VTDT'), (2.64)

for all affine tangles T, and for all (vi,...,v|p;|) € Xpep, Py(p)- Denote by Hilb the category of
Hilbert spaces.

Definition 2.6.4. A Hilbert representation of an involutive planar algebra P is a collection of Hilbert

spaces (Vy)nen, and a functor
F : Aff(P) — Hilb, (2.65)
such that Fy(n) =V, for all n € Ny, and Fi(x) € Mory;i,(Vin, V) is a linear map satisfying
v, Fr(x)(W))n = (F1(x)*(v), W)m, (2.66)
forallx € QP p, allv €V, and w €V, and all m,n € Ny.

We note that the trivial representation of a subfactor planar algebra is a Hilbert representation [40,41].
It will be convenient, when expressing affine tangles diagrammatically, to view them as existing
within the plane. To this end, we define the following procedure to be applied to each affine tangle: cut

from the inner disk marking to the outer disk marking, and orient the diagram such that the inner and
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outer edges are horizontal, remain perpendicular to the cut edges (which are identified), and become

the upper and lower edges respectively. This procedure is best illustrated diagrammatically:

- — (2.67)

The composition of affine tangles expressed within the plane amounts to the stacking of diagrams, for

example

o o = . (2.68)

Having defined many of the planar-algebraic prerequisites, the following chapter develops the so-called

homogeneous Yang—Baxter integrability framework.
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Chapter 3

Integrable models

In this chapter, we develop a planar-algebraic framework for two-dimensional integrable models
described by a transfer operator. Given the observations of Section [2.5] it suffices to present the
framework for unshaded planar algebras. We begin by defining two types of transfer operators; one
that generates a model on the strip and another that generates a model on the cylinder. A model
described by a transfer operator T (u) is integrable if it satisfies [T'(u),T(v)] =0 for all u and v on a
suitable domain. A finite set of sufficient conditions, including generalised Yang—Baxter equations,
is then presented for each of the transfer operators which, if satisfied, implies that the corresponding
model is integrable. We then introduce an identity point as a value of the parameter u in which the
transfer operator 7' (u) is proportional to an invertible element of the algebra and perform a power
series expansion of the transfer operator about this point to define the Hamiltonians of the model.
Within this framework, we present a characterisation of the integrals of motion associated with an
integrable model and distinguish these from the aforementioned Hamiltonians. We conclude this

chapter by introducing the notion of polynomial integrability.

3.1 Transfer operators

For the planar-algebraic models considered here, the transfer operator takes a central place. It is the
element of the algebra that generates each configuration of the model and assigns the appropriate
weight. Accordingly, the partition function of the model is a function of the transfer operator, the
details of which depend on the specific boundary conditions. Taking, for example, periodic boundary
conditions, the partition function is the trace of the transfer operator raised to some power. In this case,
a solution of the model amounts to determining the eigenvalues of the transfer operator, from which the
partition function and other useful properties of the model can be determined. In this section, for each
planar algebra, we define two transfer operators: one on the strip called the homogeneous double-row

transfer operator and one on the cylinder called the homogeneous single-row transfer operator.
37
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For each n € N, we define the transfer tangle and the affine transfer tangle as

|
YL en™

N

/ - B - F =S - \ 1
Trgd) = (] | | | ' . T,,SS) = ( s : s (3'1)

—E - P et

|l
respectively. We also introduce the embedding tangles
(1 2 ._ \}
E, ;=72 |- ¢ S E E="]-]" -\, (3.2)
1 n 1 / \ n

where j=1,...,nandi=1,...,n—1, respectively, and denote by B, a basis for P;,. Define the K-

and R-operators as the parameterised elements

K(u) := Z ko(wa,  R(u):= Z ra(wa, K@) = Z *a(u)a, (3.3)

acB; acB) acB;

where k,, ra,za : Q — C. We refer to u parameterising the operators in (3.3)), as the corresponding

spectral parameter.

Remark. The set Q indicates a domain over which R(u), K (u), and K (u) are well-defined. Typically,

Q contains an open set in C, allowing power-series expansions of R(u), K (u), and K (u).

We now define the homogeneous double-row and homogeneous single-row transfer operators as
T\ (u) =P (K(u),R R(u),K T (u) =P (R R 3.4
n (I/t) = Trfd)( (I/l), (I/t),..., (I/l), (u))’ n (l/t) = T,ES)( (I/t),..., (I/t)), (3.4)

respectively, where for the homogeneous double-row transfer operator, K(u) is placed in the left-
most disk and K (u) is placed in the right-most disk of the transfer tangle. Accordingly, we identify
Tn(d) (u) as an element of P,,, and Tn(s) (u) as an element of QP,, ,. Expressing the K- and R-operators

diagrammatically as

I \._/ _ I
K(u) = -th , R(u) = /-u\, K(u) = -blt , (3.5)
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the homogeneous double-row transfer operator takes the diagrammatic form

(M
Uy
\ / }
U
T
I I I Ty
U — U == U " \
rsnos L INEO
U —u - ==‘u /
| | | Lot
\
Y
N
which is suggestive of the familiar partial-trace expression
T, () = Py (Ri () Ry (1) Kips1 () R (1) - Ry () K (w)). (3.7)

where

Ki(u) =Py (K@),  Ri(u):=Pge) (R()), Kne1(u) =P o) (K(u)). (3.8)

n+l,i n+l,n+1

A similar diagrammatic expression exists for the homogeneous single-row transfer operator

AP e

|
(S) . 7 e L R
T (u) = =u —u - = = 0 , (3.9)

where we have mapped to the plane using the procedure presented in (2.67)), which again, suggests the

familiar partial-trace expression
1, (u) = P (Ri (1) -+ R (). (3.10)

We highlight that the product of m homogeneous double-row transfer operators T,fd) (u)™ generates
a 2m X n square lattice on the strip with reflection boundary conditions, similarly, the product of m

homogeneous single-row transfer operators Tn(s) (u)™ generates a m X n square lattice on the cylinder.

Remark. In (3.3) and throughout, operators with different colours indicate that the associated
parameterisations are distinct. More general transfer operators may be constructed, for example
by including ‘inhomogeneities’ at the level of the R-operator. Spectral inhomogeneities are thus
introduced by varying the spectral parameter of the R-operator depending on its position within the
transfer tangle, while algebraic inhomogeneities are introduced by varying the parameterisation in
the construction of the R-operator (as an element of A;) depending on its position within the transfer
tangle, thereby introducing more than one R-operator. We refer to transfer operators with any of these
features as inhomogeneous. However, as we will exclusively consider homogeneous transfer operators

(consisting of a single u-parameterised R-operator), we often omit the qualifier “homogeneous”.
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For each n € N, the basic rotation tangles are introduced as

NSNS

v av

each having n ‘spokes’, while r,, . denotes the composition of r,, 1 with itself k times, with k € N, so

(3.11)

Tk © Tl = Tkt Vk,l€Z. (3.12)

Here, r,, 0 denotes the unshaded identity tangle, see (2.17). We note that if P, has no null vectors, it
follows from Proposition that P, | acts as the identity and that P, ,, is invertible for all k € N.
Using (3.11])), the R- and K-operators (3.3) are said to be crossing symmetric if

Pr,, (K(w)) =k (u)K (ck (u)), Pry, (R(u) = Er(u)R(cr(u)), Py, (K(u)) = c(u)K (cg(u))
(3.13)

for some scalar functions ¢k, ck,€r,Cr,Cx,cx : € — Csuch that P, ,(K(u)) = K(u), P, ,(R(u)) =

R(u) and P,,, (K (1)) = K (1). The point u;s, € Q is an isotropic point if
Prz,l (K(uiso)) = K(ujso), Pr4,1 (R(uiso)) = R(uiso), Prz,l (E(uiso)) = E(uiso)- (3.14)

In the following, suppose that (P,).cn, is an involutive planar algebra with -T'and -* defined as in
Section[2.3] The K- and R-operators are self-adjoint if

K(u)* =K(u), R(u)* = R(u), Ku)* =K(u). (3.15)

The self-adjointness of the constituent K- and R-operators extends to the double-row transfer operator

itself, as detailed in the following.

Proposition 3.1.1. If the R- and K-operators are self-adjoint with respect to the involution -*, then so

is the transfer operator Tn(d) (u) for each n € N.

Proof. Using (2.30), we have
T, ()" =Py, (K ()", R(w)", ..., R(w)*, K ()") = T, (w), (3.16)

where the second equality follows from (Tn(d))T = Tn(d) and the self-adjointness of the R- and K-

operators. O

We denote the regular representation of Py, by
On - Py, — End(Py,). (3.17)

Corollary 3.1.2. Let (P,),en, be an unshaded subfactor planar algebra, and suppose the R- and
K-operators are self-adjoint with respect to the involution -*. Then, pn(T,fd) (u)) is diagonalisable for
all n € N.
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Proof. Proposition and the self-adjointness of the R- and K-operators imply that T,fd)(u) is

self-adjoint. By the spectral theorem, pn(Tn(d) (u)) is therefore diagonalisable. O

A similar argument can be made for the single-row transfer operator by requiring the R-operator to

be both self-adjoint and possess a particular form of crossing symmetry.

Proposition 3.1.3. If the R-operator is self-adjoint and satisfies P,, , (R(u)) = R(u), then T,ES) (u) is
self-adjoint for all n € N.

Proof. Using (2.64)), we have

I I I
T ()* =P o (R@) s, Rw)7) =P o (R(w), .. R(w)) =~ —u <= (3.18)

L3 L3 L3

|
where the second equality follows from the self-adjointness of the R-operator. Applying the crossing

symmetry, we have
(5) L .- (s)
T, (u) = =‘u —"u---"u ==T," (u). (3.19)
O
We denote the regular representation of V,, by
on 2V, = End(V,). (3.20)

Corollary 3.1.4. Let (V,)nen, be a Hilbert representation of an involutive planar algebra, and suppose
the R-operator is self-adjoint and satisfies P, , (R(u)) = R(u). Then, pn(Tn(S) (u)) is diagonalisable
foralln eN.

Remark. When referring to a transfer operator in general i.e. not specifically T,gd) (u) or Tn(s) (u), we

will omit the superscript and simply write 7}, (u).

3.2 Baxterisation and integrability

Having introduced planar-algebraic models generally, the remainder of this chapter is devoted to
analysing models whose transfer operator is an element of a unital associative algebra. In light of
Proposition [2.2.3| we restrict to planar algebras (Pp)nen, Where Po,—; = {0} for all n € N, and where
P>, has no null vectors for all n € Ny. To distinguish such a planar algebra from the general discussion
above, we will use the notation (A,)en,, Where A, = P2,. Denote by B, a basis for A,, without loss
of generality, we may assume that 1,, € B,, (which is the unshaded version of (2.27)), and for later

convenience we introduce
B, :=B,\{1,}. (3.21)
A model described by the transfer operator 7, (u) is integrable on Q if

[T, (w),T,(v)] =0, Yu,veQ, (3.22)
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where Q C C is a suitable domain. A common strategy in endowing a model with integrability is to
parameterise the corresponding transfer operator to satisfy a set of local relations that imply (3.22).
For the case of the transfer operators T,fd) (u) and T,Ss) (u), this involves fixing the parameterisations of
the constituent R- and K-operators such that a set of sufficient conditions is satisfied, which in some
instances, include a Yang—Baxter equation (YBE).

For the set of sufficient conditions considered below, the set implying the commutativity of T,Ss) (u)
is often a subset of those implying the commutativity of T,Ed) (u). In either case, we allow for the R-
operator in the centre of the YBE to be parameterised differently from the two peripheral R-operators.
This is more general than what is typically presented in the literature, where the peripheral R-operators
R(u) and R(v), have the same parameterisation as the central operator R (u +v), see for example (2.41])
and (2.42). We will refer to the central R-operator in a Yang—Baxter equation as the auxiliary operator.

The relations in Proposition [3.2.1] and Proposition [3.2.2] are formulated diagrammatically, but are
readily recast in the language of planar algebras. Importantly, each of the relations in (3.25)—(3.26) and
(3:30)—(3.32) is local in the sense that there exists an ambient disk with a suitable marking, relative to

which it holds. In fact, the invertibility of the linear maps P associated with the rotation tangles

Fn,+k

(3.T1)), implies that the specific marking of the ambient planar tangle is immaterial. To illustrate

NSNS NS NS
/NN /NN

where a, b € A, with the equalities statements in A,,.

(3.23)

Proposition 3.2.1. Let the R-operator parameterisation in be given, and suppose there exist

= Z va(u,v)a, = Z v, (u,v)a, (3.24)

aeB, aeB,

where y, and'y, are scalar functions defined for all u,v €  C C, such that the following two sets of

relations are satisfied:

e [nversion identities (Inv)

\/\/’ - N\ \rr
= ' (3.25)
./\/\ —_— A A
e Yang—Baxter equation (YBE)
OI OI
NV T TEN-
= ; (3.26)
SN - =N

Then, [T,Es)(u),T,fs)(v)] =0 for all u,v € Q.
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Proof. Using the following diagrammatic relations

|
NN == N U~
TI/ES‘) (u)TIEY) (V) (I:) { { I I o I (YgE) { I I . I { (327)
-~ Ny —u -y - v o—y ety N
| | | | | |
OI OI OI OI OI OI
\/\/u—u---u—nv—u—u---u—
= ' ' I I I (I:) I I I — T}’SS)(V)T;'ES) (l/l), (328)
NN = ey - =y ="y -y =
| | | | | |
we arrive at the desired result. O

Now, the corresponding result for the double-row transfer operator.

Proposition 3.2.2. Let the parameterisations in be given, and suppose there exist

\N 7/ i \N_/ (i
Jil= a3 Y v ), (3.29)
a€B; a€B;
where yg) and yﬁf), i =1,2,3, are scalar functions defined for all u,v € Q C C, such that the following
three sets of relations are satisfied:

e [nversion identities (Invl - Inv3)
Ve Ve

() g = (l = 1,2, 3) (330)
NN\ —

e Yang—Baxter equations (YBEI - YBE3)

Ve RN N V- tuN "N/ N
Tl o= | 3 | = | 3 | 5 = 3
A AN SNu= =N R A
| | | | | |
(3.31)

e Boundary Yang—Baxter equations (BYBEs)

Vs 7N\ -\ NN
Vi uv 3 'y 13 U
] = 4 IT = 'Z (3.32)
M- N— ~—~1 —
us w2 Vi ) Y Y
N N—— A 4 4
where
\ 7 \N_/ _
J4 =) v e, Ji( =) v (3.33)
aeB; aeB,

Then, [T,Sd)(u),T,fd)(v)] =0 for all u,v € Q.
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Proof. Using the following familiar manipulations [42],

| | | | | | | | |
PR NS LER N V=V~ YV —V ==y
RN RIS ?' T
Vv =y =y N /\/v—v---v /u EEERN
LOwnwm= ] e | e e | L | ]
o~ |V\‘u—u---u |\v Vo=t /l
0 I I R TORS | | e Cwe [ ] | b
Ny —Cu -y~ ;u—u---'u/ U —u ey
| | | | | | | | |
| | | | | |
.v—.v---‘v\ V—y ==V
Vv | [ ] & V) I I I \
(Iv2) !/— th T th T th \l (YBE2) !/_‘li _Jll ."‘lll ﬁl
= 1] = 1]
M~ o~ A= N A=
o X [l w XX
N N\ ety S N )y iy S
| | | | | |
| | | | | |
/\/V—‘I""i\/\ /\/\/’i—’l‘""l‘\
tu
N ) = )" N V) — Y hm
(BYBES) // l'It lit ’/It \I (YBE3) // ‘I) ‘I) o ‘I) \I
|;u—u---u—/| |;u—u---u/l
V3 I ) @ R R
N—=>* —% -y — N— —% -y S
| | | | | |
| | | | | |
U — U == =
P o6 Re o0
/\/u—u ==U U e Y == Y
Y Gl - - =P w), (3.34)
|\/\‘v—v---‘v\ PR NS LER N
v | [ = e | [ ] o
Y —=ty oty S Ny =ty ety S
| | | | | |

we arrive at the desired result. In (3.34), YBE4 and Inv4 refer respectively to YBEI and Inv1 with u
and v interchanged and 1 replaced by 4, c.f. (3.33). |

Remark. We denote the ‘auxiliary’ R-operators in (3.29) by

Y=Y vwva  Yiwv) =) 5 wra, (3.35)

aceBy a€B;
and refer to them as Y-operators, as short for “YBE operators’. The Y-operators in (3.24) are identified
with Y5 (u,v) and Y, (u,v), respectively. Since the Y-operators need not be expressible in terms of
the R-operators themselves, we refer to the YBEs (3.26) and (3.31)), and boundary YBEs (3.32) as

generalised. Moreover, we stress that the auxiliary operators do not necessarily appear in either of
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the transfer operators. In many ways, the auxiliary operators are a means to an end in establishing

commutativity. We refer to YBEI under the specialisation Y (#,v) = R(uv) as the standard YBE.

Traditionally, a model is Yang—Baxter integrable if the R- and K-operators satisfy a set of local
relations, including a YBE, that imply (3.22)). Proposition [3.2.1]and Proposition offer a proto-
typical set of such relations for the homogeneous single-row transfer operator and the homogeneous
double-row transfer operator, respectively. We accordingly refer to the ensuing integrability as homo-
geneous Yang—Baxter integrability. Generalising a notion introduced in [38]], the R- and K-operators
are said to provide a Baxterisation if they give rise to a Yang—Baxter integrable model. In our case, we
refer to a homogeneous Baxterisation as one in which the R- and K-operators satisfy the local relations
in Proposition [3.2.2] Under mild conditions, a homogeneous Baxterisation will also satisfy the local
relations of Proposition [3.2.1] and the corresponding parameterisations of the R- and K-operators give

rise to two integrable models, one described by Tn(d) (1) and another by T,Ss) (u).

We view a Baxterisation as specious if
K(u)=k(wai,  Rw)=r(waz, K@) =ku)a, (3.36)
where ai,a; € Ay, a» € A, and k,r,z : Q — C, because, in that case, we have

Tn(d)(u) = k(uW)k(u)r* (u)a, a=P.wl(ar,az,...,a2,a)) € Ay, (3.37)

Tn(s)(u) =r'(u)a, a=Pre (az,...,a2) € QA (3.38)

from which trivially follows for both Tn(d)(u) and T,fs)(u). In the following, we will disre-
gard specious Baxterisations. We also say that a planar algebra (A,),cn, encodes the Yang—Baxter
integrability if no proper planar subalgebra can take its place.

We say that a planar algebra (A,),en, encodes the homogeneous Yang—Baxter integrability of
(i) a model described by the double-row transfer operator if {K (1), K (1) |u € Q} and {R(u) |u € Q}
together with the action of planar tangles generate the full vector spaces A and A,, respectively, and
(i1) a model described by the single-row transfer operator if {R(u) |u € Q} together with the action of

planar tangles generate the full vector space Aj.

3.3 Sklyanin’s formulation

The partial traces in and are diagrammatic in origin, accordingly, there is not necessarily a
vector space over which the trace is being performed. This is contrasted with the standard formulation
of both single-row and double-row transfer operators [43-45], whereby there is a natural tensorial
decomposition of the constituent R-operators, which facilitates the identification of an auxiliary space

over which the trace acts. Under particular circumstances, one can identify the auxiliary vector space.
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For each m,n € Ny, the quadratic tangle
W
Knpi=1» 11 12

7S

\

, Pk, : AnXA, — Apins (3.39)

m,n *

induces a tensor product between A, and A,, within A,,,. For ease of notation, foru € A,, and v € A,,
we write u®v =Py, (u,v) € Ay An R-operator is called separable if it can be decomposed as an

element of A; ® Ay, diagrammatically, we have

R(u) = -u = > Ra, az(u) (3.40)

ap,ar€B

In this case, the auxiliary vector space of the double-row transfer operator is thus given by the left-most

channel, here coloured blue

|

u
—l m =
|

| |
/Jl Uu
W) = (us | [ ). (3.41)
u u/
| |

For the single-row transfer operator with R-operator as in (3.40)), there exists no such identification of
the auxiliary channel.

A planar algebra is called braided, respectively symmetric if each vector space A, admits of
a representation of the n-strand braid, respectively symmetric, group algebra. Specialising to the

symmetric case and applying the permutation operator to the R-operator, we define

R(u) = -u = Z R, 0, (1) m - (3.42)

ay,a€eB|

Taking R(u) as the R-operator for both transfer operators, we have

S -

83

~ (5) I I I
(n), T, (w)y= ="n —"u - —, (3.43)
/ | | |

L4

|
Vs

¥(d
T ) = (us |
N
|

—=(— =(—

— S —

where the auxiliary vector space is threaded through the transfer operator in each case — reminiscent of
the standard formulation [43},44]. In fact, for the double-row transfer operator, by combining both

(3.40) and (3.42)), the auxiliary space can be threaded through any of the intermediate channels

| | | |
A — e~ A= ==~
W | | | | fu), o, (us | | - | | U (3.44)
\ﬁ ﬁ - 'ﬁ u/ \ol:t/ _'u ...'u —'l/t/
| | | |

Note that the commutativity of the operator in (3.41)), likewise of the double-row transfer operator in

(3.43), do not necessarily imply the commutativity of any of the intermediate operators in (3.44).
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3.4 Hamiltonian limits

A point u, € C is called an identity point of T,,(u) if T,,(u.) is proportional to a left- or right-invertible
element in A,. About each identity point for which the proportionality is nonzero, we perform a power
series expansion of the transfer operator to define the associated Hamiltonian operators. As will be
clear in the following, two distinct identity points from the same transfer operator may give rise to two
different sets of Hamiltonian operators.

Here, we present two sets of sufficient conditions to identify identity points, one for each of the

transfer operators Tn(d) (u) and T,§S) (u). In preparation, we define

7\
g: Q— A, ur— (us  su ), (3.45)

\—

where € C C is a suitable domain, and we have expressed the image in our standard diagrammatic

representation cf. (3.3). Equivalently, we may write
g(u) =Py om, (K(u),f(u)) =Piom, (E(u),K(u)) (3.46)
Composing g with the evaluation map (2.20), we define the scalar function
g:=eog: Q—-C. (3.47)
We now present sufficient conditions for the double-row transfer operator.

Proposition 3.4.1. Let u.. € Q and suppose there exist 1, ,r,, € C such that

e e —HN ~
U,n | = lu* Uy or | Uy, — ru* il . (3-48)
NSty — - =, i

| |
Then, u. is an identity point, with T,fd)(u*) =17 §(u.)1, or T,,fd)(u*) =1} §(u.)1,, respectively.

Proof. Suppose the left relation in (3.48)) holds, then

“ —@ -G~ A~ ~
Tn (u*) = (U | | | T— lu* Uy | | Wy = lu* Uss W, = lu*g(u*)]ln
N — = N -, \—
| | | | |
(3.49)
A similar argument applies if the right relation holds. O

Remark. If both relations in (3.48) are true and if §(u.) # 0, then I"~*rk ="Kk for all k,k’ €

{0,1,...,n}, hence [, =r,,.

The sufficient conditions for the single-row transfer operator are as follows.
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Proposition 3.4.2. Let u, € Q and suppose there exist m,_, p,. € C such that

| |
—H)— =m, ), &) =p, - 3.50
| my,, (— or : p *ﬁ ( )

Then, u., is an identity point, with Tn(s)(u*) = mZ*le or T,Es)(u*) = pu.Qy, respectively.

Proof. Suppose the left relation in (3.50) holds, then

| | |
T,f‘*’w*):-m—u*---u*-:mﬁ*-)(f)r') (= (3.5
| | |

Similar arguments apply if the right relation holds. O

Now suppose u,. is an identity point of the transfer operator 7, () where T,,(u) ¢ C1,,, and that Q
contains an open subset of C containing u.. It follows that there exists a k € N and a H,,,,, ¢ C1,, such
that

T (t.+€) = Ty () (Pt (€) Lo+ €y + O, (3.52)

where pj_; is a polynomial of degree at most k — 1 with p;_;(0) = 1, and we have assumed T}, (u..)
has a right-inverse, if 7,,(u.) has a left-inverse only, we can rewrite (3.52)) by factoring 7}, (u.) from
the right. The element H,, ,, is considered a Hamiltonian associated with the identity point u. and the

corresponding transfer operator. We note that this Hamiltonian can be expressed alternatively as

1 1 0%
H,, =————T, 3.53
o Ta(u) k! uk () u=u, ( )

where again, we have assumed that 7}, (u.) has a right-inverse if this is not valid, write (3.53)) with the
inverse transfer operator to the right of the derivative. In any case, there exists a sx € C and a nonzero

hp.u, € spans(B;,) such that
Hyy, =sily+hpy,. (3.54)
Absorbing the identity term of the Hamiltonian in (3.52)), we define
(€)= pr-1(€) +sx€, (3.55)
and can write (3.52)) as
Tt +€) = T3 (0) (B (€) L+ €, +O(F)), (3.56)

where py is a polynomial with degree at most k. Up to rescaling, we refer to the element 4,,,, as the
principal Hamiltonian associated with the identity point u, and the corresponding transfer operator.
When unlikely to cause confusion, we may choose to omit one of the subscripts and write &, or h,
instead of h,_,,. Note that distinct identity points of the same transfer operator may completely change

the terms appearing in the power series expansion, which in turn, may give rise to distinct principal
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Hamiltonians. Likewise, transfer operators parameterised by different R-operators may also give rise

to distinct identity points and principal Hamiltonians.

Remark. In the case of the double-row transfer operator, if either relation in (3.48) holds and
T,Ed) (u.) = 0, the original transfer operator may be renormalised such that the limit u — u, yields a

nonzero scalar multiple of the identity. This was illustrated in [46]] and will be revisited in Section

If the transfer operator 7,,(u) describes an integrable model for u € Q, then we have the familiar

commutation relations

(M., Tn(u)] = [Hpu, , Tn(u)] =0, Y u.,ucQ. (3.57)

3.5 Hamiltonians and integrals of motion

Consider a model whose underlying algebraic structure is given by an associative algebra ‘A with a
basis B, and denote by 7' (u) € A the transfer operator describing a model for all u € Q where Q C C

is a suitable domain. Expressing the transfer operator in terms of elements in the basis B, we have

T(u) = Z t.(u)a, (3.58)

aeB

where 7, : Q — C for each a € B. Define the space of scalar functions
F :=spang{t, : Q— C|a € B} (3.59)

and denote by Br a basis for . As an alternative to (3.58)), we can express the transfer operator in

terms of elements from the basis Br

T(u) = Z fway, (3.60)

feBr

where ar € A for each f € Br. Introducing the space of Hamiltonians and corresponding the A-

subalgebra
Hr :=spanc{ayr| f € Br}, Ar = (Hr)x, (3.61)

where we note that dimHy < dim ¥ and T (u)" € Ay for all n € N.

Each nonzero element /& € Hy that is not simply proportional to the identity (for A unital) could
conceivably be considered as the Hamiltonian of the model, while physical considerations may guide
the selection. Accordingly, we refer to elements of Hr as Hamiltonians and preferred choices, for
example, h,,, in (3.54)), as principal Hamiltonians.

In general, we denote the centraliser of @ in A by C#(a). For a Hamiltonian & € Hy, we view
Ca(h) as the subalgebra of all h-conserved quantities of the model. If the model is integrable in the

sense that

[T(u),T(v)] =0, Yu,veQ, (3.62)
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it follows that A7 is commutative, and given a choice of &, every Hamiltonian is a h-conserved
quantity. In general, the space of all s#-conserved quantities is larger than the space of Hamiltonians
as we have the inclusion Hyr C C#(h). Finally, we consider the centre of C#(Hr), which we denote
by Z(Ca(Hr)), and refer to it as the subalgebra of the integrals of motion (IOM) of the model. To

summarise, we have the following sequence of algebras relevant to the integrable model
Ar € Z(Ca(Hr)) € Ca(Hr) € Ca(h) € A. (3.63)

Let us take a moment to unpack the terminology of IOM. Typically the transfer operator corre-
sponding to an integrable model is considered the generating function of the IOM of the model. In
this case, the space of IOM is restricted to Hy. In our construction, the algebra A endows the model
with algebraic structure, it is thus natural to extend the notion of IOM beyond those generated by the
transfer operator, to all elements of the algebra A commuting with all of the Hamiltonians H7, that
themselves all mutually commute. In the following, we consider a situation where there exists a single,

algebraically independent Hamiltonian.

3.6 Polynomial integrability

Let A denote an associative algebra and {T'(«) € A |u € Q} a one parameter family of operators,
where Q C C. If there exists a b € A such that

T(u) € C[b], VueQ, (3.64)

then [T (u),T(v)] = 0 trivially follows for all u,v € Q. Suppose the family corresponds to the transfer
operator of a model, for example, {7,,(u) € A, |u € Q} in the planar-algebraic setting defined above. If
there exists some b,, € A, such that 7, (u) satisfies (3.64]), we say that the transfer operator is polyno-
mialisable, the model is polynomially integrable and that b,, generates the polynomial integrability.
From an algebraic perspective, a polynomially integrable model may thus be considered as trivially
integrable.

It may seem unreasonable to suppose that there exist physically relevant models exhibiting polyno-
mial integrability. However, this is exactly what we find. In fact, for the models that we analyse see
Chapter 6] it is the Hamiltonian elements defined in Section [3.4]that play the role of b, in which case
the transfer operator is polynomial in the Hamiltonian.

In preparation for this analysis, we devote the following chapter. The main result (Proposition
is a classification of commuting one parameter families {T'(u) € A |u € Q} that satisfy (3.64)
with A a semisimple algebra. A simple corollary of this classification (Corollary #.2.3)) serves to

indicate the ubiquity of polynomial integrability among integrable models.



3.6. POLYNOMIAL INTEGRABILITY

51



Components of the following publication have been incorporated into Chapter
[2] X. Poncini, J. Rasmussen, Integrability of planar-algebraic models, J. Stat. Mech. (2023) 073101,
arXiv:2206.14462 [math-ph].



Chapter 4

Algebraic integrability

In this chapter, we characterise polynomial integrability in a general algebraic setting. We begin by
presenting necessary and sufficient conditions for a parameter-dependent element of a matrix algebra to
be expressible as a polynomial in another parameter-independent element. This result is then extended
to elements within semisimple algebras. We then consider spectral properties of parameter-dependent
linear operators, in particular, we introduce a notion of spurious degeneracies and show that there can
only exist finitely many of these. Finally, we review some basic properties of cellular algebras, which

we cast in a diagrammatic representation.

4.1 Block Toeplitz

We begin this section by introducing some notations. Denote by M, (R) the set of all n X n matrices
whose entries are elements of the set R. For z € M,,(C), the centraliser of z in M,,(C) is denoted by
C(z). We denote by R[x] the set of polynomials in x with coefficients in the set R, similarly, we denote
by R(x) the set of rational functions in x. For us, x may be an indeterminate or an algebraic element,
for example, x € M,,(C) implies that C[x] and C(x) are algebras that admit a finite-dimensional basis.
Let ¢, and m, denote the characteristic and minimal polynomials of z € M,,(C) respectively, and note
that [47]]

c,=m; — C(z) =CJz]. 4.1)

A z € M, (C) is called non-derogatory if it satisfies the equivalent conditions above. Each of the
equivalent statements (4.1)) is basis independent, it follows that any matrix similar to a non-derogatory
matrix is itself non-derogatory. This notion naturally extends to linear operators on C", such an operator
is non-derogatory if there exists a basis with respect to which the corresponding matrix representation

is non-derogatory.

A matrix J is in Jordan canonical form (JCF) if it is block-diagonal with Jordan blocks along the
53
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diagonal, i.e. J = diag(J,, (41),...,J,(4s)), where a Jordan block is given by

(A 1 0 ... 0]
0 4 1
Jo(2) = 0 | e M.(R). (4.2)
0 ... 0 a1
(0 ... 0 0 2]

For an analytic function f, taking J as the argument, we have f(J) = diag(f (J/r,(11)), ..., f(Jr (15))),

where

[ ” (r-1) 1
fQ o 52
0  f@ [ 5
fU@ = s |, (4.3)
0 f@ f@
0 0 f(
An upper-triangular Toeplitz matrix can be characterised by the tuple a, = (ay,a»,...,a,) in R*",
and is given by
a a ... a
T@)=| Y M L (4.4)
23
0 0 al

Accordingly, a block-diagonal upper-triangular Toeplitz matrix (BT), it given by diag (T(aL1 ] ) I T(al‘:] )) ,

and we say that it has a block partitioning of r1,...,rs. Indeed, the block partitioning of a given BT

matrix is not unique, for our purposes it is often sufficient that there exists a block partitioning.

Lemma 4.1.1. There exists a b € M, (C) in JCF such that B(x) € C(x)[b] if and only if B(x) €
M, (C(x)) is BT.

Proof. First “=”. There exists an x-dependent polynomial p,, such that B(x) = p,(b). As b is in JCF
it follows from (4.3) that B(x) is BT.

Now “&”. Suppose a block partitioning of B(x) is given by ry,...,r;, let
b =diag(J,, (1),...,Jr, (1)) (4.5)

where A1,... A, € C are all distinct. By construction b is non-derogatory and satisfies [b, B(x)] =0. It
follows from that B(x) € C(x)[b]. |

Proposition 4.1.2. Suppose B(x) € M, (C(x)). There exists a b € M,,(C) such that B(x) € C(x)[b]
if and only if there exists a S € M, (C) such that S~'B(x)S is BT.
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Proof. First “=". There exists an x-dependent polynomial p, such that B(x) = p,(b). Denote by
S € M,,(C) the similarity matrix such that S~'5S is in JCF. Then S'B(x)S =S5~ p,(b)S = p.(S~'bS),
and it follows from Lemma that S"!B(x)S is BT.

Now “&”. We have S~!B(x)S BT. From Lemma S~'B(x)S € C(x)[b] for some b in JCF.
Then B(x) € C(x)[b], where b = ShS~!. O

Corollary 4.1.3. Let Q C C and suppose {C(x) € M,,(C)|x € Q} is a commutative subset of M, (C),
where each element is diagonalisable. There exists a b € M, (C) such that C(x) € C[b] for all x € Q.

Proof. As each C(x) is diagonalisable and pairwise commuting, there exists an x-independent basis in
C" with respect to which all C(x) are diagonal, see for example [48]]. As diagonal matrices are BT, the
result follows from Proposition m|

Remark. Corollary implies that any integrable model described by a family of pairwise

commuting and diagonalisable matrices is polynomially integrable.

This result illustrates the ubiquity of polynomial integrability among integrable models. For the
reader in a hurry, we present a self-contained proof of Corollary independent of the details of
this chapter: As each C(x) is diagonalisable and pairwise commuting, there exists an x-independent
S € M, (C) such that S~ C(x)S = diag(y;(x),...,yn(x)). Construct a b = diag(1y,...,1,) where each
A1,...4, € C are distinct, and fix the coefficients ag(x),...,a,—1(x) € C of the polynomial

n—1

px(y) = > a;(x)y, (4.6)

J=0

such that p,(4;) =y;(x) foralli=0,...,n—1and x € Q. As Ay,...4, are all distinct, one can always
do this. It follows that C(x) = p,(b) where b = SbS!.
The following section is devoted to elevating Proposition {.1.2]and Corollary [4.1.3]such that they

apply to elements of semisimple algebras.

4.2 Semisimple algebras

Let A be a finite-dimensional unital associative algebra over C. Motivated by the discussion of
matrices presented in Section 4.1} we generalise the notion of non-derogatory elements to those b € A

satisfying
Ca(b) =C[b]. 4.7)

In this case, we say that b generates its own centraliser. For b non-derogatory it follows that each

¢ € C(b) can be expressed as a polynomial in b, that is

d-1
c= Z b, d =dimC[b] (4.8)
i=0
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where CQy...,Cqd—1 € C.

Let us now recall some general results about the structure of ‘A. Up to isomorphism, A has finitely

many irreducible modules here denoted by L1, ..., L,, each of which are finite-dimensional and satisfy
A/rad(A) = éBEnd(Li), 4.9)
i=1
where rad(:A) denotes the Jacobson radical [49]. Letting p; denote the representation corresponding
to the module L; for eachi =1,...,r, the homomorphism
o= éBp,- A - éBEnd(L,-) (4.10)
i=1 i=1

is surjective with kernel given by rad(A).
An algebra A is semisimple if its regular representation is completely reducible [49]. Equivalently,

A 1s semisimple under the following statements

rd(A) = {0} = A=PUimL)L; =  dimA=) (dimL)’ @11
i=1 i=1

It follows that for A semisimple, p is an isomorphism.

Lemma 4.2.1. Let A be a semisimple algebra, and suppose b € ‘A. Then, b is non-derogatory if and
only if p(b) is non-derogatory.

Proof. First “=". We have b € A non-derogatory. Consider ¢ € End(L) satisfying o p(b) =p(b)oy.
As A is semisimple, p is an isomorphism, and we can therefore write p~! (¢)b = bp~! (¢). It follows
from b being non-derogatory that p~! () € C[b] hence ¥ € C[p(b)], so p(b) is non-derogatory.
Now “&”. We have p(b) € End(L) non-derogatory. Consider ¢ € A satisfying cb = bc. As p is
a homomorphism, we have p(c)p(b) = p(b)p(c). It follows from p(b) being non-derogatory that
p(c) € C[p(b)] hence ¢ € C[b], so b is non-derogatory. O

The following is an algebraic version of Proposition [4.1.2]

Proposition 4.2.2. Let ‘A be a semisimple algebra, and suppose U(x) € A. There exists an x-
independent b € A such that U(x) € C(x)[b] if and only if there exists a x-independent L-basis such
that the matrix representation of p(U(x)) is BT.

Proof. First “=”. We have U(x) € C(x)[b] where b € A is x-independent. As p is a homomorphism,
we have p(U(x)) € C(x)[p(b)]. As p(b) is x-independent, there exists an x-independent L-basis with
respect to which the corresponding matrix representation of p(b) is in JCF. It follows from Lemma
that the matrix representation of p(U(x)) with respect to this basis is BT.

Now “<”. Denote by B the L-basis with respect to which the matrix representation, U(x), of
p(U(x)) is BT. Construct a ¢ € End(L) such that the matrix representation, P, with respect to B is in
JCF with a block partitioning matching U(x), and with each block having a unique eigenvalue. By
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construction P is non-derogatory and by Lemma|4.2.1} so to is b := p~! (). We also note that U(x)P =
PU(x), hence p(U(x)) oy =y op(U(x)). As p is an isomorphism, we arrive at U(x)b = bU (x) from
which it follows that U(x) € C(x)[b]. O

We also have the algebraic counterpart to Corollary

Corollary 4.2.3. Let A be a semisimple algebra, Q C C, and suppose {C(x) € A|x € Q} is a
commutative subset of A such that there exists an L-basis relative to which the matrix representation
p(C(x)) is diagonal. There exists b € ‘A such that C(x) € C[b] for every x € Q.

Remark. Yang—Baxter relation subfactor planar algebras offer themselves as prototypical algebras
endowing models with polynomial integrable structure. They are (i) semisimple and therefore admit to
the previous classification, (ii) possess an inner product, with respect to which the diagonalisability
of the transfer operator can be established, and (iii) have a natural Yang—Baxter integrable structure.
These features together translate the global property of polynomial integrability into local properties
satisfied by the constituent K- and R-operators of a given transfer operator. For T,fd) (u) these are
YBEs, BYBEs, inversion identities, and self-adjointness. While for T,fs) (u) the BYBEsS are replaced

by R-operator crossing symmetry. We return to these observations in Chapter 5]

4.3 Spectral degeneracies

Let A(x) : C* — C"[x] be an x-dependent linear map such that, with respect to a particular basis, each
element of the corresponding matrix representation is polynomial in x. Denote the corresponding

characteristic polynomial by
c(x,A) :=det(1id - A(x)), (4.12)

where id denotes the identity matrix. By construction c(x, 1) is a polynomial in both x and A, whose
degree in A is n. Indeed, determining the zeros of (.12)) in terms of A gives the n eigenvalues of A(x),
which, in general, will depend on x. If, for x an indeterminate, there are less than n distinct eigenvalues,
we say there exists permanent degeneracies in the spectrum of A(x). Suppose the spectrum of A(x)
possesses / distinct eigenvalues for x an indeterminate (where of course / < n). If, for a given xg € C, the
spectrum of A(xg) possesses less than / distinct eigenvalues, we say there exist spurious degeneracies
in the spectrum of A(x) at the point xo. As we will see in Proposition §.3.1] below, for our particular
operator A(x), there are finitely many x-values for which spurious degeneracies arise.

To this end, we note that a polynomial f(x,y) is irreducible if it cannot be written as a product
of two non-constant polynomial factors. The function y(x) that satisfies f(x,y(x)) =0, is called an
algebraic function, and we recall that these functions possess finitely many branch points and at most
algebraic singularities [50]. Also, two polynomials f(x,y) and g(x,y) are relatively prime if they
share no non-constant factors. In this case, there are finitely many xo € C for which f(xg,y) and

g(xo,y) share the same root y(xg), see for example Theorem 3 on page 300 of [50].
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Proposition 4.3.1. The spectrum of A(x) is spurious for finitely many x-values in C.

Proof. The characteristic polynomial of A(x) admits the following decomposition

t

c(x,A) = rlcl-(x,/l), (4.13)

i=1

where ¢;(x,1) € C[x,A] is irreducible for all i = 1,...,f and 1 < ¢t < n. There are two possible
sources of spurious degeneracies, the first are those arising from each individual c¢;(x, ). As ¢;(x, 1)
is an irreducible polynomial, it only contributes spurious degeneracies at values xg € C for which
¢i(xg,4) € C[1] becomes reducible, there are finitely many such x-values. The second possible source
is from each pair c;(x, 1) and c;(x, 1) such that i # j, which are either relatively prime or equal up to
a scalar multiple. In the latter case, the pair contributes permanent degeneracies to the spectrum of
A(x), while in the former case, the pair contributes spurious degeneracies for finitely many x-values.
Together with the previous observations and the fact that there are finitely many irreducible factors in
(@.13), the result follows. o

4.4 Cellular algebras

In this section, we define cellular algebras, their simple modules and give a criterion for semisimplicity.
Before establishing these results explicitly, we outline key aspects with reference to their appearance
below. A cellular algebra A is defined with respect to a collection of cell datum (A, M, C,*), where
A is partially ordered set, M (A1) for each A € A is a finite set, C is an injective map and * is an
anti-involution. This data, presented in Definition [4.4.1] equip the algebra with the following features:
the existence of a basis, endowed from C, whose elements can be split into two components
each sharing a common label 1 € A; an anti-involution *, that facilitates the exchange of the two
components; a product between an element of the algebra and a basis element with an index A4,
such that the result is a linear combination of elements, each with an index less than or equal to A.
The partitioning of basis elements into two components, endowed from [(CI)| suggests a diagram-
matic representation whereby each basis element is expressed as a rectangle with a distinct bottom
and top component accompanied by an index A, see (4.16). In this representation, the product
amounts to stacking diagrams where ab corresponds to b atop a, and suggests a natural collection of
left modules W (1) for each A € A, with a basis consisting of the lower component of the algebraic

basis elements labelled by A, see equations (4.21) and (#.22). Similarly one can construct a right

module W(1)* whose basis consists of the upper component of the algebraic elements labelled by A.
Each W (1) is equipped with a natural bilinear form ¢,, endowed from the product[(C3)] see [#.24)
and (4.25). This bilinear form is shown, in Proposition[#.4.2] to encode the irreducibility of the module

W(A), i.e., when the radical of ¢, is trivial the module is simple. Finally, if the collection of radicals

of ¢, for all A € A is trivial, it follows that the algebra decomposes as a direct sum of simple modules.
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We now proceed in greater detail, the presentation closely resembles the original [S1]. Most proofs
are omitted. Care is taken to cast key results in the aforementioned diagrammatic representation. Let

R denote a commutative ring with identity.

Definition 4.4.1. A cellular algebra over R is an associative unital algebra A, together with cell
datum (AN, M, C, x) where

(C1) A is a partially ordered set and for each A € A, M (Q) is a finite set such that
C: |_|M(/l)><M(/l) — 4, (4.14)
AeA
is an injective map with image an R-basis of A.

(C2) If Le Aand S,T € M(Q), write C(S,T) = CS‘lT € A. Then * is an R-linear anti-involution of A
such that (Cﬁ )= C; g

(C3) If A e Aand S,T € M(Q) then for any element a € A we have

aClr= Y ra(8.5)CL, (modA(< 1)), (4.15)
S'eEM(A)
where r,(S’,S) € R is independent of T and where A(< A) is the R-submodule of A generated

by {Cg‘,,,T,, < ;8" T" € M(u)}.

The image under the map defined in|(C1)|here denoted C?

s r» and its image under the anti-involution
defined in admit the diagrammatic representations

A Ay v
CS,T = fF-"""==-"-"7 /l s (CS,T) =fF-"""""""71 /l ’ (4'16)

respectively. Similarly, casting the product[(C3)|diagrammatically, we have

T T
---------- A RRCEELERE P
S ) T
= > ku(8.T) =D ra(8,S)p-mnmnnees A (modA(< ), (4.17)
VeA T S'eM(2) AN
F---a ---{ 8 T’eM() fp--------- A
S/

where a, expressed in terms of the basis afforded by [((C1), and r,(S’, S) are given by

A. (4.18)

e a o= Y k(8T ra(S,8) = ) k(ST
AeA S T eM(A)

S/ T'eM(Q)

For each A € A, define

A{A}) =(C§71S.T € M(A)r (4.19)
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and note that A = @ 1ea A({1}) as R-modules. It follows from |(C3)| that for each Sy,5>,71,T> €
M (A1), we have

C§ 7.Cs. 7 =W(T1,5)CY . (mod A(< 2)), (4.20)

where ¥ (T1,S;) € R, readily extends to the bilinear map ¢ : M (1) x M (1) — R.
Let the left, respectively right, A-modules W (1) and W(A)* be defined as the free R-modules with
the common basis {Cg|S € M (1)}, yet distinct A-actions

aCs= Y ry(8,8)Cy,  Csa= Y ra(S,9Cy, acd. 4.21)
SeM(A) S'eM(A)

The corresponding diagrammatic representation of a left, respectively right, module basis element is

given by

-------- Pl
CS:| S | CT:| T | (4.22)
-------- Pl

where Cs € W(Q) and Cr € W(A)*, and whose action (4.21) interpreted diagrammatically is consistent
with (4.17)). We have the natural R-module isomorphism

CL:W) W) - A({1}),  Cs®Cr— Cip, (4.23)
and the bilinear form
WO XW) »R,  (Cs,Cr) »y(S.T), (4.24)

both of which can be expressed diagrammatically as

CHCs®Cr) =}--------1 1, $1(Cs,Cr) = q. (4.25)

We note that the form ¢, is symmetric ¢, (u,v) = ¢p,(v,u), invariant under the involution ¢, (a*u,v) =
#a(u,av), and satisfies C1(u @ v)w = ¢ (v,w)u for all u,v,w € W(Q) and all a € A({1}).
The radical of ¢, is defined

radg, :={ueW()| ¢ (u,v) =0forallve W(1)}. (4.26)

Letting {Cy,,...,Cs, } be an ordered basis for W(2), such that Sy,...,Sq, € M(4). Then the matrix

[ $1(Cs,.Cs,)  6a(Cs,.Cs,) ... $a(Cs,,Cs, )
$1(Cs,,Cs))  ¢a(Cs,,Cs,) ... ¢a(Cs,,Cs,))
G, = | | . | 4.27)
[#2(Cs,,,Cs,) #a(Cs,,Csy) ... ¢a(Cs,,,Cs,,))

1s symmetric, and is referred to as the Gram matrix. We conclude by establishing the following.
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Proposition 4.4.2. The following statement holds
detG,#0 << rad¢,={0} <= {areA{A})|a,v=0forallveW(1)}={0}. (4.28)

Proof. First “1 & 2. Observe ker G, =rad ¢,, and note kerG, = {0} & detG, # 0.
Now “1 & 3 . As above, let {Cs,,.. .,ngﬂ} be an ordered basis for W(1), and construct an

arbitrary element of A({A}) via the isomorphism (4.23))

d/l d,[
ay= Z CE;I)CA(Si ®rS;)) = Z ij)cgi,sj7 (4.29)
i,j=1 i,j=1

where each CE;) € R. Acting an arbitrary basis vector Cs, € W (A1) on a,, we have
d, d, da [ da

arCs, =| D eiCl o |Cs. = > el a(Cs;,Cs,)Cs,= D | D ¢a(Cs;,Cs,) |Cs, (4.30)
i,j=1 i,j=1 i=1 \ j=1

As each Cyg; are linearly independent, the statement a,Cs, =0 forall k =1,...,d,, is equivalent to
da
D i 6a(Cs;,Cs,) =0. (4.31)
j=1

This set of homogeneous equations can be expressed as the matrix equation
(4)
Cil

)
C.
G =0, V=72 | (4.32)

(1)
Ci dy

fori=1,...,d,. The set of homogeneous matrix equations (4.32)) have a non-trivial solution if and

only if detG, =0. O

It follows that the representation

p =P pi: A— EHEad(W(2)) (4.33)

AeN AN

is faithful if and only if detG, # O for all 4 € A.



The following publication has been incorporated as Chapter [3
[3]] X. Poncini, J. Rasmussen, A classification of integrable planar-algebraic models, arXiv:2302.11712
[math-ph].



Chapter 5

Yang—Baxter relation planar algebras

In this chapter, we apply the algebraic integrability framework to subfactor planar algebras. We begin
with the simplest algebra of this class — the Temperley—Lieb subfactor planar algebra and recover the
well-known Baxterisation within our framework. We then consider singly generated planar algebras
and find that the only such planar algebras underlying homogeneous Yang—Baxter integrable models
are the so-called Yang—Baxter relation planar algebras. According to a result of Liu, there are three
such planar algebras: the well-known Fuss—Catalan and Birman—Wenzl-Murakami planar algebras,
in addition to one more which we refer to as the Liu planar algebra. The Fuss—Catalan and Birman—
Wenzl-Murakami algebras are known to underlie homogeneous Yang—Baxter integrable models, and
we show that the Liu algebra likewise admit a Baxterisation. We also show that the double-row transfer
operator describing a homogeneous Yang—Baxter integrable model underlied by the Temperley—Lieb
subfactor planar algebra or one of the singly generated Yang—Baxter relation (YBR) planar algebras
is polynomialisable. Using terminology established in Chapter |3} our findings for singly generated

planar algebras may now be summarised as follows.

Theorem 5.0.1. Let A be a singly generated planar algebra. Then, there exists (i) a single-row transfer
operator and (ii) a double-row transfer operator; each describing a homogeneous Yang—Baxter

integrable model encoded by A if and only if A is a Yang—Baxter relation planar algebra.

Theorem 5.0.2. Let the homogeneous Yang—Baxter integrability of a model be encoded by a singly
generated Yang—Baxter relation planar algebra. Then, there exist algebra-parameter choices and a

suitable u-domain such that the corresponding double-row transfer operator is polynomialisable.

As a unifying framework for describing the singly generated YBR planar algebras, inspired by the
series of works [29-31}39], we find it convenient to introduce the (unshaded) proto-singly-generated
planar algebra (PS,),cy,. Although PS,, is infinite-dimensional for n > 3 and does not encode a
homogeneous Yang—Baxter integrable model, we demonstrate that it serves as an ‘ambient’ algebra
admitting quotients isomorphic to the FC, BMW, and Liu algebras.

Given our focus on the Temperley—Lieb planar algebra and singly generated planar algebras, where

dim A; =|B;| =1, we may accordingly normalise the K-operators in (3.3) so that they equal the identity
63
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element,
Ku)=K(u)=1,. 5.1

We also note that for the Temperley—Lieb planar algebra and singly generated planar algebras, A,
is commutative. It follows that the set of local relations in Proposition |3.2.1|is a subset of those in
Proposition [3.2.2] Accordingly, for these algebras, a homogeneous Baxterisation gives rise to two
homogeneous Yang—Baxter integrable models; one described by the double-row transfer operator

T,Ed) (1) and another described by the single-row transfer operator T,Es) (u).

5.1 Temperley-Lieb planar algebra

5.1.1 Planar algebra

Let T, + denote the complex vector space spanned by disks with 2n nodes such that each node is
connected to another node via a non-intersecting loop segment — defined up to ambient isotopy, and a
+ checker-board shading (see Section [2.2). Examples of Temperley—Lieb disks are

-
N—cT,_, (€T, N €Ts . (5.2)
- Vs ~

The dimension of T, . is given by a Catalan number

. 1 (2n
dlan’i = m( n ) (53)

The Temperley—Lieb (TL) planar algebra TL(6) is the graded vector space (T, +)nen,, together
with the natural diagrammatic action of shaded planar tangles, with each loop replaced by a factor of

the parameter ¢ € C. To illustrate, we present the example

/ /
T=-\Cj , PT(-:,-)():-\% (. G
A\ ( /“K (

From [[13]], we know that TL(6) is spherical and involutive, with the involution -* defined as the
conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked
boundary interval.

Let 7 denote the set of all §-values such that the planar algebra TL(6) is positive semi-definite.
For each 6 € T, the TL subfactor planar algebra TL(0) is then defined as the quotient of TL(6) by the
kernel of the trace norm (2.36). The complete details of the set 7 were established in [26], where

T ={2cos(§) |k=3,4,...}U[2,00). (5.5)

For ¢ in { 2cos (%) |k =3,4,...}, the kernel of the traces norm is non-trivial hence TL(8) and TL(6)
are not isomorphic, while for 6 > 2, TL(9) is positive definite, in which case TL(d) = TL(9).
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Remark. Here and throughout, the sans-serif font distinguishes a subfactor planar algebra, such as

TL(0), from the corresponding (not necessarily subfactor) planar algebra, here TL(9).

Remark. Recall the collection of vector spaces (T, ), + defined in Section For 6 > 2, we note
that T, . =T, + for all n € Nj.

It follows from Section [2.5] that planar algebras giving rise to Yang—Baxter integrable models
admit an unshaded description. For the remainder of this section, we will therefore consider the
corresponding unshaded TL planar algebra (T,),cn, Where we ignore the shading on both vectors and

tangles. For brevity, we omit the ‘unshaded’ qualifier and refer to this planar algebra as TL.

5.1.2 Presentation

For each n € N, the TL algebra TL,(6) is defined by endowing the vector space T, with the multiplica-
tion induced by the unshaded planar tangle M, following from (2.26). We note that the TL algebra is
both unital (with unit denoted by 1) and associative, and that it is a *-algebra with involution inherited
from the TL planar algebra. As is well-known [15], the generators of TL,(5) can be expressed

diagrammatically as

(&
1 & | , e, <& | | (i=1,...,n-1). (5.6)
N
1 n I @i+l on
The TL algebra TL,(5) admits a presentation
TL,(6) = e1, ... en-1), (5.7)
with the relations
e? = e, (5.8)
e;eej=ej, |i—j|:1, (59)
eiej=eje;, li—j|>1. (5.10)
For each n € N, there exists a unique w,, € TL, () such that
wri=w,,  ew,=w,e;=0, i=1,...,n—1. (5.11)

We will have more to say about this Jones-Wenzl idempotent [52]] in Section [6.1.4]

Let 7, denote the set of all ¢ such that the trace form 1s positive semi-definite on T, noting
that 7~ C 7,, for all n € Ny. For each 6 € 7, the TL subfactor algebra TL,(6) is then defined as the
quotient of TL,(d) by the kernel of the trace norm. As for the corresponding planar algebras, we have
TL,(6) = TL,(0) for 6 generic i.e. for § > 2.
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5.1.3 Baxterisation
Relative to the canonical T,-basis {1,, e}, we introduce the parameterised R-operator as
\ -/ \ ./ N/
Ru)=ri(w)ly+r.(u)e, su s =rq(u) ) +re(u) == , 5.12
() =rp(u)la+re(u) O} ]1()/)(\ e()/\ (5.12)

with rq,r. : Q — C.

Remark. For the R-operator to be non-specious, the functions rq and r, are required to be nonzero

when exploring homogeneous integrability encoded by TL,,(6).

It is known [[11]], that TL,,(§) admits a Baxterisation of the form (5.12)). Within the integrability

framework developed in Chapter 3, we have the following.

Proposition 5.1.1. The R-operator
R(u)=1+ue (5.13)

provides a homogeneous Baxterisation of TL,,(6), with

— _(utv+ouv 3 —(1—uv)? u+v+9o
Yl(u’v)_R(l——)’ Yi(w,v) = (u+v+08)(u+v+duv) ( uv—1 )’ (.14)
and (fori=2,3)
Yi(u,v) :I_/](%,v), Yi(u,v) = Y1(%,v). (5.15)

Proof. We first observe that the R-operator (5.13)) satisfies the following crossing symmetries

\-7/ \-7 \-7/ \-7
u =u sju U = uv . (516)
77N\ 7\ 7N /N

The BYBEs (3.32) are satisfied by applying the crossing symmetries, observing that TL, is a commu-
tative algebra, and noting that Y, (u,v) and Y| (u,v) are symmetric in u# and v.

Applying the crossing symmetries (5.16) for u # 0, we can express the YBEs (3.31)) as

| | | | |
~N Ve RN NAVm SN o N SN o

T o= | 2 | = | 9 S R - O
N - =N N = = N Ny - =N
| | | | | |
(5.17)

It follows that Y;(u,v) and Y;(u,v) for each i = 2,3 can be expressed in terms of Y (u,v) and Y; (u,v)

respectively, as
Yo(u,v) =Yi(2.v),  Yi(u,v)=Yi(v,2), Ya(uv)=Yi(i,v), Yi(u,v)=Yi(v,2). (5.18)

It remains to verify that (5.13) and (5.14) provide a solution to Inv1 (3.30) and YBEI (3.31)), see
Appendix for details. m|
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Relative to the involution -* on the TL algebra, the R-operator (5.13) is self-adjoint for all u € R.

Remark. We have verified that, up to a normalising factor, the generalised Yang—Baxter framework
of Proposition does not admit any other non-specious solution of the form (5.12)), than the one
presented in Proposition[5.1.1]

Note that by setting 6 = 2cos(1), and by rescaling and reparameterising the R-operator (5.13)) as

R(u) = sin(1—u) 1, +sin(u)e = sin(A —u)R(¢(u)), () = sin(u)

sin(A—u)’ (5-19)

we recover the familiar Baxterisation of TL, (&) presented in (2.43).

5.2 Proto-singly-generated algebra

Every subfactor planar algebra has a planar subalgebra isomorphic to the Temperley—Lieb subfactor
planar algebra, see e.g. [29]]. Accordingly, A, . of a subfactor planar algebra (A, +),en, contains the

two Temperley—Lieb vectors
1y+ =P, 0, ex:=Pg, (), (5.20)
where

dor=9) (. Idoo=8(, &=:2), & =2, (5.21)

—~~

with Id; . a special case of (2.27). In all but the degenerate case (see Remark after ), which
we exclude in the following, the vectors in (5.20) are linearly independent so dim A, . > 2, while the
Temperley—Lieb subfactor planar algebra itself has dim A, , = 2.

For a singly generated subfactor planar algebra, dimA; . =1 and dim A, . =3, so A, . has a basis
consisting of the two Temperley—Lieb vectors and one additional vector, hence the terminology.

Moreover, the vector spaces A, . for n > 2 are generated by the action of planar tangles on vectors in
Az,i'

Remark. Although a singly generated planar algebra is a subfactor planar algebra, we are suppressing

that qualifier, in line with the convention in [29].

It follows from Section [2.5] that a singly generated planar algebra giving rise to a Yang—Baxter
integrable model can be replaced by the corresponding unshaded planar algebra. Accordingly, we will
henceforth restrict to the class of unshaded singly generated planar algebras. About these, we have the
following key result involving the proto-singly-generated planar algebra PS(©)(a, ) constructed in
Section[5.2.1land Section [5.2.2] below.

Proposition 5.2.1. An unshaded singly generated planar algebra is a quotient of PS'€)(a, 8) for some

€,a,0.
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Indeed, ps(® (a,0) is defined in terms of relations that, for some €, a,, are satisfied by any given

unshaded singly generated planar algebra. Here, o is the loop weight arising in
e’ = de, (5.22)

where
e :=Pg(), E=t"), (5.23)

~

is the unshaded Temperley—Lieb generator. We note that e* = e.

5.2.1 Planar algebra

We now introduce a planar algebra whose vector spaces are spanned by planar tangles with labelled
disks, and where planar tangles act on these vector spaces in the natural diagrammatic way. For each
n € Ny, let §,, denote a set whose elements label disks with 2n nodes. With S := | |,,cp, Sy, an S-labelled
tangle is thus a planar tangle whose input disks each have been labelled by an element of S. For such a
label set S, the unshaded universal planar algebra consists of the vector spaces (A,(S))en, Where,
for each n, A,,(S) is spanned by all S-labelled tangles with 2n nodes on their output disk, together with
the planar-tangle action colloquially named ‘what you see is what you get’, illustrated in below,
see also [13,/53]]. We note that the elements of S have no additional structure. Accordingly, the list of
cardinalities, |So|,|S1[,|S2],..., characterises a universal planar algebra.

A universal planar algebra is infinite-dimensional. Indeed, even if S; = 0 for all £ € Ny, then
each A, (S) is spanned by the corresponding set of Temperley—Lieb vectors, together with those same
vectors but with all possible combinations of closed loops. To tame the dimensionality of a universal
planar algebra, relations are imposed on (A,(S))qen,. For any set C of vectors in (A, (S))nen,, We
thus let /(C) denote the planar ideal generated by C, and (A, (S, C)),en, the corresponding quotient
planar algebra.

We refer to a (universal) quotient planar algebra (A, (S, C)).en, as a proto-singly-generated (PSG)
planar algebra if S and C satisfy

dimAg(S,C) =dimA;(S,C) =1,  dimAy(S,C)=3,  |Su| =02, (5.24)

and such that Ag(S,C), A1(S,C), and A»(S,C) are as in an unshaded singly generated planar algebra.
Accordingly, these vector spaces are (i) ‘spherical’: satisfying forn=0,1,2; (i1) ‘involutive’:
closed under -*, satisfying for all planar tangles T with n(D) € {0,2,4} for all D € Dr U {Dg};
and (iii) ‘positive-definite’: the trace form (2.34) being positive-definite for n = 0, 1,2. The PSG planar

algebra is otherwise generated by the action of the planar tangles, with no further relations imposed.

Remark. A PSG planar algebra is not evaluable (since dim A, (S, C) = co for n > 2) nor necessarily
having a positive-definite trace form for each n. It follows that additional structure must be imposed

on A, (S,C) for n > 2 to obtain a singly generated planar algebra.

Since A (S, C) is positive-definite, we have

0< P

try

(1°1,) = 6. (5.25)
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With that, the positive-definiteness of A, (S, C) similarly implies that
0<Py([1a—te]*[1—1e]) =621, (5.26)

from which it then follows that
o> 1. (5.27)

The evaluations in (5.25)) and (5.26)) involve the Jones-Wenzl idempotent w,, [52] for n =1 and n = 2,

respectively. For general n € N, we have w) = w, and

/ % ’ & kﬂ'
Pl (wiwn) =P} (@) =Un(3) = (5—2c0s —) (5.28)

where U, is the n™ Chebyshev polynomial of the second kind.

Remark. If A;(S,C) is positive semi-definite for a given value of ¢, then one obtains a well-defined
subfactor planar algebra by quotienting out the ideal generated by all the vectors a € A, (S, C) for which
P, (a*a) = 0. In the degenerate case ¢ = 1, for example, the Temperley-Lieb planar subalgebra is
trivialised by quotienting out the ideal generated by 1, — %e appearing in 1} , whereby dim A, (S, C)
reduces to 2, c.f. (5.24).

The conditions C are determined in Section [5.2.2]below, where we find that the PSG planar algebra
is unique, up to the specification of parameters, including the loop weight . From here onward, we

accordingly opt for the abridged notation PS, = A, (S,C), n € Ny, with S and C as above.

5.2.2 Defining relations

Here, we determine the relations satisfied by the vectors in a distinguished PS;-basis of the form
{1,,e,s}. Taking inspiration from the classification approach in [39]], selecting s as conveniently as

possible is key in the following. For later convenience, we establish the result below.

Lemma 5.2.2. Let (Ap +)nen, be a subfactor planar algebra and {p;, ..., pk} a basis for A, . for some
n and shading +/—, and suppose {p1,...,px} is a complete set of mutually orthogonal idempotents.
Then, Py, (pi) >0and p; =p; foralli=1,... k.

Proof. By construction,

k
pi=> cip; i=1..k (5.29)
J=1
for some scalars c;;, where, by (2.32),
cj€{0,1},  Vije{l,... .k} (5.30)

while the positive-definiteness implies that

0 <Py, . (pipi) = ciiPy, , (pi), i=1,...,k, (5.31)
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sociy=---=ckr=1and
trW(p,) > 0, i=1,...,k. (5.32)
From
0=15,~T,.= Z cijp) - Zp], (5.33)
ij=
it then follows that ¢;; = 6;;, hence p; = p; foralli=1,...,k. m]

First, let PS; be endowed with the multiplication induced by the unshaded companion to (2.26).
Since dimPSy = 1, the idempotent P := }se satisfies dim(PyPS,%p) = 1 and is therefore primitive. By
assumption, PS; is positive-definite, hence semisimple, and because {1,, Py} € PS; and dimPS; =1, it
follows that PS, is commutative, see e.g. [23]. The set {#} € PS; can thus be extended to a PS;-basis,
{Po,P1,P>}, consisting of a complete set of mutually orthogonal (and primitive) idempotents, where
we note that

Pt, (12) = 1+P{ (P1) + P, (P2). (5.34)

By Lemma [5.2.2] the positive-definiteness of PS, implies that
0 < P, (P;Pe) = Py, (Po), =1,2. (5.35)
We now introduce
s:=p1P1+p2Pa, (5.36)
where p1, p» € C, and for {15, e, s} to be a basis for PS,, it must hold that p; # p,. It follows that

es=0=se,  s°=(p1+pa)s—pip2(la—1te), (5.37)

hence P2, (s)e =0, and that

T4,

Ptrz(s) :plptrz(P1)+p2Ptrz(P2)' (538)

For convenience, we choose p1, p» such that
P, (s) =0, (5.39)

noting that (5.35]) then ensures that p; # p» (as required) and implies that p, p» # 0. Without loss of

generality, we may further choose the normalisation of s such that p; p, = —1, thereby obtaining

s2 = 12—%e+as, (5.40)

where a := p| + p3, noting that a can take any value in C\ {-2i, 2i}.
By construction

Py (s) =€l +e.e+es, (5.41)



5.2. PROTO-SINGLY-GENERATED ALGEBRA 71
for some €, €5, € € C, while implies that
Pr, (s)e=0 (5.42)
(since ¢ # 0) and, by sphericality, that P§4,  (s)e =0. Using Pi" ,=id and 62 # 1, it follows that
e=€=0, €=1. (5.43)
Subsequently, recalling that P, , = PEM , the relations P,, ,(12) = 1 and P,, ,(e) = e imply that
0= Py, (7) = Pry(5) Prys(5) = (2= s, (5.44)
so we must have @ = 0 if €2 = —1. This requirement may be implemented by setting

a=(1+€e)a, (5.45)

where @ € C\ {-1,1}.

Under the conjugate-linear involution -*, we have

g PIP2TPPY (g ) DL

15 =1, e =e,
pP1—p2 P1—Pp2

s, (5.46)

where p denotes the complex conjugate to the scalar p. Using p;p2 = —1, it follows that, for @ € R,
we have p, p> € R, hence s* = 5.

Expressing s diagrammatically as
s=(), (5.47)

the analysis above implies that

E =8 (-1 +a X, Y =eX(., ee{-11,-ii}. (5.48)

For each (a,€) and 6 > 1, where (,€) € (C\ {-21,2i}) x {-1,1} or (e, €) € {0} x {-i,i}, we thus

have a PSG planar algebra (PS,),cn,, where a basis for PS; is given diagrammatically by

Bz:{-)(,-:,-)(}. (5.49)

To illustrate the corresponding action of planar tangles, we have

SN S
N ) <
gl A N T )@:/ﬂf-mr- (5:50)

— :
1] \/ )
,~"\
‘We note that the conditions

P!, (9)e=0,  €£=0,1,2,3, (5.51)

where P94 , 18 the identity map on PS;, correspond to the diagrammatic relations
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Q :.Q :.Q :.Q = 0. (5.52)

In fact, this ‘uncapability’ of s was a motivating factor behind imposing (5.39). Moreover, the
tracelessness of s allows us to represent the trace-form inner product relative to the ordered basis
{1,,e,s} as

82 5 0
5§ 6 0 |, (5.53)
0 0 o6%-1

confirming the positive-definiteness of PS; for 6 > 1, c.f. (5.27).
To summarise, the PSG planar algebra PS'® (@, 6) is the quotient planar algebra (A, (S, C' (a, 0)))nenys

where
S=| ]S S2={O}  S=0, Vk#2, (5.54)

neNy

and

CO@a)={iD) =64 .30, 30 -0, 8- (+1 D -e X} 659

with 6 > 1, and (@, €) € (C\ {-2i,2i}) x{-1,1} or (a,€) € {0} x {-1,1}.

With the parameters as above, PS(®)(a, ) is the unique planar algebra satisfying the conditions
outlined in the paragraph containing (5.24)). It follows that any unshaded singly generated planar
algebra can be obtained by specialising the parameters €, @, ¢ and by taking a quotient in such a way
that each PS,,, n € {3,4,...}, is spherical, involutive and positive-definite. These observations conclude
the proof of Proposition[5.2.1]

5.2.3 Presentation

We proceed to describe the algebra that arises when endowing the vector space PS,, with the mul-
tiplication induced by the unshaded companion to (2.26). For each n € N, § > 1, and each pair
(a,€) € (C\{=2i,2i}) X {~1,1} or (a,€) € {0} X {~i,i}, the PSG algebra PS\" (a,5) is thus defined

as the unital associative algebra (e;,s;|i = 1,...,n— 1) subject to the relations
2 1 .
si=1-sei+as;, es;=sie;=0, $iSj=S;8i, li—j|>1, (5.56)
eiejs1€; =€, eieis15i = € leisit1, Sieis1€; =€ sis1€),
with 1 denoting the unit. Following from (5.56)), we also have the relations
2 _ _ _ ..
e; =de;, eiej=eje;, ejsj=sje;, li—Jj|>1, (5.57)
71 1 +1 1
€;Six1S; =€i(€+ (eix1 _3]]-)+asiil), sisiz1e; = (€5 (€1 —311)4'@5;‘11)65, (5.58)
and
e;six1€; =0, Si€i+18; = Si+1€iSi+1- (5.59)

We note that it suffices to list one of the two relations e;s; = 0 or s;¢; = 0 in (5.56).
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The generators of PSff) (@, 0) are represented diagrammatically as

A\
N\
1

1 n 1 i+l n i+l n

1 e | , (5.60)

with the marked boundary interval linking the two horizontal edges via an invisible arc on the left.
Multiplication is then implemented by vertical concatenation, where the diagram representing the

product ab is obtained by placing the diagram representing b atop the one representing a.

Remark. The PSG planar algebra ‘includes’ the PSG algebras but not the other way around. A planar
algebra (A,)sen, offers a consistent way to define operations that are not accessible to the individual

algebras A, themselves, such as (unshaded versions of) the traces (2.21]) and rotations (3.1T].

We stress that there are no non-trivial relations involving s;s;.15; without also involving terms with
four or more s-factors. Accordingly, for n = 3, there are infinitely many linearly independent vectors

of the form (s152)*, hence dimPS3 = co, manifesting the non-evaluability of the planar algebra.

5.2.4 Baxterisability

Concerning the notion of homogeneous Yang-Baxter integrability outlined in Section[3.2] including the
definition of homogeneous double- and single-row transfer operators and non-specious Baxterisations,

we have the following result.

Proposition 5.2.3. Singly generated planar algebras that encode homogeneous Yang—Baxter integrable

models on the strip or on the cylinder must be YBR.

Proof. Since singly generated planar algebras that do not admit an unshaded description cannot encode
a homogeneous Yang—Baxter integrable model within our algebraic integrability framework (see
Section [2.5)), Proposition allows us to focus on the PSG planar algebra and its quotients. It thus
suffices to show that if one does not impose conditions turning the PSG planar algebra into a YBR
planar algebra, then there exist no R- and Y-operators such that (i) the YBE
OI OI
NV T TEN/
¢ | = | ¢« (5.61)
Ny = =N
| |
is satisfied, and (ii) the Y-operator is ‘horizontally invertible’, i.e. it satisfies (3.30) with some
companion element of A,. Note that we have selected (1) and (ii) as they are common to the sets of
homogeneous Yang—Baxter integrability sufficient conditions for models on the cylinder (Proposition

[3.2.1)) and models on the strip (Proposition [3.2.2).
Relative to the A-basis {1, e, s}, we introduce

R(u)=rq(u)ly+r.(u)e+rg(u)s, ?(u,v) =y (u,v)La+y,(u,v)e+y,(u,v)s, (5.62)
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which can be expressed diagrammatically as

s =1 (u) ) (+re(u) o +rg(u) s y = u,v) s (+ u,v) o+ Uu,v) S
e ) ) (rreu) 2= +rs(u) 3L 2 Vw) ) (v (uv) 2=+ 5 (1,v) 2X

(5.63)
where rq,7.,7s: Q — Cand yq,y,,y,: QXxQ — C.

Remark. If r; is the zero function, then the attempted Baxterisation is, in fact, encoded by the
Temperley—Lieb planar algebra, and not by a singly generated planar algebra, hence it is not of

relevance here.

From (5.61)), we get

| |
-t~ NV
SN SN —
| |

= [re@re () +71 (@)1 () + 871 (Wre(v) = ry Wy ()]75 ()

~ [re 1 () =i e () ]70) = Hern @ry () + L, (Wre ]300 (1 = 2)
ey ) + L 0ra () + 27, 0 () [ (0,) = re )P (0)F, 1) | (51 =)
][ =y @re ) ]5,w0) = [re@re ) + £, e ]300 | (s102 - €152
L 0 =@ 0[5, + [r1@r 0) +ars @ (]5, )| (201 - 251)

+{L1rs(W)rs (¥, (u,v) } (515251 = 525152), (5.64)

e] = -_-<(, S1:-)I<(, €2=->>, S2=->}(. (5.65)

First, suppose (s1s251 — $25152) is linearly independent of the other algebra elements in (5.64). Then,

where

for the corresponding term to vanish, r; or y; must be zero, with the observation following (5.63))
subsequently implying that the function y, must be zero. As ry # 0 and y, = O, the the vanishing of the

(s1e2 —e1sy)-term and the (speq —eps1)-term in (5.64)) implies that

[re(u)rs(v) —rs(u)re(v)]ie(u,v) =0 and [rﬂ(u)rs(v) —rs(u)ry (v)]ye(u,v) =0. (5.66)
Since y, = 0, the horizontal invertibility of the Y-operator implies thaty, # 0, so

re(u) _re(v) g " _nb)
rs(u)  rs(v) rs(u)  ry(v)’

correspond to two u, v-independent constants. It follows that the R-operator is of the form in (3.36), so

(5.67)

the Baxterisation is specious.
Finally, if (515251 —s25152) can be expressed as a linear combination of other terms in (5.64)), then

we are in a quotient of the PSG planar algebra that is YBR. |
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Section Section and Section [5.5|offer concrete examples of YBR planar algebras encoding
homogeneous Yang—Baxter integrability, thereby establishing the existence of planar algebras satisfying
the necessary condition provided by Proposition[5.2.3] Indeed, we use Liu’s classification in Theorem
[5.2.4 below to show that, for every singly generated YBR planar algebra, there exists a corresponding
homogeneous Baxterisation, which gives rise to a homogeneous Yang—Baxter integrable model on the

strip and on the cylinder.

Theorem 5.2.4 (Liu [39]). A singly generated YBR planar algebra is isomorphic to a quotient of an
FC, BMW, or Liu planar algebra.

The planar algebras listed in Theorem [5.2.4] are recalled in Section[5.3] Section[5.4] and Section[5.5]
respectively. In Section [5.6] we supplement these findings by showing that each model defined on the
strip is also polynomially integrable. Theorem[5.0.1]and Theorem [5.0.2] summarise these key findings.

Remark. If the FC, BMW, or Liu planar algebra in Theorem [5.2.4]is positive semi-definite, then
its quotient by the kernel of the trace norm (that is, the quotient by the ideal generated by all v for
which Py, (v*v) = 0 for some n) is isomorphic to the corresponding YBR planar algebra. However, to
keep dim A (S, C) =3 in (5.24), we will only apply this quotient operation for n > 2, c.f. the Remark

following (5.28).

5.3 Fuss—Catalan algebra

5.3.1 Planar algebra

Let F,Eki) denote the complex vector space spanned by disks with 2kn nodes such that (i) each node is
labelled by one of the k colours cy,...,ck, (ii) clockwise from the marked interval, nodes are assigned

colours according to

(cl,...,ck),(ck,...,cl),(cl,...,ck),...,(ck,...,cl) for disks in F(k), (5.68)
n+
#(...)=2n
(Cky-vesct),(ClyennsC)y (ChyerosCl)yonny(ClynnyCl) for disks in F,E,k_), (5.69)
#(...)=2n

and (iii) every node is connected to another node with the same colour, using a non-intersecting loop

segment defined up to ambient isotopy. Examples of such Fuss—Catalan disks are

[Sle) C| C2

Cc3 Cc3 c3 Cc3 c c c c

C2 ;- C2 C2 ;. C2 1 2 1 2
[ c i (N Cl (3) mﬂ Cq o) J \., | (2)

( | cF®, : ) ( er?. (5.70)
1 i al ¢ 2+ c2 /-"Cl c2 1 3,-

N\, o e, c e a ™\

Cc3 Cc3 Cc3 Cc3 [ &) Cc1 C2

The vector-space dimensions are given by Fuss—Catalan numbers, as

(k) 1 (kn+n
F, .= . 1
dimF kn+1( n ) ©71)
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The k-coloured Fuss—Catalan planar algebra FC™) (y1,....y) is the collection of vector spaces
(F,EQ )neny, together with the following action of shaded planar tangles [23]: (i) for each string within a
shaded planar tangle, draw k — 1 parallel strings in the adjacent unshaded region and assign each a
label cg ..., c starting from the original string (for k > 1, the tangle shading is thus encoded in the
string labels and can thereafter be omitted), (ii) if a loop is formed with the colour ¢y, it is removed
and replaced by the scalar weight y;, and (iii) the output vector is given by the output disk with the

given colour labels and ensuing string connections. To illustrate, we have

)) (

T:.\Cj P \)( ne @ 6m

where ¢ and ¢, correspond to the colours cyan and black, respectively. If y| =--- =v,,, then the colours
of the strings are immaterial and the corresponding planar algebra admits an unshaded description.

As we are concerned with unshaded singly generated planar algebras, we denote by FC(y) the
unshaded planar algebra corresponding to FC? (y,v), and refer to it simply as Fuss—Catalan (FC).
From [54]], we know that FC(y) is spherical and involutive, with the involution -* defined as the
conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked
boundary interval.

Let F denote the set of all y such that FC(vy) is positive semi-definite. For each y € ¥, the FC
subfactor planar algebra FC(y) is then defined as the quotient of FC(7y) by the kernel of the trace
norm. Details of the set # are presented in [54], including { 2cos (§) [k =3,4,...} € ¥ For v in that
discrete subset, FC(7y) is positive semi-definite, while for y > 2, FC(y) is positive-definite, in which
case FC(y) = FC(y).

5.3.2 Presentation

For each n € N, the FC algebra FC,(y) is defined by endowing the (unshaded) vector space F,Ez) with
the multiplication induced by the unshaded planar tangle M, following from (2.26). We note that
the FC algebra is both unital (with unit denoted by 1) and associative, and that it is a *-algebra with
involution inherited from the FC planar algebra. Using a diagrammatic representation similar to the

one in (5.60), FC,(y) is generated by the following algebra elements:

\—
ne | 8 § I B
a)

1 n 1 i i+l n 1 ii+l

where each label below a diagram labels a pair of string endpoints.

For y # 0, the FC algebra admits [54]] a presentation

FC,(y) =(E;,Pili=1,...,n—-1), (5.74)
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with relations

EiZ:yZE,-, P,E;=E;P; =vE,, Piz:’)’Pi,
EEinE;=E;, PE P =PPis1=Pi1P;, EP,E =yE, (5.75)
El'Ej:EjEi, Ein:PjEi, Pin:PjPia |l_.]|>1

Following from (5.75)), we also have the relations
PPy E; =yPi E;, E;Pis1P;=yE;Ps1, PiPiy1P; =yP;Pjs1, (5.76)

and
E,E; 1P =E;Pjs1, PiEis E; = P+ E;. (5.77)

For y = 0, the relations (5.73)), (5.76) and (5.77) still hold, but the relations in (5.77) do not all follow
from the relations in (5.75)), and should be imposed separately.

Remark. The Temperley-Lieb subalgebra (Ej,...,E,_;) € FC,(y) has loop fugacity § = y.

We let 7, denote the set of all y such that the trace form (2.34) is positive semi-definite on F, 2),
noting that ¥ C ¥, for all n € Ny. For each y € F,, FC,,(y) is then defined as the quotient of FC,,(7y)
by the kernel of the trace norm. As for the corresponding planar algebras, we have FC,,(y) = FC,(y)

for y generic i.e. for y > 2.

5.3.3 Quotient description
Proposition 5.3.1. For y*> > 1 and each u € {—1,1}, we have

FCu(y) 2 PS (u(y =y )% [{uslli=jl = Liij € {L.....n= 1)), (5.78)
where
tij=38;e;8;—58;8;+85;e;+e;Si+eje;—8;—5;—1, (5.79)
with §; = pys;.
Proof. The proposed algebra isomorphism sets

E;=e;, P;=

’y+’y_1 (]l+€l'+§i), (580)

or equivalently,

e;=E;, §i:—]1—E,'+(’)/+’y_1)Pi. (581)
With this, one verifies that the relations (5.75) imply the relations (5.56) and the vanishing of (5.79),
and that the relations (5.56) together with the vanishing of imply the relations (5.73). |

Remark. By renormalising the P; generators, introducing P; := P;/, the relations (5.75)—(5.77) only

depend on the loop weight through & = y?, as we then have
E? =6E;, P,E;=E;P; = E,, P2=p,
EE..E =E, P E;Pi.\E;=E, (5.82)
E

EE;=EE,
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and
PiPis\E; = Pis\E;, E;Pis\P;=E;P;yy, PP\ P = PPy, (5.83)

EEi P = EiPsy, PEi  E; =P E;. (5.84)

5.3.4 Baxterisation

Relative to the canonical Fz(z) -basis {1, E, P}, we introduce the parameterised R-operator as

N7 \ 7 N\o? Ner
R(u) =ri)latrgE+rpP, Ju=ro(u) W +re@) = +re) )L (585

with rq,rg,rp: Q — C.

Remark. Although (Ey,...,E,_1) and (Py,...,P,_1) are subalgebras of FC,(y), the P generators
do not form a planar subalgebra of FC(7y). It follows that only rp is required to be nonzero when

exploring homogeneous integrability encoded by FC,,(y).

It is known [55]] that FC,,(y) admits a Baxterisation. Within the integrability framework developed in
Section we have the following.

Proposition 5.3.2. The R-operator

u(u—1)

E+(u-1)P :
1=t w-DP, (5.86)

R(u) = 112+

provides a homogeneous Baxterisation of FC,(7y), with

- §—1-uv)? §—1)°
Vi(u.v)=R(wv),  Yi(u.v)=- o-1-w) r(10), (5.87)
6= (wv-1)((6-1)2—uv) uv
and (fori=2,3)
Yi(uv) =Yi(5hv),  Yi(u,v) =Yi(5hv). (5.88)
Proof. We first observe that the R-operator (5.13)) satisfies the following crossing symmetries
S - vuml) oo Yof = Yaf . (5.89)
7°N O0—-1l—-u 2N 7N 7N

The BYBE:s (3.32) are satisfied by applying the crossing symmetries, observing FC; is a commutative
algebra, and noting that Y; (1, v) and Y, (u, v) are symmetric in « and v.
Applying the crossing symmetries (5.89) for u # 0, it follows, as in Proposition [5.1.1] that the

Y-operators can be expressed as

?z(u,V):Yl(éu;l,V), ?3(14,\}):71(‘}’%)9 YZ(M,V):YI((SM;],V), Y3(u’v):Y1(v’6u;l)‘
(5.90)

It remains to verify that (5.86) and (5.87) provide a solution to Inv1 (3.30) and YBEI (3.31)), see
Appendix for details. m|
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It follows from the crossing symmetries that conditions (3.30) and (3.31)) reduce to the single

inversion identity and the single standard YBE

SNANA SNAVE L SEA
w % — R Uy " = " muy (591)
N s U

Relative to the involution -* on the FC algebra, the R-operator is self-adjoint forallu e R\ {6 —1}.

Remark. We have verified that, up to a normalising factor, the generalised Yang—Baxter framework of
Proposition does not admit any other non-specious solution of the form (5.85), with rp nonzero,
than the one presented in Proposition

5.4 Birman—-Wenzl-Murakami algebra

5.4.1 Planar algebra

Let W, denote the complex vector space spanned by disks with 2n nodes such that, within each disk,
(i) the nodes are connected pairwise by strings, defined up to regular isotopy, (ii) strings may intersect
but not self-intersect, (iii) two strings cannot intersect one another more than once, and (iv) strings

cannot form closed loops. To illustrate, we present the following examples and non-examples:

J e A <)/ { \L L&
' — s |‘;\/\/‘. , I}A( and '/\’I; , q , |\/\ . (592)
The dimension of W, is given by
dimW, = (2n-1)!. (5.93)

For each pair of scalars 7 # 0 and ¢ ¢ {—1,0, 1}, the Birman—Wenzl-Murakami (BMW) planar
algebra BMW (7, q) is the collection of vector spaces (W,,)qen, together with the natural diagrammatic

action of planar tangles, defined up to regular isotopy and subject to the relations

D =6+ ), .lﬂ:7.| , .,qur—l.| , (5.94)
X=X =0]) (- (595)

where B
5=1 T_QT , O=q—-q"! (5.96)

Remark. Self-intersecting or loop-forming strings may arise as the result of a planar tangle acting on

vectors in (W,),en,, hence the relevance of relations like (5.94).

The planar algebra BMW(7, ¢) is spherical and, for || = |¢g| =1 or 7,¢q € R, involutive [31,56]. In

these cases, the involution -* is defined as the conjugate-linear map that acts by ‘reflecting’ respectively



80 CHAPTER 5. YANG-BAXTER RELATION PLANAR ALGEBRAS

‘flipping’ every disk about a line perpendicular to its marked boundary interval, as indicated by

. " . X =gl =1,
(90) =90 (2) -2, (X)) = ! (5.97)

K, T,q€R,

recalling that g # +1.
We let 8 denote the set of all (7, ¢g) such that BMW(7, g) is positive semi-definite. For each (7,q) €
B, the BMUW subfactor planar algebra BMW (7, q) is then defined as the quotient of BMW (7, q) by

the kernel of the trace norm. Details of the set B are presented in [31].

5.4.2 Presentation

For each n € N, the BMW algebra BMW (7, q) is defined by endowing the vector space W,, with the
multiplication induced by the unshaded planar tangle M,, following from (2.26). We note that the BMW
algebra is both unital (with unit denoted by 1) and associative, and that, for |7| = |¢g| =1 or 7,q € R, it
is a *-algebra with involution inherited from the BMW planar algebra. As is well-known [[15,57.58]],

the generators of BMW,, (7, ¢) can be represented diagrammatically as

| 1 J ~
1 o -, gie |- 1 . gte |- r e |- (5.98)
I
1 n 1 i+l n 1 i+l n 1 i+l n
The algebra BMW,, (7, g) admits [56]] a presentation
BMW,(7,q) = (ei,gi8 ' li=1,....,n=1), (5.99)
with relations
8i8ix18i = 8ix18i8ix1 gi—g '=0(1-e),
gieix18i = 8, €i8 11 giei=eigi=1"e;, (5.100)
€i8i+18i = 8i+18i€i+1 = €i€ix1, 8i8j =8;&i, li—jl>1.
It follows from these relations that
e; = de;, ejeix1€; = e, giej=¢;gi, eje; =eje, li—Jjl>1, (5.101)
with ¢ as in (5.96)), and that
giejx1€; = g;_,llei, €i€is18i = eigl._ill, eigi+1€; =Te;. (5.102)

We note that it suffices to list one of the two relations g;e; = 771e; or eigi= 77le; in li

We let B,, denote the set of all (7, q) such that the trace form (2.34)) is positive semi-definite on W,
noting that B C 8B, for all n € Ny. For each (7, q) € 8B,, the BUW subfactor algebra BMW,, (7, q) is
then defined as the quotient of BMW,, (7, g) by the kernel of the trace norm.
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5.4.3 Quotient description

Let
[= (401 -1 (T +0(Q*+3)1-1) = (t+9)(r=¢ )T+ (v -q7), (5.103)

where the rewriting uses (5.96)).

Proposition 5.4.1. For § > 1, with 6 parametrised as in ([(5.96)), and for each p € {—1,1}, we have

2 1
BMW, (7, q) EPS,S“(’“‘Q(JF”),HT QT )/(Ll....,Ln_2>, (5.104)

where
t = 8i8in18i = 81 S8 + QP { (TP + D (2 +Q(Q* +3)T = 1) [e; — €41
—(Q+1)(1=Q7)[8i — $is1 +€i8is1 —€ir18i + Siv1ei — Sieia ]} (5.105)
with §; = uVT s;.

Proof. The proposed algebra isomorphism uses the same notation, e;, for the Temperley—Lieb genera-

tors, and sets

5= [07(Q+7)1+0(1 - 01)e; - (7% +207 - 1)gi], (5.106)
T
or equivalently,
1
gl.:m[gr(g+r)1+g(1—Qr)ei—u«/Fs,-]. (5.107)

With this, one verifies that the relations (5.100) imply the relations (5.56) and the vanishing of (5.105).
Likewise, the relations (5.56) together with the vanishing of (5.105]) are seen to imply the relations

(ET00). 0

Remark. For € = 1, s € W, is invariant under P,, ,, as becomes evident when rewriting (5.106) as

pQ(t*+1) (2 +207-1) 4
si=——= (1 +¢;)— (8i+8 ), (5.108)
2VI' 2VIT
since
Pr4,1 (]12) =e, Pr4,1 (6) = ]12, Pr4,1 (gil) = gﬂ. (5109)

Remark. The algebra BMW, (7, q) is occasionally referred to as Kauffiman’s Dubrovnik version [58]).

It differs from the one in [59]], which is based on

gitg ' =Qo(l+e;),  ef=dpe,  So=-1+ Oo=q+q ", (5.110)

and consequently admits a description as a quotient of PS. similar to the one in Proposition
but for € = —1. The two possible imaginary values, € =1 and € = —i, enter similar quotient descriptions
of the Liu algebra in Section[5.5.2]
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5.4.4 Baxterisation

Relative to the canonical Wj-basis {1,, e, g}, we introduce the parameterised R-operator as
\ -7 N~/ N~/ \ -/
Ruw)y=ri(w)ly+r.(uw)e+r,(u)g, v =rp(u) (0 +r.(u) o< +r(u) o4 5.111
() =ry()la+r.(u)e+rg(u)g 2 1()/)(\ e()/\ g()/A\ ( )
with rq,r.,7, : Q — C.

Remark. Since e; is quadratic in g;, the function r, is required to be nonzero when exploring

homogeneous integrability encoded by BMW, (7, q).

It is known [60]], see also [61]], that BMW, (7,¢q) admits a Baxterisation. Within the integrability

framework developed in Section [3.2] we have the following.

Proposition 5.4.2. Let Q =g —q~ ! and w € {-1q,7q~"}, the R-operator

2
-1 1- 1-
R =L [12+ Loy g] (5.112)
q-—u Uu—w Qu
provides a homogeneous Baxterisation of BMW,, (1, q), with
- Q%2 w?uv(uv — w)? (wz)
Y1(u,v) =R , Yi(u,v) = Rl—), 5.113
1(uv) = R(uv) 1(uv) (1=uv)(uv — w?)(uv —wq?)(uv —wq=2) \uv ( )
and (fori=12,3)
Fiuv) =Fi(20),  Yi(u,v) =¥i(2,). (5.114)
Proof. We first observe that the R-operator (5.13)) satisfies the following crossing symmetries
- 2_
\u/:w(l u)(g-—wlu) \I%/’ \-u/:\u-/_ (5.115)
7N u(u-w)(gE-u) 7N\ /N /N

The BYBE:s (3.32) are satisfied by applying the crossing symmetries, observing BMW, is a commuta-
tive algebra, and noting that Y; («,v) and Y; (u,v) are symmetric in u and v.
Applying the crossing symmetries (5.115)) for u # 0, it follows, as in Proposition that the

Y-operators can be expressed as
Yo(uv) =Y1(2v),  Y3uv)=Yi(v,2), Yo(uv)=Yi(%v), Ys(u,v)=Y1(v,2). (5.116)

It remains to verify that (5.112)) and (5.113)) provide a solution to Inv1 (3.30) and YBEI1 (3.31), see
Appendix for details. i

It follows from the crossing symmetries (5.1135)) that conditions (3.30) and (3.31) reduce to the single

inversion identity and the single standard YBE
| |

N N N V- maEN
W I = , wr, | o= | e (5.117)
I e SN - =N

| |
Relative to the involution -* on the BMW algebra with 7,q € R, the R-operator (5.112)) is self-adjoint

for all u € R\ {¢%, w}.

Remark. We have verified that, up to a normalising factor, the generalised Yang—Baxter framework of
Proposition [3.2.2] does not admit any other non-specious solution of the form (5.1TT), with r, nonzero,

than the one presented in Proposition[5.4.2]
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5.5 Liu algebra

5.5.1 Planar algebra

The Liu planar algebra is naturally defined as a quotient planar algebra much akin to the PSG planar
algebra in Section With C(©)(a,6) as in (5.53)), we thus introduce

et 0| 8- - R0~ 00 (k- 2 F2-53))

(5.118)

where 6 # 0 and € € {—i,i}. Following [39]], the Liu planar algebra L€ (6) is then defined as the
quotient planar algebra (A, (S, C](f) (6)))nen,» where S is as in (5.54).

Remark. In the PSG planar algebra in Section [5.2] for PS; and PS; to be positive-definite, we have
0 > 1, see (5.27). Here, in our definition of the Liu planar algebra, we relax this condition to ¢ # 0.

From here onward, we opt for the abridged notation L, = A,(S, C](f)(é)), n € Ny. Imposing the
relations C](f) (6) tames the dimensionality of the universal planar algebra, resulting in the dimension

formula

dimL, = (2n—- 1. (5.119)

The Liu planar algebra L(¢)(5) is spherical and involutive [39], with the involution -* defined as
the conjugate-linear map that acts by reflecting every disk about a line perpendicular to its marked

boundary interval, as

(') ()*: ) (- (': )*= QR (-)()*= (), (5.120)

recalling that s* = s for @ = 0, see comment following .

We let £©) denote the set of all § such that L(€)(6) is positive semi-definite. For each § € £(€) and
€ € {—i,1}, the Liu subfactor planar algebra L) (§) is then defined as the quotient of L(€)(5) by the
kernel of the trace norm. Details of the set £(¢) are presented in [39]], including {i % |m e N} -

L9, where ¢, = q%.

5.5.2 Presentation and quotient description

Foreachn € N, € € {—i,i} and § # 0, the Liu algebra Lff) (0) is defined by endowing the vector space
L,, with the multiplication induced by the unshaded planar tangle M,, following from (2.26]). We note
that the Liu algebra is both unital (with unit denoted by 1) and associative, and that it is a *-algebra with
involution inherited from the Liu planar algebra. The generators can be represented diagrammatically

as in (5.60)), and the algebra admits a presentation (e;,s;|i = 1,...,n— 1) subject to the relations

sl.zz]l—%ei, eis;=s;e;=0, SiS; =S8;S8i, |i—f| > 1,
(5.121)

— _ =+l ) |
€i€j+1€;=¢€j, €;€j+15; =€ €;Si+1, Si€j+1€; =€ Si+1€j,
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and

I
SiSiv1Si = Siv18iSivl = 55 | 8i = Siv1 — € (€iSix1 — Siv1€i +€ip15i = sieis1) |, (5.122)

with 1 denoting the unit. Following from (5.121)), we also have the relations

el.z =de;, eiej=eje;, eis; =sje, li—j|>1, (5.123)
eisin1Si =€ (ejeis1—%e;),  SiSiwie; =€ (eix1ei—1e;), (5.124)

and
eisiz1e; =0, Si€is18; = Si+1€;Si41- (5.125)

We note that it suffices to list one of the two relations e;s; = 0 or s;¢; = 0 in (5.121).

Remark. It follows from the presentation above that the minimal vanishing polynomial in s; is sl.3 - S,

SO s; 18 not invertible.

The Liu algebra differs from the FC and BMW algebras in that there is no known basis for L,(f) (6)
in terms of which the relations (5.121)—(5.125) admit a natural diagrammatic representation. In Section
5.5.4] we consider a basis which includes a braid [39]], and where can be interpreted as a
type-1II Reidemeister move. However, in this basis, some of the other relations fail to have a natural
diagrammatic interpretation.

By comparing the presentation above with the one of PSff) (@,0) in Section we obtain the

following result, recalling that @ = 0 for € € {—i,i}.
Proposition 5.5.1. For eachn €N, € € {-1,i}, and 6 > 1, we have
L (8) = PSY(0,6) /{t1s - s tuz), (5.126)

where

i
L = SiSi+18i = Si+15iSi+] — 57 [5i = Siv1 — € (€isiv1 — Siv1€:+ €15 — Sieinn) | (5.127)

We let £1 denote the set of all & such that the trace form (2.34) is positive semi-definite on
L., noting that £(© ¢ £'€ for all n € Ny. For each § € £, L' () is defined as the Liu subfactor

algebra constructed as the quotient of L,(f) (6) by the kernel of the trace norm.

5.5.3 Baxterisation
Relative to the canonical L;-basis {1,,e, s}, we introduce the parameterised R-operator as
\ -7/ \ ./ N/ \ -/
R(u) = 1+ + , "y = ) (0 + )+ () , 5.128
(u) =ri(u)la+r.(u)e+rg(u)s O} r1(u) /) (\ re(u)/ L rs(u) /}I\ ( )

with rq,r.,r, : Q — C.

Remark. Since e; is quadratic in s;, the function r; is required to be nonzero when exploring

homogeneous integrability encoded by L,(f) (6).
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Unlike the TL, FC and BMW algebras, the Liu algebra LS,G) (0), is not known to admit a Baxterisation.
A distinct feature of the Liu algebra is the absence of symmetries of the unparameterised R-operator,

which is not invariant under rotation by 7 (unless rg(u) = 0),
7/ 7/
us # su . (5.129)

Despite this fact, we show in Proposition below, that the Liu algebra admits a homogeneous

Baxterisation. To describe it, we find it useful to introduce the function

u+v

¢ (u,v) > (5.130)

l—uv’
Proposition 5.5.2. For each u € {-1,1},
RW () =15 +ue +udus (5.131)

provides a homogeneous Baxterisation of L,(f) (6), with

Yi(u,v) = RW(x), Yi(u,v) =

ox—1 R("“‘)(x+6), x=¢uy),  (5.132)

(62 +1)x(x+0) ox—1
and (fori=2,3)

B 1
B ¢(1/l, _V) ‘

Proof. The BYBEs (3.32)) are satisfied by observing L, is a commutative algebra, and noting that

_ . 1 -
Yi(u,v) =1y +ye—(=1)'udes, Yi(u,v) = 57— Yi(v,u), y:

572 (5.133)

?1 (u,v) :?4(1’!"})’ ?Z(M,V) = Pr4,2 (?3 (M,V)), Yl(l/t,V) = Y4(I/£,V), YZ(M’V) = Pr4,2 (Y3(M,V)).
(5.134)

It remains to verify that (5.131))—(5.133)) provide a solution to Inv1-Inv3 (3.30), and YBE1-YBE3
(3.31)), see Appendix [A.4]for details. o

Relative to the involution -* on the Liu algebra, the R-operator (5.131) is self-adjoint for all u € R.
On the other hand, unlike the R-operators in the FC and BMW algebras, the R-operator (5.131) is not
crossing symmetric, not even partially crossing symmetric, that is, there do not exist scalar functions ¢

and ¢ such that
Py (R™ (u)) = ¢(u)RW (c(u))  or P, (R¥W(u) =c(u)R™ (c(u)). (5.135)

This explains why the Y-operators are not expressible in terms of the R-operator itself, as is the situation

in the TL, FC and BMW cases, c.f. (5.1.1)—(5.14), (5.87)—(5.88)) and (5.113)—(5.114), respectively.

Remark. We have verified that, up to a normalising factor, the generalised Yang—Baxter framework of

Proposition [3.2.2]does not admit any other non-specious solution of the form (5.128)), with r; nonzero,

than the one presented in Proposition[5.5.2]
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5.5.4 Braid limits

For each u € {—1, 1}, the R-operator (5.131)) yields well-defined L,-elements under the specialisations

u=-1iand u =1,

RW(=i)=1,-ie—iuss,  RW(i)=1,+ie+iuss, (5.136)

and we collect the ensuing four elements in the set
B={l,+e€1e+eds|el, e € {-i,i}}. (5.137)

For each b € B, we have

b*=2b—-(6*+1)1,, (5.138)

so, for 62 # —1, b is invertible, with inverse given by

b~ = S (21,-b). (5.139)
Although not obtained as limits of our R-operator, the elements of 8 also feature in [39], where it is

shown that for each b € B, the generators {by,...,b,—1} C L, satisfy
bibi+1b; = bix1b;b;x1, bibj =b;b;, li—j|>1. (5.140)

Here, b; € L, denotes the element ‘acting’ as b on the ith and (i + 1)th nodes and as the identity
elsewhere. This justifies referring to as braid limits.

5.6 Polynomial integrability

For the TL algebra and each of the singly generated algebras FC, BMW, and Liu, we refer to the
homogeneous double-row transfer operator built using the R-operator parameterised in (3.13)), (5.86),
(5.112), and (5.131)), respectively, as the canonical transfer operator on Q, with Q C C a suitable
domain (that depends on the underlying algebra). In each case, this transfer operator is the unique (up
to renormalisations and reparameterisations) algebra element encoding homogeneous Yang—Baxter
integrability on the strip.

Using Liu’s Theorem [5.2.4] the Remark following Corollary 4.2.3] and results obtained in the
previous three sections, we can now account for the polynomialisability of the double-row transfer
operator in Theorem With notation as in Section[5.1} Section[5.3] Section[5.4] and Section
the following result thus gives conditions on the various algebra-defining parameters, ensuring that the

respective canonical transfer operator is polynomialisable.
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Proposition 5.6.1.

(TL): LetneNand$é € 7,, and suppose T,fd)(u) € TL,(9) is the corresponding canonical

transfer operator, with u € R. Then, Tn(d)(u) is polynomialisable.

(FC): LetneNandy e F,, and suppose T,Ed) (u) € FC, () is the corresponding canonical
transfer operator, with u € R\ {y>—1}. Then, Tn(d) (u) is polynomialisable.

(BMW) : Letn e N and (1,q) € B, \R?, and suppose T,fd)(u) € BMW,, (1, q) is the corresponding

canonical transfer operator, with u € R\ {¢*, w}. Then, T,gd) (u) is polynomialisable.

(Liu) : LetneN, € € {—i,i}, and § € L,(f), and suppose Tn(d)(u) € L,(f)(é‘) is the corresponding

canonical transfer operator, with u € R. Then, T,fd)(u) is polynomialisable.

Remark. As the TL subfactor planar algebra is a planar subalgebra of every subfactor planar algebra,
we have § € 7 C R for any subfactor planar algebra, see (5.5). In the Liu case, in particular, it thus
holds that £9 "R = £'€ for all n € N and € € {~i,i}.

Here, we have established that the double-row transfer operator encoding homogeneous Yang—
Baxter integrability for the TL planar algebra and each of the singly generated YBR planar algebras
is polynomialisable. The following chapter is devoted to explicitly determining the form of such

polynomials for two well-known models on the strip.



Components of the following publication have been incorporated into Chapter [6]
[2] X. Poncini, J. Rasmussen, Integrability of planar-algebraic models, J. Stat. Mech. (2023) 073101,
arXiv:2206.14462 [math-ph].



Chapter 6

Hamiltonians and polynomial integrability

In this chapter, we explicitly determine algebraic elements giving rise to the polynomial integrability
of two models on the strip: a Temperley—Lieb model and an eight-vertex model. By construction, the
principal Hamiltonians and transfer operator share similar spectral features, at least to linear order in u.
It is therefore natural to consider these elements as candidates for the polynomial integrability generator.
We begin with the Temperley—Lieb model by establishing some facts about the double-row transfer
operator parameterised as in Section [5.1] which are then used to derive the principal Hamiltonians of
the model. Analysis of two principal Hamiltonians for small n reveals, in a faithful representation, that
they possess a non-degenerate spectrum. This, together with the fact that Hamiltonians commute with
the transfer operator, establishes that the transfer operator is polynomial in the principal Hamiltonians.
We conclude by determining explicit polynomial expressions of the transfer operator in terms of these
Hamiltonians and find that, for all 6 € C and small n, at least one of the polynomials is well-defined.
We proceed by constructing an eight-vertex model with an underlying tensor planar-algebraic
structure and recover the familiar quantum inverse scattering framework discussed in Section
We show that the corresponding double-row transfer operator is diagonablisable and present explicit
expressions for all of its eigenvalues and corresponding eigenvectors. We then exploit similarities in
the spectral properties of the transfer operator and a principal Hamiltonian to establish that the transfer
operator is polynomial in this Hamiltonian. Moreover, we determine explicit polynomial expressions

of the transfer operator in terms of this principal Hamiltonian for all n € N.

Remark. As this chapter is concerned exclusively with the double-row transfer operator T,Sd) (u), we

omit the superscript and refer to it simply as 7, (u).

6.1 Revisiting the Temperley—Lieb planar algebra

Proposition implies that for 6 > 2, there exists a u-independent integral of motion b, € TL,(5),
such that the double-row transfer operator 7,(«) can be expressed as a polynomial in b,,. For a faithful
representation g, defined in Section[6.1.1] it follows from Section4.2] that 0,,(b,) and ©,(7,(«)) will

have closely related Jordan decompositions. In the following, we derive the principal Hamiltonians
89
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associated with T}, (u), see and (6.50), and use spectral analysis to argue that both of these
TL,(6)-elements can indeed play the role of b, at least for small n. We supplement this result by
determining an explicit polynomial expression for 7, (u) in terms of each of the Hamiltonian elements,
and find that they are well-defined for all # € C and all but finitely many J-values in C. The restrictions
on u and ¢ in Proposition [5.6.1| can thus be relaxed accordingly, at least for small n. Moreover, we find
that, for small n, T,,(u) is polynomial in at least one of the two principal Hamiltonians for all §,u € C,
see the discussion following (6.78).

Remark. Our focus in the following is on probing the naturally arising principal Hamiltonians as
candidates for the integral of motion b,,. In fact, one could also explore whether any given specialisation
of T,,(u), where u is fixed to some value, could play the role of b,,. We have indeed examined several
such candidates, but the standard Hamiltonian has so far had the fewest number of exceptional

points, see the discussion in Section [6.1.5]

6.1.1 Standard modules and cellularity

For eachn € N, let

D, :={n-2k|k=0,...,[2]}, (6.1)

which is a naturally ordered set with min(D,,) = %(1 —(=1)"). Recall that B, denotes the basis for T,

consisting of Temperley—Lieb disks, which we refer to as n-diagrams, and define the following set
B, =B, \ {1,}. (6.2)

It is common to represent n-diagrams as rectangular diagrams as in Section [5.1] here drawn such that

the marked boundary interval corresponds to the left-most vertical side, as illustrated by

J/A(( AR Z | | 6.3)

We introduce the linear involution
®. T, >T,, x— x®, (6.4)

that acts by reflecting n-diagrams about a line perpendicular to the marked boundary interval, and if x
is expressed as a rectangular diagram, this is simply the horizontal. On the algebra TL,,(9), this yields

an anti-involution.

Remark. We highlight that -® is linear and is therefore distinct from the conjugate-linear involution -*

introduced in Section [5.1]

Foreach d € D,, let B, 4 C B, denote the set of n-diagrams with exactly d nodes on the lower edge
connected to nodes on the upper edge. The d loop segments connecting these 2d nodes are referred to

as through-lines. We now let S, 4 denote the set of all n-diagrams with d through-lines, whose upper
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edge has been discarded along with any loop segments having both endpoints on the upper edge. The

elements of S, 4 are referred to as (n, d)-link states and the elements of

Su= ) Sna (6.5)

deD,

are referred to as n-link states. To illustrate,

\ A 66)
= 2 L 2 M

give rise to the same (6,2)-link state. In fact, the (n,d)-link states may be viewed as equivalence
classes of n-diagrams. From that perspective, the two 6-diagrams in are seen as representatives
of the same (6,2)-link state.

The vector space

. n n
Vn,d = Spanc(sn,d)a dlmVn,d = |Snd| = (n—d) - (n;d _ 1), (6.7)
2

2

becomes a TL, (5)-module by defining an action of the algebra generators on the link states such
that ax(av) = (azxa;)v for all ay,a; € TL,(6) and v € V,, 4. The action defining the familiar standard
module, V, 4, is first given diagrammatically for n-diagrams acting on (n, d)-link states in the ‘natural
way’, see e.g. [62], and then extended linearly to all of TL,(6) and all of V,, 4.

For each pairx,y € S, 4, let (x,y),.4 be constructed by reflecting the link state x about the horizontal,
placing it below the link state y, connecting the strands in the natural way, and replacing any loop by a

factor of ¢, see e.g. [62] for details. This extends to a bilinear map

(s Ina: VnaXVpa — C[6], (x,y) = (X, Y)na- (6.8)

Relative to the (n,d)-link state basis S, 4, the nonzero elements of the corresponding Gram matrix
G .4 are all monomials in 6. The Gram determinant is thus polynomial in 6, and following [63], it can

be expressed as

Ud+j(g)
detGua =] | T
j=1 \FJi-1{3

where Uy (x) is the k™ Chebyshev polynomial of the section kind.

n-d dimVy, 442
) , (6.9)

For each pair x,y € S,, 4, let |x y|, 4 be constructed by reflecting the link state y about the horizontal,
placing it above the link state x and connecting the d defects non-intersectingly. This extends to a
bilinear map

|' '|n,d: Vn,d XVn,d - TLn,a’(é), (X,y) = |X yln,d~ (610)

where TL,, 4(9) is the subset of TL,(6) whose elements have exactly d through-lines. It follows that
1X ¥lnaz=(y:Dnax, Vx,y,z€ V. (6.11)

When clear, the subscripts of (-,+),4 and |- |, 4 will be suppressed, writing (-,-) and |- -|, respectively.
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It follows from Section [4.4] that TL,,(5) is cellular with cell datum (D, S,, |- :|,®). We note that

the involution ® provides an adjoint operation relative to the bilinear form (-,-) on V,, 4:
(x,ay) = (a®x,y), a € TLy(6), x,y € Via. (6.12)

In preparation for the discussion in Section [6.1.4] let

V, :=spangs(Sy), (6.13)
and note that, as vector spaces,
V= D Via (6.14)
deD,
hence
n
mmuf:Eden@d:(n). (6.15)
deD,, LEJ

We also let o, 4 denote the representation corresponding to the standard module V,, 4, and let

on =P ona. (6.16)

deD,

Relative to an ordered V,,-basis of the form
S5, USns 42U+ -US, sni=3(1=(=1)"), (6.17)

the matrix representation of o, is block-diagonal. Moreover, from Section 4.4} we have that g, is
faithful for all 6 € C for which [],cp, detG, 4 # 0. In particular, g, is faithful for 6 an indeterminate

and fails to be faithful for at most finitely many ¢-values in C.

6.1.2 Transfer operators

Recalling the form of the R- and K-elements giving rise to a homogeneous Baxterisation presented in
Section we have
R(u) =1, +ue, K(u)zf(u):]ll, (6.18)

where u € C. Diagrammatically, this R-element is given by

NN N
R(u)= = = 9@ +u = , 6.19
)= Ju = D +u = (6.19)

and the transfer operator can be expressed in its familiar (see e.g. [21]) diagrammatic form

I I I
U ==l == U
- - -
Lw=( | |1 ).
ou —'u---'u
| | |

: (6.20)
To emphasise its dependence on &, we occasionally write 7,,(u, ) instead.

Remark. The parameterisation in (6.18)) ensures that R(u) # O for all «, and this would similarly have

been achieved had we chosen to work with R() = ii 1, +e, where R(i) # 0 for all i € C. Viewing u
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and 71 as coordinates on the Riemann sphere, we see that, for all u € CU {co}, R(u) — R(il) = % (u)

:I»—

asuri=
With (6.19)), we have the decompositions
[ [
N o
| =uy C+(u+v+5) , | )Z ) +(u+v+ouv)
ou - -

J
| r | R
J

/ - .\
= ‘ C+(u+v+5uv) , | )—MVD +(u+v+9) . (6.22)
i r o R

Equations (6.21)) and (6.22)), reduce to the so-called “drop-down” relations [64] under a specialisation,
see also Proposition [3.4.1]

, (6.21)

Proposition 6.1.1. We have

Tn(”)|5+2u=0 = 6u”"1,, Tn(”)lu(2+5u):o =01, (6.23)
Proof. The results follow from repeated application of (6.21)) with v = u, to (6.20). O
Proposition 6.1.2. We have
[ [ [
‘u —"‘u -=="u
T,(u) = | | | (6.24)
MU= == U

Proof. For u(2+6u)(6+2u) =0, apply (6.22) with v = u to the right-hand side of (6.24). Comparing
with Proposition [6.1.1] we arrive at (6.24). If u(2+6u) (6 +2u) # 0, the operators

N/ 1—2\/\/ N/ —1\/\/
——y(+ N - + (6.25)
/N u(2+5u)/\ VS 7 N\ 2u+5/\ N\
satisfy
I I
N N\ T “UN/ N
' ' = . | i = . | N (626)
A A - - A < N\ -
I I
and
240 0+2
CC22C 30#5) e
“ C5+2u _ u(2+5“)
It follows that
I I I I I I
=~ ‘u —"u -=-"u ~N
U — U e = W) - ) =
I I I I I I

and we arrive at the desired result. O
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Recall that the R-operator satisfies the following crossing symmetries
\-/ \-7/ \-7 \-7
u, =u W su = lus . (6.29)
7N\ 7\ 7\ 7\
with # = 1 an isotropic point. By Proposition

T,(u) = u”'T,(1/u), (6.30)

so u~"T,(u) is invariant under u — 1/u. Since T,,(u) is polynomial in u of degree at most 2, it follows
that there exists 7}, (x) € TL,(8)[x] such that

To(u) =u"T,(u+1). (6.31)
Moreover, there exist ay, . ..,az, € TL,(6) such that
2n .
To(u)= )" agt, (6.32)
i=0

and using (6.30), it follows that ay,—; =a;, i =0,...,n—1, so

T (x) = ay +2Z an-T (%), (6.33)

i=1

where Tk(c) is the k™ Chebyshev polynomial of the first kind. In establishing (6.33)), we have used the

familiar relation
T (cosh@) = cosh(k6), geC. (6.34)

To shine further light on the structure of 7,(u,6), we introduce the following parameterised

elements of TL, (). For n € N and each pair j, k € Ny such that j+k <n-2, let
I I

‘u - =="u
S;nz(u) =1 - | | -, (6.35)
RAEER"
| |
Jj n—j—k k

which reduces to S;.f’z_j_z(u) =e ;4 for k =n— j—2. To emphasise its dependence on ¢, we occasionally

write S;f‘,l(u,d). Note that S;'f,z(u) € spanc(B,,).

Lemma 6.1.3. For n € N, we have
| | |

ou _Ou .--Ou I’Z—2
|1 ) =P+ 6+ 2u) Y w8 () (6.36)
M — U == U k=0 ’

and

. n=2
<| | ] =Letu@+ou) Y U w). (637)
X j=0
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Proof. The result (6.36)) follows by induction on n, decomposing the two right-most R-operators as in
(6.22)) with v = u and using that both sides of (6.36) reduce to 1; for n = 1. The result follows

similarly. m|

For k € Ny and x € C, we let
[k]:= T4+x+---+xF1 (k> 1), [1]c:=1, [0],:=0. (6.38)

Proposition 6.1.4. The transfer operator decomposes as
n-2n—-2—j
T (u,6) = (8[n+ 11,2 +2u[n],2) 1y +u(5+2u) (2 +6u) Z Z uz"sj.’;z(u). (6.39)
J=0 k=0
Proof. By (6.22)) with v = u, we have
| | | | |
‘U —"u -==‘u =y =y
T, (u) =u(2+d6u) | - ) + C | - . (6.40)
U= == u U U == U
| | | | |
The result now follows by induction on n, applying (6.36) to the first term on the right in (6.40) and

the induction hypothesis to the second term. O

Corollary 6.1.5. For u(6+2u)(2+déu) # 0, we have

n-2n-2—j n-2n-2—j
— > > wst () = ur? L5t (). (6.41)
j=0 k=0 j=0 k=0
Proof. The result follows from (6.30) and Proposition [6.1.4] ]
Corollary 6.1.6. The transfer operator decomposes uniquely as
T (u,6) = (6[n+ 11,2 +2u[n],2) Ly +u(S+2u) (2+6u) Z ' (u,6)a, (6.42)
acBy,

where F‘(,n) (u,0) is polynomial in u,§ for every a € B,

Proof. With the parameterisation (6.18)), the decomposition of 7, (u,d) into connectivity diagrams
(elements of Bj,) involves only coefficients that are polynomial in u,d, and since B, is a linearly
independent set, the decomposition is unique. The restriction to a summation over Bj, is permitted

(and required for uniqueness) because S;”z (u) € spanc(B)). |

Remark. The expression (6.20) for 7,,(u,d) may be formally extended to n =0, yielding 7o («,0) = 6 1.
With 1 = 1, this becomes Ty (u,6) = 6.
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6.1.3 Hamiltonian limits

Proposition gives sufficient conditions for the determination of identity points. We now classify

the identity points for T,,(u,5), n > 2.

Proposition 6.1.7. Let n € Ns,. For § ¢ {-2,0,2}, the set of identity points for T,,(u,d) is given by
{0,— 2, %}. For T,,(u,+2), the set of identity points is given by {0,F1}. For T,,(u,0), the only identity

point is u, = 0.

Proof. 1t follows from (6.35)) that the connectivity diagram corresponding to e; - - - e, only appears

in S;"/z for j = k =0, with coefficient u"~2. By Proposition|6.1.4, the element thus appears in T}, (u, 5)

with coefficient "~ !(§ +2u)(2 + 6u). This expression vanishes exactly for the indicated values of

u. O

To determine the Hamiltonian associated with the identity point u, = 0, we use Proposition[6.1.4]to

compute
n—1
T(€,6)]550 = (5+26)1,+2€5 ) e;+0(€?), (6.43)
j=1
n—1
LT,(e,0) = 1n+2ezej +O(€2). (6.44)

J=1

For n > 2 and all 6, we may thus choose the familiar (see e.g. [21}46,/65])

ho=-Y e (6.45)

as the principal Hamiltonian associated with u, = 0.

Remark. There is also a ‘hidden’ identity point at infinity, see the Remark, following (6.20), that
addresses the extension of the domain for u from C to the Riemann sphere. The corresponding principal

Hamiltonian is proportional to .

Hamiltonians associated with the identity points u, = —% #0and u, = —% do not seem to have
been discussed before in the literature. To determine the corresponding principal Hamiltonians, /_ s

and h_2, we expand as
)

n-2n-2—j
Tu(~3+€.6)|,,0.0 = (%ﬁue(z[n]% no? 1))]1 re@ -4 3 (55 (-9 +0 (e,
7=0 k=0
(6.46)
n-2n-2—j
T(=2+€.6)|5,0.., = (6—2€[n] 2)]ln—e(62— 4) gz"“s;’j; ~2)+0(eY), (6.47)

j=0 k=

=]
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and
n-2n-2—j
To(=1+€,2) =2(1 —en+e*n?) 1, — de ZS(")(—l 2)+0(e), (6.48)
=0 &
n-2n-2—j
Tn(1+e,—2):—2(1+6n+62n2)]ln—4622 Zs(") (1,-2)+O(€%). (6.49)
=0 k=0

Proposition 6.1.8. Forn € N>y, 6 #0, and up to rescaling, the principal Hamiltonian for u, € {—g, —%}

is given by
-2n-2—j

2
Z w2 s\ (). (6.50)

=0 k=0

1 n—

n2
*

With the chosen normalisation, it holds that h_ 5= h

c«.IN

Proof. The expression (6.50) follows from (3.56) and the expansions (6.46)—(6.49). The relation
h. 5= h. 2 follows from Corollary@ |

Although hn’_ 2 and hn’_ s are linearly dependent, hn,_ 2 and h, o are not. We also note that
hu, € spang(s| (B}, u, €{0,-2}. (6.51)

For n=2,3,4,5, the principal Hamiltonian £, _ 2 is given in Appendix
At the isotropic point u = 1, Proposition [6.1.4]implies that

l\)

n-2n-2—j
T,(1,6) = ((n+1)6+2n) 1, + (5 +2)? Zs“”u,a), (6.52)

j=0 k=0

I
(=]

and we note that 7,,(1,-2) = —21,, in accordance with (6.49)).

6.1.4 Minimal Hamiltonian polynomials

Since TL,(9) is finite-dimensional, corresponding to each a € TL,(6), there exists a unique monic
polynomial, of least positive degree, that annihilates a — the so-called minimal polynomial of a. Let
ml(,") denote the minimal polynomial of 4, ,, for ¢ an indeterminate, and let mf{’:?é denote the minimal
polynomial of #,,, for 6 € C. Examples are provided in Appendix and Appendix We

denote the degrees of the minimal Hamiltonian polynomials, m( " and m(”) , by
LY =deg(my”), 1" = deg(m™)). (6.53)
For ease of presentation, we let
¢ 1= (Lg J). (6.54)
Proposition 6.1.9. For each n € Ns, and u.. € {0, —%}, we have
1< 1 < ¢, (6.55)

U0 —
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Proof. For o, faithful, the minimal polynomial of o,(h,,) is the same as that of &, , irrespective
of ¢ being an indeterminate or taking on a complex value. Specialising ¢ to a complex value may
introduce spurious (see Section 4.3]and the remark following (6.58))) degeneracies in the spectrum of
on(hy,), and such degeneracies could reduce the degree of the minimal polynomial of o, (#,,). This
explains the first inequality. The second inequality follows from the existence of a ¢,-dimensional

representation, o, that is faithful for ¢ an indeterminate. m]

Remark. To appreciate the inequality 115'36 < ¢, directly, note that g, is a ¢,-dimensional representation
that 1s faithful for all but finitely many 6-values. The degree of the minimal polynomial for 6 complex
and generic is thus bounded by c¢,, and, possibly rescaled to remain well-defined, the corresponding
minimal polynomial will remain annihilating when specialising ¢ to one of these values. Such a
rescaling can be chosen such that the rescaled polynomial is nonzero when specialising 6, and the
degree of this rescaled polynomial may decrease upon specialisation (this happens if and only if
the rescaling multiplies the leading monomial by a factor that is zero when specialised) but cannot

increase.

Proposition 6.1.10. Let n € Ns», u, € {0, —%}, and 6 an indeterminate. Then, hy ,, is non-derogatory
if and only ifl,xl) =y

Proof. For o, faithful, the minimal polynomial of 4, is the same as that of o, (4,,), and A, is non-
derogatory if and only if ¢, (h,,) is non-derogatory. The latter is also equivalent to m,, (p,. ) = Co, (h..)>

hence to deg(m, (1,,)) = ¢x- Since g, is faithful for 6 an indeterminate, the result follows. |

Through direct computation, we have found that the spectrum of g, (ko) for § = -2 is non-

degenerate for n =2,...,17. It follows that

= m=2,..17. (6.56)

1

We likewise find that the spectrum of g, (%, _ 2 ) for 6 =m+n~" is non-degenerate forn =2,...,6, hence

I =¢,  n=2,...6. (6.57)
"5
The specific d-values in these computations are immaterial, as long as they are ‘sufficiently generic’.

Conjecture 6.1.11. For every n € Ny, each u, € {0, —(—25}, and ¢ an indeterminate, the spectrum of

on(hy,) is non-degenerate.

This conjecture implies that, for every n € N>, and u,. € {0, —(—23}, we have
(n) _
1=, (6.58)

Remark. Necessary conditions for strict inequalities in (6.55) are the existence of spurious respectively
permanent degeneracies in the spectrum of o, (h,, ). However, these are not sufficient conditions as
the Jordan-block structure may ‘prevent’ a corresponding reduction in the degree of the minimal

polynomials.



6.1. REVISITING THE TEMPERLEY-LIEB PLANAR ALGEBRA 99

Proposition 6.1.12. Let n € Ns, and u, € {0, —%}. Then, there exist at most finitely many values 6 € C

for which the spectrum of 0, (hy,) possesses spurious degeneracies.

Proof. Since the matrix elements of o, (#,,) are polynomial in ¢, the result follows from Proposition
O

Corollary 6.1.13. Let n € Ns; and u. € {0, —%}. Then, there exist at most finitely many d-values for
which

(n) (n)
(<1, (6.59)
Proof. The result follows from Proposition and Proposition i

About the Jones-Wenzl idempotent, w,, we note that (5.11) and (6.51)) imply w, A, = h,,w, =0,

hence w,, € Cr,(5)(hu,). Assuming (6.58) holds, Proposition |6.1.10| then implies that w,, € (h,, )L, ()
for 0 an indeterminate. It follows that, for every n € N>, and each u. € {0,—(—25}, there exists a

polynomial p,(f:) such that p,(jz)(O) =1, and
W= p P (h), m (ha) = hu,w. (6.60)
Its degree is thus given by
deg(pi”) =1{" —1=c,—1. (6.61)

By (6.56) and (6.57)), the relations (6.60) and (6.61)) do indeed hold for n=2,...,17 in the case u, =0,

and for n =2,...,6 in the case u. :—(%.

6.1.5 Transfer-operator Hamiltonian polynomials

The above spectral analysis of the principal Hamiltonians 4,,,, for small n, together with Proposition
below, indicates that these elements are viable candidates in terms of which the Temperley—Lieb
transfer operator 7,,(u, ) is polynomial. We proceed by presenting explicit polynomial expressions of
T,,(u,0) in terms of the principal Hamiltonians for small n, and by offering conjectures about the form

of such polynomials for general n.

Proposition 6.1.14. Let n € Nyo, u. € {0, —%}, and ¥ denote a faithful representation of TL, (). If

the spectrum of Y (h,,) is non-degenerate, then T, (u,6) is polynomial in h,,,.

Proof. Let the spectrum of ¢ (h,,) be non-degenerate. Then, the characteristic and minimal poly-
nomials of (h,,) agree, so ¥ (h,,) is non-derogatory. Since y is faithful, it follows that &, is

non-derogatory, and since 7, (u,) commutes with A, , we have T}, (u,6) € (hy,)TL,(5)- O

Remark. In the following, we will use that p,, is faithful for ¢ an indeterminate and for all but finitely

many o € C.

Because the matrix elements of o, (7, (u«,0)) are polynomial in §, Proposition implies that

there are at most finitely many §-values in C for which the spectrum of 0,(7,(u,d)) possesses spurious
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degeneracies. Combined with the non-degeneracy observations implying and (6.57)), it follows
from Proposition [6.1.14]{that for every n =2,...,17, T,,(u,0) is polynomial in & for all but finitely
many §-values, and that for every n =2,...,6, T,,(u,8) is polynomial in /_ 2 for all but finitely many

o-values. For n =2, for example, we have h_» = —hg for § # 0, and

Sz
5

Tz(u, 5) = (5[3]u2 +2u [2]u2) 1,- u((5+ 2u)(2 + 5u)ho, (6.62)

valid for all 6 € C. In the following, we will argue that 7,,(u,8) € Clu][h,, ], u. € {0, —%}, for every
n € N, and all but finitely many ¢-values. We refer to these values as h,,, -exceptional and note that

the number of them, and their value will depend on » and u..

Conjecture 6.1.15. Let n € N>3 and § an indeterminate. For each u, € {0, —%}, T,,(u,8) admits a
unique decomposition of the form

l(")_

Tn(u,d):(6[n+1]uz+2u[n]uz)]ln+u(6+f2u)$)+6u) Z " (1, 6) (6.63)

(u,0) are polynomials such that no root of f, . (9) is a

where fy . (6) is a monic polynomial and a;"**

root of a;"* (u,6) for all i = 1,...,1,511) - 1.
For u, = 0, we have verified Conjecture for n=3,4,5,6, finding

f30(0) = fao(8) =1, fs0(6) = (6" +4)(6° - 3)(6* —276 +121), (6.64)
and

e L
(54_1462 121)(64 2562 21
9

(6° - 45t + 6% - 3)(6° - 186* +815% - 16)
512

(6°+116% + 18367 + 131) (6% + 26% + B 5% + 3057 - 22), (6.65)
while for u, = 6, we have verified it for n = 3,4, 5, finding
f5,.2(8)=6°~64, (6.66)

fi2(8)= (6% —256)% (6% +86° +325" +256) (5° + 360 - 326" + 52 — 29)
(6'6—86'* - 645'2 + 64050 +5126% — 266246° +983046* — 1310726 +65536), (6.67)
f5.-2(8) = (5%~ 1024)° ps(5), (6.68)

where ps(0) is a non-degenerate even polynomial of degree 198. Explicit expressions for the associated

Uy

polynomials a," (u,d) are not presented here. Instead, explicit expressions for similar polynomials

are provided in a refined formulation, see Conjecture[A.5.3|in Appendix[A.5.3]
Conjecture 6.1.16. Let n € N3 and 6 an indeterminate. Then,
£-2(8) = (87" =4")"2p, (6), (6.69)

where p,(6) is a non-degenerate even polynomial.
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If Conjecture |6.1.15|holds, then every h, ,, -exceptional 6-value will be a root of f,,, (). The
converse need not be true since 7,,(«, ) could be polynomial in 4, even if ¢ is a root of f,,, (), see
below. Letting E, ,, denote the set of h, , -exceptional ¢-values and Z, ,, the set of roots (or zeros) of

fnu.(6), we thus have
Eni. € Zn. (6.70)

To appreciate what happens if this is not an equality, let u ¢ {0, —g, —%} and rewrite li as
Lt 1

; . (O
Z al (u, )b, = e +f2’u322)+ 5 (Tn(u,5) —(6[n+1],242u [n]uz)]ln). (6.71)
i=1

Specialising 6 to a root, d,, of f,,, () then means that

Ly~

D w o), | =0, (6.72)
i=1

and since at least one of the polynomials a"“* (u, §) is nonzero when evaluated at 6 = &, it follows that
<1 (6.73)

For 6, € Z, ,, \ E,,...., the decomposition (6.63)) is replaced by

1Mo
T (u,6,) = (6, [n+1],2+2u[n) 2) Ly +1u(Sr +2u) (246, Z arie (u)h
i=1

Nscs,» (6.74)

where a;”;_" (u) is polynomial for all i. Although Zz o= Z40 =0 and Zsy = Es5, we find that such a

root ¢, does indeed exist for n = 6, as
Zeo\ Eeo=1{0}. (6.75)

Note that 6, = 0 is the only degenerate root of fgo(9). Through direct computation, we likewise find
that

Z

n,-

=k

n,-

, n=3,4,5, (6.76)

SO
SIS

but have not managed to determine Z, _ 2 and E, _ 2 for n > 6.

For 6, € E,, ., T, (u,8,) is not expressible as a polynomial in 4, ,,. However, observing that

ZyoN Zn’_% =0, n=3,4,5, (6.77)
we conclude that
E,oN En,_% =0, n=3,4,5. (6.78)

It follows that, for n = 3,4,5 and every 6§ € C, T,(u,0) is polynomial in at least one of the two

Hamiltonians: A, and &, .
>0
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6.2 Tensor planar algebra: an eight-vertex model

In this section, we specialise to tensor planar algebras and thereby recover the familiar quantum
inverse scattering framework, in which case, the R-operators are tensorially separable, and outline
how the planar-algebraic framework simplifies. To illustrate, we consider a specialisation of the
zero-field eight-vertex model [66,/67] that satisfies the free-fermion condition, and whose principal
Hamiltonian corresponds to the Ising model Hamiltonian. The general model was solved by Baxter
in [34], see also [11]], while our presentation highlights the underlying polynomial integrable structure
of a particular specialisation, by analysing the spectral properties of the transfer operator and the
associated Hamiltonian.

We thus show that the transfer operator of this specialised eight-vertex model is diagonablisable
and present an exact solution. Although the model is Yang—Baxter integrable, its simplicity allows
us to use standard techniques to obtain explicit expressions for all eigenvalues and corresponding
eigenvectors of the transfer operator. We then exploit similarities in the spectral properties of the
transfer operator and the Ising Hamiltonian to establish that the transfer operator is polynomial in
this element. Moreover, we decompose the transfer operator into an explicit linear combination of a
complete set of orthogonal idempotents expressed in terms of the minimal polynomial of the Ising

Hamiltonian.

6.2.1 Definition and cellularity

For each n € Ng and ¢ € N, let E, denote the complex £"-dimensional vector space spanned by disks
with n labelled boundary points where each label is taken from the set {1,...,£}. As the disks do not
come equipped with any further (interior or otherwise) structure, we have E, = E®", where E is an
{-dimensional vector space.

The tensor planar algebra is the graded vector space (E,),en,, together with the following action
of planar tangles: If a string in the planar tangle connects a pair of boundary points with different labels,
then the output is the zero vector, and if not, then the labels of the output vector are given by the labels
at the opposite string endpoints. If both endpoints of a string are on the exterior boundary of the planar
tangle, then the output vector is a sum obtained by varying the common label of the two endpoints.
Following from compatibility with the glueing of planar tangles, and using the evaluation map e (2.20),

a loop is accordingly replaced by the scalar £. To illustrate, with 7" as in (2.4) and a, b € C, we have

/) it /) it
Gl g
3-344 g SIS

& /2‘4\0

We now equip each Ej, with the multiplication induced by the unshaded planar tangle M, fol-

(6.79)

lowing from (2.26)), and identify the first n labels clockwise from the marked boundary interval as
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characterising an incoming vector, with the remaining »n labels characterising an outgoing vector. The

vector space E», thus has the structure of an endomorphism algebra,

E», =End(E®"), (6.80)
and is consequently cellular.
6.2.2 Transfer operator
Let bases for £, and E4 be given by
={ef|j.ke{l,....0}}, By={ef"|j. k.l me{l,...,0}}, (6.81)

respectively, such that, viewed as matrices relative to the natural basis orderings, ejf are ¢ X { matrix

units with 1 in position (j, k) and zeros elsewhere. By construction,
E», = [End(E)]®", (6.82)
so every element of Ey is separable. In particular, the E4 basis vectors decompose as
eit=el@el, jk i me{l,...,0}. (6.83)

As parameterised elements of E, and E4, respectively, the K- and R-operators (3.3)) are here written

as

14 . 4 . Ie
K(u) = ZKk<u) Raw= Y Rpw 3 R - D K 689

ip]l
jk=1 jokLm=1 r\ jk=1 /

—k . .
where K J’.‘,R;? l’”,K ; are scalar functions, and where we have attached short strings to the labelled

boundary points, for illustrative purposes. The separability of E4 allows us to write

4
R(u) = Z R (u) 1 1 = Z REM(u)ek el (6.85)

J.k,l,m=1 Jok,lm=1

Using the same scalar functions but with the upper indices interchanged, we get
¢
R(u) = Z R (u) = Z (u) = Z REM(u) e @ ef, (6.86)
Jok,m=1 J.k,l.m=1 Jok,m=1

in terms of which we construct the Sklyanin-type transfer operator 7, (1) € Ey,, as in (3.43).

Accordingly, T, (1) can be expressed familiarly as a vector-space trace over an auxiliary copy of

End(E) in Ey,4. In the following, the auxiliary space is the (n+1)™ copy, and the corresponding
trace is denoted by tr,,4;. Foreachi =1,...,n, we first introduce
¢
Riper () := Z REM(u) 1oy ®@ek @1, @6, (6.87)
J.k,l,m=1
¢
Ruii(w):= > REP )1 @ef @1, @k, (6.88)

Jk,l,m=1
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where the indices i and n+ 1 denote the copies of Eon which the operators act non-trivially, as well as

€ €
- —k
Ki(u) := Z K¥(u) ek ®1,, K1 (1) := Z K;(u)1,®ek. (6.89)
Jk=1 Jok=1

The transfer operator can then be expressed in terms of the ‘pre-trace’ transfer operator

Ln+1 (Lt) = Rn,n+1 (Lt) e Rl,n+1 (M)Kl (u)Rn+1,l (u) T Rn+1,n(u)fn+l (Lt) (690)
as
Tn(”) = try41 (Lpg1 (u)). (6.91)

6.2.3 Eight-vertex model

For the remainder of this chapter, we let
dim(E) =2 (6.92)

and fix the parameterisation to an eight-vertex model, characterised by

I, j=m,l=k,
u, j=Lk=m,j+k, _ 1, j=k,
Ry =1" " / Kiw =Kiw={" "’ (6.93)
u, j=kil=m,j#lI, 0, Jj#k.
0, otherwise,

Working in the natural matrix representation where e f are matrix units, and where 1 denotes the 2 x?2

identity matrix, the R- and K-operators can be expressed in terms of Pauli matrices as
1 —
R(u) = 5 [(1 +u)(1®l+o0*®0c")+(1-u)(0c? @0’ +0° ®0'Z)], K(u)=K(u)=1. (6.94)

It follows that

R*uw)=(1+u*)1®1+2uc @0, (6.95)
Ruw)(1®0c")Ru)=1+u’)oc*®1+2ul®0c”, (6.96)
and using the standard notation
Opi=1li1®0"® 1, ae{x,y,z},ie{l,...,m}, meN, (6.97)
we then have the following result.
Lemma 6.2.1. L, (u) is polynomial in 0';+1’1, ... ’O-r)zc+l,n+l'
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It follows that
L) =LPw) @ 1+LY ) @0, (6.98)

for some L,(qo) (u), Lfll)(u) € E,,, and consequently that

To(u) = 2L (u) (6.99)
and
[T,(u),T,,(v)] =0, Yu,v eC. (6.100)

The next result allows us to determine the polynomial structures of L, (u) and T, (u).

Proposition 6.2.2. With Li(u) =1 and T (u) = 2(1 +u?)1, the matrices Ly, (u) and T,(u) are

determined recursively by

Lovi(w) = (1+u?) Ly +2u 0" @ 0" ® 1,-1) (1 ® Ly (u)), (6.101)
To(u) = (1+uH) 1, +2u 0" @ @ 1,-2) (1 ®Tp—1 (). (6.102)

Proof. Using K(u) = K(u) = 1 and that R,.1 (1) = Ry ,.1(u) for all i, the relation (6.101) follows

from
L1 () = Ryps1 () -+ Ry a1 (W) Ry a1 () -+ - Ry 1 (u)

= Ryt (1) Ro et () [(146) Ly +2u 0" @ Loy ® 0| Ro st (1) -+ Ryt (1)

= (1+u?)1® Ly(u) +2u 0™ ® (Ry—1 (1) -+ Ry () [1-1 ® T 1Ry () - Ry ()

= ((1+u*) Ly1) (1 ® Ly (1))

+2u 0" ® (Ru—1,0 () -+ Ron(u) [0 @ 1y JR1u (W) Ry (1) - -+ Ry o (u))

= ((1+u®) L)) (1@ Ly () +2u (0" @ 7" @ 1,-1) (1 ® L, (u)), (6.103)

where the fourth equality is a consequence of
R(u)(1®c™)R(u) = (c* @ 1)R*(u). (6.104)

The relation (6.102)) is an immediate consequence of (6.101]). O

In preparation for giving explicit expressions for T;, (1), let

L= A{(i1..iof) EN* 1 <y <o <ip <n},  k=1,...,|2] (6.105)
and define
2k
kni: Ink — Z., (it rie) = (=D, (6.106)
=1

Note that «, 1 (¢) € {1,...,n—1} forall c € [, .
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Proposition 6.2.3. The transfer operator admits the multiplicative expression

n—1
To(w) =201+ [ [ [(1+u)) Ly +2u 0707, ] (6.107)
i=1

and the additive expression
15]
To(u) = 2(1+u®)" 1, +2(1 +u?) Z Z (1+u?)" k(0 ()KL g (6.108)

n,i n,izg
k=1 1=(iy,....i2x ) €Ly &

Proof. The multiplicative expression is readily seen to satisfy the recursion relation (6.102)), including
the initial condition for n = 1. The additive expression follows by expanding the multiplicative

expression. O

We let |+) denote eigenvectors of o,

1
o) = £|+), |£) = [ ], (6.109)
+1
and let
n—1
Kp: {£}" > {0,1,...,n—1}, (S],...,Sn)r—>2|si—si+1|, (6.110)
i=1
denote the function that counts the number of sign changes present in (sy,...,s,) € {£}". The
pre-images
Viux :=spanc{|K; 1 (k))}, k=0,1,...,n-1, (6.111)
have dimension
-1
dimV, :2(”k ) (6.112)
consistent with
n—1
dim(E®") = |{}"| =2" = Zdim(vn,k. (6.113)
k=0

Proposition 6.2.4. The transfer operator T, (u) is diagonalisable, with eigenvectors
) =Is1) ® - ®]sn), s=(S1,-..,50) € {£}", (6.114)

and corresponding eigenvalues

As(u) = 2(1+u?) (1= u)Kn ) (1 4 49) 2= 1=Kals)) (6.115)
Proof. The result follows from the multiplicative expression (6.107)). O

The following result readily follows from Proposition [6.2.4]

Corollary 6.2.5. For each k =0,1,...,n—1, V, i is the T, (u)-eigenspace corresponding to the

eigenvalue 2(1+u?) (1 —u)* (1+u)*"=1=%) and we have the eigenspace decomposition

n—1
E®" = (P Vs (6.116)
k=0
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6.2.4 Polynomial integrability

Since T;,(u) is diagonalisable and satisfies (6.100)), the corresponding eight-vertex model is polyno-

mially integrable. As we show in the following, the transfer operator is polynomial in the principal

Hamiltonian given in (6.118].

It follows from Proposition [0.2.3]that u, = 0 is the only identity point, with
n—1
T,(€) =21, +4GZ oLt +O(E). 6.117)
i=1
The corresponding (renormalised) principal Hamiltonian is given by
n—1
=) 0 (6.118)
i=1
Proposition 6.2.6. The principal Hamiltonian h,, is diagonalisable, with eigenvectors

s) =[s1) ® - ®|sn), S=(S1,...,8,) € {+}", (6.119)

and corresponding eigenvalues

us=n—1-2K,(s). (6.120)
Moreover, for each k =0,1,...,n—1, V, « is the h,-eigenspace corresponding to the eigenvalue
n—1-2k.
Proof. The result follows from (6.118)). |

Remark. The eigenvalues of 7;,(x) and h,, are related as
As(€) =2[1+2eus+0(e?)], Vs e {£}". (6.121)

The form of the minimal polynomial of %, follows from Proposition[6.2.6] To fix our notation, we

define the polynomials

~.
|
—_

mi(x) = [[x=(-1-2k)], jeN. (6.122)
k

I
o

Corollary 6.2.7. The minimal polynomial of h,, is m,,.
Although £, is not non-derogatory, it follows from Corollary [6.2.5]and Proposition [6.2.6] that
T,(u) € C(u)[hy]. (6.123)

The next result provides details of this polynomial. In preparation, let A () and u; denote the eigen-
values corresponding to the (joint) eigenspaces V, x, k =0,1,...,n—1, of T, (1) and h,,, respectively.

For ease of reference, we recall their expressions,

() =2(1+u®) (1 =) (1 +u)?0170), up=n—1-2k, (6.124)
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and introduce the n X n matrix

1w ... ;18_1
| T TR T

V, = L, neN. (6.125)
o !

Since this is a Vandermonde matrix with u; # u; for all i # j, it is invertible, and the inverse can be

evaluated explicitly. For every n € N, we let mq(h,) = h% = 1,,.

Proposition 6.2.8. For every n € N and all u € C, we have

n—1
To(u) = > 7i(u)hj, (6.126)
i=0
where
n—1
() = > [V T i d; (w), i=0,1,....n—1. (6.127)
J=0

Proof. That an expression of the form (6.126) exists follows from (6.123)) and Corollary Using
the common eigenbasis {|s)|s € {+}"} of T,,(«) and h, to diagonalise the expression, yields

n—1

diag(Ao(u), A1 (u),...,Ap-1(u)) = Z diag(*r,-(u),ug, T,-(u)yi1 Yo T,-(u),u;_1 ), (6.128)
i=0

where we have omitted repeated eigenvalues. Compressing the diagonal matrices into vectors, we

obtain
[0 | [t om0 ]
n—1
_/ln—l(u)_ _1 Mp-1 ... ,uz:i_ _Tn—l(u)_
and since V,, is invertible, follows. o
Foreachi=0,1,...,n—1, we let
' n—1
my ()= | | =g, (6.130)
k=0
ki
and note that
; ; : n—1\"
ma(x) = (x = piymy (x), my (1) = 8, (=1)"(2n —2)!!( ,- ) : (6.131)

Since m,(f) (w;) # 0 for all i, we can renormalise the polynomials (6.130)) as
my (x)

i (x) 1= =,

i=0,1,...,n-1. (6.132)
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In terms of these polynomials, we now define
pr = (hy), i=0,1,...,n—1. (6.133)
Using standard arguments, we have the following result.

Proposition 6.2.9. {p;|i=0,1,...,n— 1} is a complete set of orthogonal idempotents:
n—1
Dipi=1n, PPk = 0 kP Vjke{01,....n—1}. (6.134)
i=0

Proof. By construction, each mf, Z (x) is a polynomial of degree n—1, so 3./ mfl’) (x) is a polynomial
of degree at most n— 1. Since m,,)(,uj) = ¢;; for all i, j, we have Zl 0 mf,’) (uj) =1 for every j €
{0,1,...,n—1}, and since |[{uo, 41, ..., n—1}| = n, it follows that Z” fl’)(x) =1, hence Z" o Pi=1,.

For j # k, we have

my(hy, o

PP = ( 2) [ | hn=pit) =o0. (6.135)
() mi () o
i#j.k

Finally, for each k =0,1,...,n—1, we have

(mP (x) =mP (u)|._, =0, (6.136)

X=pig

SO

i () =y (i) = (6= i) g (), (6.137)
for some polynomial g (x). It follows that

(hn_:uk]ln)Qk(hn) CIk(hn)

« (k)

PkPk — Pk = P iy (hy) = 5 M (hy) =0. (6.138)
m{ () (m$ (ur))

O

Lemma 6.2.10. For eachi=0,1,...,n—1, we have
ker(p) = ED Vauk, im(p;) = V. (6.139)

ki

Proof. Leti,k € {0,1,...,n—1} and v € V, . Then,
piv =My (i )v = Gy, (6.140)
and since p; is an idempotent, the result follows. O

Proposition 6.2.11. For every n € N and all u € C, we have

n—1 n-1 i .
T (u) :Z/li(u)pizz(nzl)%m,(;)(hn). (6.141)
i=0 i=0 o
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Proof. The result follows from Proposition [6.2.4, Corollary Lemmal6.2.10]and (6.131). i

Alternative expressions for 7;,(u) can be obtained, for example by evaluating the inverse V!

explicitly and using

n—-1
My (x) = X" — Z [V licn o1 (6.142)
i,j=0

We thus conjecture that 7;, (x) admits the following expression in terms of the double factorial binomial

coefficient 68|,

(("2)) o (n —m)! (6.143)

Conjecture 6.2.12. For every n € N and all u € C, we have

(6.144)

Lk —2425) (=) Tmya; ()
(( 2j )) (k=2j)!

n-1
T (u) = 22(1 +u?)"* (Qu)*
k=0 Jj=0

We have verified Conjecture forn=1,...,180.
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Chapter 7

Loop models on causal triangulations

In this chapter, we develop a planar-algebraic framework to describe and analyse statistical mechanical
models on two-dimensional causal dynamical triangulations. We introduce a dense and a dilute loop
model, each defined in terms of an underlying transfer operator (distinct from the one defined in
Section [3.1]), and whose underlying algebraic structure is endowed from the tensor planar algebra.
Both models are characterised by a geometric coupling constant g and a loop parameter « such that the
purely geometric causal triangulation model is recovered for @ = 1. We show that the dense loop model
can be mapped to a solvable planar tree model, whose partition function we compute explicitly and use
to determine the critical behaviour of the loop model. The dilute loop model can likewise be mapped
to a planar tree model; however, a closed-form expression for the corresponding partition function is
not obtainable using the standard methods employed in the dense case. Instead, we derive bounds on
the critical coupling g. and apply transfer operator techniques to examine the critical behaviour for &

small.

7.1 Background

If a two-dimensional statistical mechanical model with a second-order phase transition is coupled
to a random background, its critical exponents may change and there may be a back-reaction on the
background geometry changing its Hausdorff dimension. A prominent example of this phenomenon is
the Ising model on a random two-dimensional triangulation (or quadrangulation), as demonstrated
in [69]]. Other examples are dimer models [70], Potts models [71}/72]], and multicritical models [73]],
see also [[74] for an overview. The relation between the critical exponents, or scaling dimensions, of a
matter field on a flat background and on a random curved background is given quite generally by the
KPZ-formula of Liouville quantum gravity [[75]]. A conjectured formula for the Hausdorff dimension
of the background geometry as a function of the central charge of the matter fields can be found in [[76]],
although recent mathematical results in Liouville quantum gravity [77,78|]] imply restrictions on the
possible range of validity of this formula.

It is natural to ask how universal this so-called dressing of critical exponents is with respect to the
113
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ensembles of background geometries considered. In particular, it is natural to compare the ensemble
of unrestricted dynamical triangulations (DT) (see e.g. [74]) considered in the references above, with
the ensemble of causal dynamical triangulations (CDT) [79]. Without coupling to a matter system,
these ensembles, which we shall call pure DT and pure CDT in the following, exhibit different critical
behaviours, the former having Hausdorff dimension 4 [80,81], while the latter has Hausdorff dimension
2 [82]. Very few analytical results are available concerning matter systems coupled to CDT. A number
of numerical studies have been carried out, notably for Ising type and Potts type models [[83-85]], but
there is no clear indication of a change in the critical exponents. In [86,87]], a class of restricted dimer
models are mapped to certain labelled tree models. Using this, the corresponding Hausdorff dimension
is found to be affected by the dimer system, although the underlying mechanism remains unclear. In
the work [88]], a class of CDT models with curvature-dependent weights is found to exhibit the same

scaling behaviour as pure CDT.

In statistical mechanics, one usually works with local degrees of freedom, such as spins or heights,
as in the Ising and Potts models above. However, percolation and polymer systems, for example,
require that one keeps track of connectivities or some other inherently nonlocal degrees of freedom
and this paradigm shift has a profound effect on the physical properties of the models. Critical
fully-packed loop models on regular square lattices have thus been found to give rise to logarithmic
conformal field theories in the continuum scaling limit [21]]. Using underlying Temperley—Lieb
algebraic structures [13,89], these loop models are found to be Yang—Baxter integrable and amenable
to exact solutions. One of these models describes critical dense polymers and has been solved exactly
on the strip [46]], the cylinder [64] and the torus [90], confirming predictions about scaling dimensions
made in [91-93]]. Other types of loop models have also been constructed, including dilute loop models
associated with the O(n) models [94,95] where the configurations may contain spaces of variable
sizes in between the loop segments. Loop models have also been coupled to random surfaces [[73}96]],
including random triangulations [97,/98|]. However, to the best of our knowledge, loop models have yet
to be coupled to CDT.

In this chapter, we introduce and study two models of loop configurations on two-dimensional
causal dynamical triangulations: a dense loop model and a dilute loop model, reminiscent of the familiar
fully-packed and dilute loop models, respectively. Both models are characterised by a geometric
coupling constant g associated with the underlying triangulations, as in pure CDT, and a loop parameter
a that encodes the relative weights of the admissible loop configurations on individual elementary
triangles. No weight is associated with the number of closed loops in the models considered here,
effectively setting the corresponding loop fugacities to 1. We show that the known correspondence
between pure CDT and planar trees [82,99] extends to each of the loop models and a corresponding
class of labelled trees. This implies simple relations between the partition functions of the loop models
and those of the associated labelled tree models. In the case of the dense loop model, we solve the
corresponding tree model exactly and find that its Hausdorff dimension equals that of pure CDT. The
critical behaviour of the loop model is readily extracted from the closed-form expression we obtain

for the partition function following our tree analysis. Although the dilute loop model can likewise be
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mapped to a planar tree model, a closed-form expression for the corresponding partition function is not
obtainable using the techniques employed in the dense case. Instead, we employ analyticity arguments,
centred around the transfer operator, to examine the critical behaviour of the loop model for a close to
0. We conclude that the critical behaviour for @ small is different from that of pure CDT, and provide
an explanation for this difference. Based on results in [100], we argue that the Hausdorff dimension
equals 1 in this phase. While these results may hold for more general values of @, our analysis has not
been able to confirm this. In fact, it is consistent with our findings that there exists a transition point

ap € (0,1) at which the scaling behaviour changes.

7.2 Loop models

We begin in Section [7.2.1] by recalling the properties of two-dimensional causal dynamical triangula-
tions, which we refer to simply as causal triangulations. By considering dual causal triangulations,
we develop a planar-algebraic framework to describe models on causal triangulations. While the
underlying algebraic structure of this framework is identical to that of Chapter [3] the transfer operator
used to describe models on causal triangulations is distinct. As an application of this framework, we
define a pure CDT model in Section a dense loop model in Section[7.2.3]and a dilute loop model
in Section and formulate each in a planar-algebraic setting.

7.2.1 Causal triangulations

A causal triangulation of the disk is defined by a central vertex x, a distinguished vertex v in Sy,
and a sequence of concentric cycles (circular graphs) So = {x},S1,...,S, where m € N is the height,
such that for each k =0, ...,m — 1 edges connect vertices between each cycle Sy and Sk as to form a
triangulation. We denote by Ay the annulus bounded by S and Si.1, and note that Ay is simply a disk
with boundary S| and a central node x. The natural ordering on the concentric cycles is interpreted as
encoding a natural time direction; with the inner-most (S¢) and outer-most (S,,) cycles denoting the
first and last instant of time respectively. Accordingly, edges within each cycle are called space-like
and are here coloured red, while edges connecting two cycles are called time-like and are here coloured
black, see for example Figure For a given S; we denote the number of space-like edges by | S|
and note that |Sy| = 0, while |Sy| > O for all £ € N. Within each Ay, an elementary triangle is either
forward-directed with a single node in Sy and the remaining two nodes in Si, or backward-directed
with a single node in S; and the remaining two nodes in Si41.

As a means to orient causal triangulations, beginning with the distinguished vertex v in S, we
introduce a procedure that assigns a distinguished vertex vy in Sg for all k = 1...m. From v, travel
along the right-most emanating edge to a vertex in S, that we denote by v,. Likewise, v; is connected to
a vertex denoted by v3 in S3 by travelling along its right-most emanating edge. Repeating this procedure
until we arrive at a vertex in S,,, we have a sequence of distinguished vertices vo = x,vy,...v,, where

each neighbouring pair is connected by a time-like edge: {vy,vi+1} for k=0,...,m—1. Relative to the
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distinguished vertex v, space-like edges in Sy are assigned a clockwise order. Accordingly, the first
space-like edge within each annulus Ay corresponds to a forward-directed triangle for all k = 1,...,m.

Note that the above prescription can be adapted to define a causal triangulation of the cylinder and
of the sphere. For the cylinder, the cycle Sy is omitted, and the first instant of time is therefore given
by S;. While for the sphere, we introduce the cycle S,,;+; = {y} as the pole opposite to Sy and adjoin
forward-directed triangles to each of the space-like edges in §,, such that each of these triangles are
connected to the unique vertex y in S,,+1. See Figure|/.1|for an example of a causal triangulation of
each of these topologies.

To each causal triangulation of the disk, cylinder or sphere there is a unique dual triangulation
constructed as follows: assign a trivalent dual vertex to each of the elementary triangles such that the
three emanating dual edges each intersect a unique edge of the triangle; if two elementary triangles
share an edge, identify the two corresponding dual edges that intersect that given edge. Here, the
dual edge inherits the colour of the edge it intersects c.f. Figures and We identify the
distinguished dual edge wy as that which intersects the distinguished time-like edge {vj,vi+1} for
k=0,...,m—1. Accordingly, the dual disk has free edges emanating from the outer cycle, the dual
cylinder has edges emanating from both the outer and inner cycle, and the dual sphere has no free
edges. See Figure for an example of a causal triangulation and the corresponding dual for each of
these topologies.

From the perspective of the planar-algebraic framework presented in Chapter [3] the dual of a
causal triangulation is highly suggestive. The concentric circles of dual nodes indicate a natural
multiplicative structure, while the dual nodes themselves can be elevated to input disks — indicating a
generality beyond pure triangulations. Moreover, the distinguished dual edges w respectively w,, can
be translated to the marked interval of the inner disk respectively outer disk of an annular planar tangle.
Despite these common features, the corresponding transfer operator of models on casual triangulations
is distinct from that presented in Chapter [3} there are two main differences (i) it consists of a sum of
constituent transfer operators, each not necessarily belonging to the same vector space, and (ii) the
R-operators within the constituent transfer operators are not identical, and likewise, need not belong to
the same vector space.

We proceed by defining the annular tangle

2 el
0] e
ST
. \\ iy '
l 1
= ( { SN (7.1)
In ]
/17// In-1 ','

where i := (i1,...,i,) is an element of N” and 0 := (01,...,0,) is an element of N"~! x N, for n € N,
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(e) ®

Figure 7.1: In the first column, we present a causal triangulation on three topologies; the cylinder (a)
and the extension of this triangulation to the disk (c) and the sphere (e). While in the second column,
we present the corresponding dual triangulation of the cylinder (b), disk (d) and sphere (f).
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that indicate the distribution of inner and outer nodes respectively. Note that the inner and outer
distinguished intervals are placed about the distinguished edge of the dual triangulation.

Let (P,)nen, denote the collection vector spaces of a general planar algebra, and let (QP n)m.nen,
denote the corresponding collection of affine vector spaces, defined in Section The R-operators

are defined as the parameterised elements
-, (7.2)

with

—?—:Zra(u)—il—, —’!—:Z’”a(u)—‘!—’ (7.3)

aeB; acBj

where Bj is a basis for P3, r, : Q — C and Q is a suitable domain. By construction, R’IY (u) is an

element of the vector space P 42. We can now define the constituent transfer operator as
T (u) = Pro (R (u), ..., R{" (u)), (7.4)

which is an element QP; , where i = 377 _, iy and 0 = 3}, ox. Applying the map to the plane introduced

in Section 2.6, we can express 7.°(u) diagrammatically as

01 02 oy ok
To(w) = = —Cu - o, RYH )= =u -, 7.5)

[ I N 8

i in in i

where we identify the left-most and right-most edges, which corresponds to the distinguished edge of

the dual triangulation. Finally, we define the transfer operator of a general CDT model as

T(u) ;:Z Z T (u), (7.6)

neN jeN”"
0eN""IxN,

where we note that 7'(u) is an element of the graded vector space (QP;n)n.meN, -
Recall the product structure among elements of (QP; n)nmen,, defined in Section Let
a € QP,,, and b € QP, g, we define

boa, m=r
ab = (7.7)
0, m#r

where b o a corresponds to the insertion of a inside b. To illustrate, the example dual triangulation
presented in Figure corresponds to the element
0 =(1,2,1,2,1), 02=(1,2,2,2,2,2),

7".01 u TOZ u, (7'8)
i (0T () = (LLLLY, i=(121,1,11).
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With the multiplication defined in (7.7), we emphasise that many terms in the product between two
transfer operators are eliminated. The particular model described by the transfer operator depends
entirely on the parameterisation of the constituent R-operators (7.2)—(7.3)). Given a parameterisation,
the transfer operator 7'(u)" generates, as a linear combination, all height n causal triangulations of the
cylinder, where we note that the inner-most and outer-most edges are weighted as the ‘square root’ of

the internal edges.

7.2.2 Pure CDT model

Let C,,(N) denote the set of all height m causal triangulations of the disk with N vertices, and let C,,
denote the corresponding set where the constraint on vertex number is relaxed. We define

m

Cli= )" IS, C € Cn, (7.9)
k=0

as the number of space-like edges in C, equivalently the number of vertices in C, excluding the central
vertex. It is convenient to include the degenerate case where m = 0, hence C = Sy and |C| = 0 for the
unique ‘triangulation’ C € Cy.

The pure CDT model weights each C in C,, by associating a factor of g € C to each space-like edge

in C. Accordingly, the partition functions of the model are defined as

2(g) = Zn(2), Zn(g)= ), &, (7.10)
m=0

CeCp,

and we note that Zy(g) = 1. As is clear from the expression above, the model need not be well defined
for all g € C. It is understood [79], and will be shown below, that there exists a critical coupling g. > 0
such that Z(g) is analytic for g < |g.|, while Z(g) is divergent for g > g., and therefore is singular at
the point g = g..

Remark. As each causal triangulation of the disk has a unique equivalent on the sphere and on the
cylinder, and these triangulations have the same number of space-like edges, configurations of the pure

CDT model can be considered as belonging to either of these topologies.

There is not a unique algebraic structure underlying the pure CDT model. As our goal is to
understand the critical behaviour of the partition function (7.10)), we opt for the simplest planar algebra
such that the partition function of the model can be expressed as a function of the transfer operator.
Accordingly, we specialise to the tensor planar algebra (E,),en, Where E, = E®" and dimE = 1, see
Section [6.2.1] for the definition. As there is a single label for the nodes of each disk in E,, for n € N, we
will omit it entirely.

For the pure CDT model, the elementary operators must simply account for the weight associated

with each space-like edge, as such, we introduce the following parameterisation

_g—:gf—o — —gr—:gf—o-o—’ (711)
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where the combination of two dual space-like edges under the product assigns the appropriate weight

g. Given this parameterisation, we write the R-operator as

k

——

L1

R (g) = g?Uh) -0 Wosuy (7.12)

—
J

Recall that if two elements in the tensor planar algebra have the same number of external nodes with

the same labels, they are equal, independent of their internal structure. Accordingly, by collecting

terms in the transfer operator, we have

T(g)= ) (Hj_l)g% H (7.13)

. ’
r,seN LT
K

where the combinatorial factor counts the number of ways r outward (up) pointing edges and (s — 1)
inward (down) pointing edges can be distributed to the right (viewed outwardly) of the first inward
pointing edge.

It will be convenient, when analysing the transfer operator 7(g), to instead work with a representa-
tion of this algebraic element here denoted by T(g), that acts on the Hilbert space of square summable

sequences

BL(N) = {(x)net | D Ial” < 003 x; € C, i € N}, (7.14)

n=1

where n labels the number of edges. Accordingly, the matrix elements of T(g) with respect to the

standard orthonormal basis of /(N) are given by

r+s—1\ res
Tr,s(g):( . )gz. (7.15)

To distinguish our terminology, we will refer to T(g) as the transfer matrix corresponding to the

transfer operator 7(g). In the following, we use Dirac notation |w) to denote a sequence in /> (IN) with

coordinates w,, we similarly let {(w| denote the corresponding conjugated sequence. Geometrically,

|w) is acted upon by the outer (top) edges, while (w| is acted upon by the lower (bottom) edges.
Finally, we define the sequence |v(g)) € [5(N), where

va(g) = g2, neN. (7.16)

Given the definition of the partition function (7.10)), the representation T(g) (7.15), and the vector
[v(g)) (7.16), the fixed height partition function of the pure CDT model can be written

Zu(g) = ((@IT(®)" Iv(g)), (7.17)

for all m € N.
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7.2.3 Dense loop model

Each height m dense loop configuration on the disk with N vertices can be constructed from a given
C € C,, by replacing each of the elementary triangles in C with one of the two similarly directed
triangles in Figure such that loop segments are only allowed to terminate on the boundary of the
triangulation (the cycle S,,). Consequently, one must impose a compatibility condition along each
space-like edge. The elementary triangles of dense loop configurations are constructed by decorating
the original triangles with blue arc(s), which are non-intersecting and defined up to ambient isotopy.
Arcs within a loop configuration may combine to form closed loops. One may similarly define dense
loop configurations on the cylinder and on the sphere. See Figure [7.3]for an example of a dense loop
configuration on the disk (Figure and the corresponding configuration on the cylinder (Figure
and on the sphere (Figure|/.3¢).

SRS 2>\ )

Figure 7.2: The possible decorations of elementary triangles in the dense loop model.

Let £9(N) denote the set of all height m dense loop configurations (on the disk) with N vertices,
and let £% denote the corresponding set where the constraint on vertex number is relaxed. Each
crossing of a space-like edge by a loop segment is called an intersection, and we denote by s(L) the
total number of intersections in L € £9(N). As in Section|7.2.2} we denote by |L| the total number of
space-like edges in the dense loop configuration L.

The dense loop model weights each L in £ by associating a factor of g € C and a factor of
a € [0,1] to each space-like edge and intersection in L, respectively. Accordingly, the partition

functions of the model are defined as

2% (g,0) = ) Z¥(g.0), Zyt(g.0) = . g™, (7.18)
m=0 Lefde

where we note that de (g,a) =1, and take ", for @ =0 and n € Ny, to mean 6, 0. In the following,
we will show, for fixed a, that there exists a critical coupling g% () > 0 such that Z4 (g, @) is analytic

for |g| < g% (a), while Z%(g,a) is divergent for g > g% (), and therefore is singular along the curve
g=8(a).

Remark. As in the pure CDT model, each dense loop configuration on the disk has an equivalent on
the sphere and on the cylinder, and each of these equivalent forms has the same number of space-like

edges and intersections. It follows that the configurations of the dense loop model can be considered

as belonging to either of these topologies.

The algebraic structure underlying the dense loop model is not unique. We adopt the attitude
presented in Section[/.2.2] where we opt for the simplest planar algebra such that the partition function

of the model can be expressed as a function of the transfer operator. To this end, we specialise to
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(e) ®

Figure 7.3: In the first column, we present a dense loop configuration on three topologies; the cylinder
(a) and the extension of this configuration to the disk (c) and the sphere (e). While in the second
column, we present the corresponding dual configuration of the cylinder (b), disk (d) and sphere (f).
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the tensor planar algebra (E,),en, Where E, = E®" and dim E = 2. Nodes of each disk within E, are
assigned two possible labels, here represented diagrammatically by the colours black and blue.

Expressing the elementary triangles as elements of the underlying planar algebra, we have:

l l . -
~- o/ oV ~- o A ~= A\ @19

Accordingly, we parameterise the elementary operators by

I 1 1 1 1 1 1

— = =gl —e_+— +g2q —e_o—, - —=g2 =~ +g7a—oio—, (7.20)
I

from which the R-operators (7.2) follow. For brevity, we have not indicated the g and @ dependence

of the green diagrams in (7.20). Given this parameterisation of the R-operators, we denote the

corresponding transfer operator 7% (g, a), which can be expressed as

-
r + S - 1 r+s
T%(g,a) = Z ( )gT -“’, O=e+ce. (7.21)
-
r,seN ??
A
As our primary motivation is defining a transfer operator that reproduces the partition function of
the model, we can introduce a simpler counterpart to 7% (g, @) which, from the perspective of the
partition function, is indistinguishable from the original. In particular, 7% (g, ), keeps track of
unnecessary information about the specific positioning of intersected space-like edges, it suffices to
simply ensure compatibility between space-like edges. Accordingly, the two possible elementary
configurations corresponding to a single space-like edge are | and [ , which assign the weight g
and ga? respectively. The correct assignment of weights can be achieved by simply considering a
single elementary configuration | which is assigned the weight g(1+ a?). In light of this observation,

we introduce an effective transfer operator corresponding to 7% (g, @), defined as

T (g.a)= Y (Hi_l)[gﬂwz)ﬁ H (7.22)

r,seN T1
)

where each node e is considered a ‘square root’ of a space-like edge and is assigned the weight
[g(1+a?)] 2. While the algebraic operators appearing in T (g,@)™ do not have a direct relation to the
underlying loop configurations, they assign the correct weight of g(1+a?) to each internal space-like

edge.
. —d . . .
Remark. As the effective transfer operator 7’ ¢ (g, @) is parameterised in terms of elements that only

use a single node label, we consider the underlying planar algebra to be as in the pure CDT model,

where dimE = 1.

Proceeding as in the pure CDT case, we denote by T% (g, ) the corresponding representation of

—d.
T e(g, a), that acts on the Hilbert space /;(N), whose matrix elements are given by

+s

Tr(g) = (”j ) 1) [g(1+a*)]7, (723)
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We also introduce the sequence |[v¥¢(g,a)) € [ (N), where
v (g, @) = [g(1+a)]?, neN. (7.24)

Given the definition of the partition function (7.18)), the representation T%(g,a) (7.23), and the vector
[vé¢(g,a)) (7.24), the fixed height partition function of the dense loop model can be written

Zy (g.@) = (v*(g,0)T* (g, )" v (g,0)), (7.25)

for all m € N.

7.2.4 Dilute loop model

Each height m dilute loop configuration on the disk with N vertices can be constructed from a given
C € C,, by replacing each of the elementary triangles in C with one of the four similarly directed
triangles in Figure such that loop segments are only allowed to terminate on the boundary of the
triangulation. Consequently, one must impose a compatibility condition along both space-like and
time-like edges. The elementary triangles of dilute loop configurations are constructed by decorating
the original triangles with at least one blue arc, which, as in the dense loop model, are non-intersecting,
defined up to ambient isotopy and may combine to form closed loops. One may similarly define dilute
loop configurations on the cylinder and on the sphere. See Figure[/.4| for an example of a dilute loop
configuration on the disk (Figure and a corresponding configuration on the cylinder (Figure
and on the sphere (Figure[7.4¢). Unlike dense loop configurations, the extension of a disk configuration
to the sphere can be performed in two distinct ways, each resulting in distinct configurations on the
sphere. Moreover, the extension of a configuration on the cylinder to the disk need not be well defined,
we explore this in the following.

For dense and dilute loop models, let s; (L) denote the number of intersections of the cycle S
associated with the loop configuration L which may be on the cylinder, disk or sphere. In the dilute
loop model, the compatibility condition along space-like and time-like edges ensures that the parity of
sk (L) is the same for all &, that is

si(L) = sp (L) (mod?), VK (7.26)

Considering dilute configurations on the disk and sphere, the initial condition so(L) = 0, restricts the
parity of the remaining cycles to be even. While for dilute configurations on the cylinder, both parities
are allowed. It follows that only the even parity annular configurations admit extensions to the disk, in
which case the extension is not unique and gives rise to two distinct configurations.

Let L% (N) denote the set of all height m dilute loop configurations (on the disk) with N vertices,
and let £ denote the corresponding set where the constraint on vertex number is relaxed. We adopt
the same notation as in the dense model where |L| and s(L) denote the number of space-like edges

and intersections in a dilute loop configuration L € £9/(N), respectively.
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(e) ®

Figure 7.4: In the first column, we present a dilute loop configuration on three topologies; the cylinder
(a) and an extension of this configuration to the disk (c) and the sphere (¢). While in the second column,
we present the corresponding dual configuration of the cylinder (b), disk (d) and sphere (f).
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Figure 7.5: The possible decorations of elementary triangles in the dilute loop model.

The dilute loop model weights each L in £% by associating a factor of g € C and a factor of
a € [0,1] to each space-like edge and intersection in L, respectively. Accordingly, the partition

functions of the model are defined as

2%(g,@) = ) Zn (g ), zi(g.0) = > gHa*®), (7.27)
m=0 LeLffi

where we note that Z(‘)ﬁ (g,@) =1, and take ", for @ = 0 and n € Ny, to mean J,,o. In the following, we
will show that, for fixed a, there exists a critical coupling g% () > 0 such that Z%(g, ) is analytic
for |g| < g% (), while Z4 (g, ) is divergent for g > g% (), and therefore is singular along the curve
g =gl (a).
Remark. While the parity condition of dilute loop configurations inhibits a natural correspon-
dence between configurations on the cylinder and the disk, there is a two-to-one correspondence
between configurations on the sphere and the disk. Accordingly, configurations of the dilute loop
model can be considered as belonging to either the disk or sphere, as long as one accounts for the

factor of two appropriately.

As in the dense loop model, we specialise to the tensor planar algebra (E,),en, Where E,, = E®"
and dim £ = 2, and use black and blue to represent the two node labels. Expressing the elementary

triangles of the dilute loop model as elements of the underlying planar algebra, we have:

—o!-— o v, —o!o— PN V, —.{.— o W, —0{0— o W, (7.28)
_.i._ HA _.i._ HA -.i.- H& -.i.— HZA (7.29)

Accordingly, we parameterise the elementary operators by

- I - :g%(_.!._ + —-!°—)+(ga)%( "{" + "{h)’ (7.30)
(M :g%(-i-— + —-i°—)+(g0/)%( L+

| —. — —o_o—)

from which the R-operators ((7.2) follow. Note that we have not indicated the g and & dependence of the

, (7.31)

green diagrams in (7.30). Given this parameterisation of the R-operators, we denote the corresponding
transfer operator 7% (g, a). Unlike for the dense loop model, a simplified expression for 7% (g, )
and an associated effective transfer operator Tdi( g,a) cannot be immediately stated. An analogous
construction for the dilute loop model exists but will be deferred until Section as it relies on

results established in the forthcoming section.
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7.3 Tree correspondences

In this section, we begin by recalling the correspondence between causal triangulations and planar trees.
Section|/.3.2|is devoted to extending this correspondence to relate loop models on causal triangulations
and classes of labelled planar trees. In Section[7.3.3] we make use of these correspondences to relate
the partition functions of the matched constructions, which ultimately facilitates the analysis of CDT

partition functions using tree methods.

7.3.1 Pure CDT model

Let 7,,(N) denote the set of height m + 1 planar trees with N edges and a root of degree 1, similarly, 7,,
where the constraint on vertex number is relaxed, and finally 7~ where the height constraint is relaxed.
It is well-known [[82,/99] that there exists a bijective correspondence between causal triangulations and

planar trees
¥ : Cn(N) = T (N). (7.32)

Let C € C,(N), the map ¢ is constructed as follows: first, remove all space-like edges, then for each
vertex in S; for 1 < k < m remove the right-most outward-pointing time-like edge, finally, add a
new vertex xo and a corresponding edge {xop,x} immediately to the left (viewed outwardly) of the
distinguished edge {x,v;}. The resulting graph, denoted by T =/ (C), is an element of the set 7,,,(N),
and the map ¢ is readily seen to admit an inverse. Note that the vertices of C and T are the same,
except for the vertex xo, and that the graph distance from x to any vertex v in C and the one between
the corresponding vertices in 7" are the same. Given the equivalence between vertices, we will often use
the same notion for equivalent vertices in C and 7', that is, for v in C we will refer to the corresponding
vertex in 7" as simply v. In Figure we present an example of this construction.

Denote by dg (x,y) the graph distance between two vertices x and y in the graph G. We introduce
Vk(T) = {V €T|dT(X(),V) :k+1}, (7.33)

as the set of vertices in T € 7,,(N) with a graph distance of k + 1 from the root vertex xo. Refining the

notation
Vi(T) ={viili=1,....|Vi ()|}, (7.34)

where vy 1 = vy is the distinguished vertex of the corresponding triangulation, defined in Section [7.2.1]

and the remaining vertices vy ; are labelled clockwise from vy 1, fori =2,...,|Vi(T)|. Finally, we
define
m
V(T) := U Vi (T), (7.35)
k=1

which is the vertex set of 7', excluding the vertices xy and x.
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V3
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Figure 7.6: A causal triangulation of the disk C and the corresponding tree ¢ (C).

7.3.2 Loop models

In the following, we extend the correspondence to a pair of correspondences applicable to the
respective sets £9%(N) and L% (N) of loop configurations. First, we define the sets of planar trees
that correspond to the sets of loop configurations. Denote by T (N) the set of height m + 1 planar trees
with N vertices each of which, except for x( and x, are assigned a binary label, here denoted by a 0 or
1, that is

Tn(N) = {(T,8)|T € Tn(N), 6 : V(T) — {0,1}}, (7.36)

and we denote by 7, the corresponding set where we relax the constraint on the number of vertices.

For each (T,6) € 7,,(N), we define the labelling characteristics at height k + 1

6k = (5(\/]{71),...,5(vk,|vk(r)|)) (7.37)

and the following summary statistics

m
5p = Z S(v), 6] = Z(sk, (7.38)
VGVk(T) k=1
where ¢ counts the number of labels at each height k =1, ...,m, and |§| counts the total number of

labels in (7,6) € 7. We now define the set which is the subject of the latter correspondence
T, (N) == {(T,6)|T € Tn(N), 6 € 2Ng, k=1,...,m}, (7.39)

and similarly, we denote by ’Ff,’,fv the corresponding set where we relax the constraint on the number
of vertices. In Proposition below, we establish a bijective correspondence between L% (N)
and 7,,(N), while in Proposition we establish a 2™ to 1 correspondence between L% (N) and
‘Z’nev(N ). In preparation for these statements, we introduce further notation and establish preliminary

results about both dense and dilute loop configurations.
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For each C € C,,, we introduce the notation /; = |Sy| for k =0, ...m, and refer to /; and [, as the

boundary lengths of the annulus A;. By applying a sequence of local flip operations

o (7.40)

one can transform an arbitrary triangulation of Ay into one of the form depicted in Figure|/.7} called
a standard triangulation, with the same boundary lengths /; and /1, and distinguished vertices v
and v, for each k = 1,...,m. The details of this construction, where we restrictto k =1,...,m
throughout, are as follows. Any arbitrary triangulation T4, of A can be described as a sequence
of forward- and backward-directed triangles, here denoted by f’s and b’s respectively, where the
order is endowed from the distinguished vertex v,. By construction, each sequence begins with a
forward-directed triangle. Suppose the triangulation T}y, is not standard, then there exists a b f in the
sequence. Apply the flip operation to the first instance of b f, transforming it into an fb. Iterating this
procedure, one transforms the original triangulation into a standard triangulation maintaining the same

boundary lengths /; and /x.1, and distinguished vertices v and vi.

1 2 I
Vit o “ Ske

Sk

Figure 7.7: The standard triangulation of the annulus A. The left-most and right-most time-like edges
are dashed to indicate that they are identified.

The flip operation in (7.40)) is readily extended to a flip operation on the similar local components

of a loop configuration on Ag. In the dense loop model, the extension is given by

PN RN o <—>.(7.41)

In the dilute loop model, the extension is given by

L/ L/ \
A\ A1 D

\J

(7.42)

We have the following result.
Lemma 7.3.1.

(i) The flip operations (1.41) and (1.42) applied to a dense, respectively dilute, loop configuration

L on the disk, leave |L| and the positions of intersections invariant.

(ii) The number of possible dense, respectively dilute, loop configurations on the triangulated

annulus Ay, depend only on the boundary lengths l; and [y, not the details of the triangulation.
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1 2 3

Vil - Sk+1

Figure 7.8: The unique dense loop configuration on the standard triangulation of A; with intersection
characteristics n; = (1,1,0,0) and ng4; = (0,1,0).

Proof. (i) As the flip operators and leave I and I, and the positions of intersections
invariant at each layer, this extends to the whole loop configuration. (ii) Let 77 and T be distinct disk
triangulations of A, and enumerate all of the possible dense loop configurations on each. As the flip
operations are one-to-one, each loop configuration with an underlying triangulation 7”, can be
transformed into a unique loop configuration with an underlying triangulation 7". Likewise with 7 and

T’ swapped. A similar procedure applies to dilute loop configurations where we instead use the flip

operations ([7.42)). O

A dense or dilute loop configuration is not only characterised by the collection of boundary lengths
[y for k =1,...,m, but also by the distribution of space-like edges which are intersected by loop
segments. Accordingly, for each cycle Sy where k = 1,...,m, the intersection characteristics are

encoded in the /;-tuple
n; .= (nk,l,--',nk,lk) E{O,l}lk, k:l,...,m, (743)

where ny; is 1 if the it space-like edge (labelled clockwise from vy) is intersected, and O otherwise.
Associated with each ng, is the summary statistic

I

= ) nes k=1,...m. (7.44)
i=1

Remark. With notation as in Section we have s; (L) = 2n; for L € £%, while s; (L) = ny for
Le L4,

Lemma 7.3.2. Let Cy, be a triangulation of the annulus Ay with boundary lengths I, and Iy, and let

ng € {0, 1} and ny; € {0, 1Y% denote intersection characteristics. Then,
(i) Cy admits one dense loop configuration for each ny and ny41;

(ii) Cy admits two, respectively zero, dilute loop configurations for each ny and Ny if ng +ny4q is

even, respectively odd.

Proof. By Lemmal(7.3.1] it suffices to consider the standard triangulation of Ay, which we proceed to
do for both (i) and (i1).
(1) For the dense loop model, the entries of the intersection characteristics are in one-to-one

correspondence with the loop decorations of the elementary triangles:

S o mani=0. XY o mi=1, A\ © nmi=0, Aho mi=1. (145
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Vi+l

Figure 7.9: The two dilute loop configurations on the standard triangulation of A; with intersection
characteristics n; = (1,1,1,1) and ng4 = (0,1, 1).

As there are no compatibility conditions along time-like edges, the claim readily follows in this case.

(1) For the dilute loop model, the analogous correspondence is two-to-one:

V)= om0 (Y7} = =,
A AL =m0 D A= ot

In this case, there exists a compatibility condition along time-like edges, that is, the time-like edge
may be intersected or not. Consequently, there is a unique decoration for an elementary triangle for
a given value of ny; or ny41,, if the ‘intersectedness’ of the left (or right) time-like edge is known.
Applying this argument successively to the standard triangulation of Ay, given the intersectedness of
the left-most time-like edge connected to a forward-directed triangle (whose space-like edge is indexed
by ny 1), the decorations of all forward-directed triangles are uniquely determined by the intersection
characteristics ng. The intersectedness of the right-most time-like edge connected to a forward-directed
triangle (whose space-like edge is indexed by ny ;) is the same as, respectively opposite to that of
the left-most time-like edge if ny is even, respectively odd. Repeating this argument, the decorations
of all backward-directed triangles are uniquely determined by the intersection characteristics ny41;
and the intersectedness of the right-most time-like edge connected to a back-directed triangle (whose
space-like edge is indexed by ni.1,,,) is the same as, respectively opposite to that of the left-most
time-like edge connected to a forward-directed triangle if ny +ny4; 1s even, respectively odd. Given the
periodic boundary conditions of the annulus, the intersectedness of the left- and right-most time-like
edges must coincide, accordingly, there is no corresponding loop configuration when ny +ny; is odd.
On the other hand, for ny +ny4; even, the intersectedness of the left-most time-like edge of the annulus

can take on both values, each giving rise to a distinct dilute loop configuration. O

As an example of Lemma Figure [/.8|depicts the unique dense loop configuration on a standard
triangulation Ay with intersection characteristics n; = (1,1,0,0) and ng,; = (0, 1,0), while Figure
for the same triangulation, depicts the two dilute loop configurations with intersection characteristics
ng =(1,1,1,1) and ng4 = (0,1,1).

The notion of intersection characteristics is readily extended from loop configurations on trian-
gulated annuli to loop configurations on a triangulated disk of height m by reading off n; for each
k=1,...,m. Conversely, if the set of m tuples n; € {0, l}lk for each k =1,...,m, correspond to at
least one loop configuration on a triangulated annulus, we say that they form admissible intersection
characteristics. It follows from Lemma and the observation ([7.26), that such a collection of
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Figure 7.10: A dense loop configuration L and the corresponding labelled planar tree ¢ (L). Vertices
labelled 1 are indicated with blue circles.

tuples always is admissible for dense loop configurations, while for dilute loop configurations, they
are admissible if and only if ny € 2N for all k = 1,...,m. We also note that, given a triangulation of
the disk with admissible intersection characteristics, the choice of dilute loop configuration on any
given triangulated annuli is independent of the choices made on the other triangulated annuli. This

observation together with Lemma and the proof thereof, we have the following two results.

Lemma 7.3.3. A triangulation of the disk of height m with admissible intersection characteristics

admits exactly one dense loop configuration and exactly 2" dilute loop configurations.
Corollary 7.3.4.

(i) A triangulation of the cylinder with N vertices admits exactly 2V dense loop configurations, and

exactly 2V dilute loop configurations.

(ii) A triangulation of the disk with N vertices admits exactly 2N~! dense loop configurations, and

exactly 2V! dilute loop configurations. Thus,

| L3 (N)| = | LE(N)], m,N €N. (7.46)

Remarkably, the parity constraint of dilute loop configurations is compensated by the factor of two
arising at each layer in such a way that the number of dilute loop configurations coincides with the
number of dense loop configurations.

The following proposition establishes the aforementioned correspondence between dense loop
configurations and labelled planar trees. To illustrate, an example of this correspondence is presented
in Figure where tree vertices labelled by a 1 are indicated by a solid blue node.



7.3. TREE CORRESPONDENCES 133

Figure 7.11: A dilute loop configuration L and the corresponding labelled planar tree iy (L). Vertices
labelled 1 are indicated with blue circles.

Proposition 7.3.5. For each m € Ny and N € N, there is a bijective correspondence
2 LE(N) = T (N) (7.47)

such that if (T,8) = y(L) then T = y(C), where C is the triangulation underlying L. Moreover,
|6] =s(L)/2.

Proof. Inheriting the action of ¢ from (7.32), to define the map ¢ it suffices to define the map &, which
acts in the following way: assign with a label 1 any vertex appearing to the left (viewed outwardly) of
a space-like edge intersected by two arcs, and assign a label of O to all other vertices of V(T'). Here we
highlight that the vertices x¢ and x are not assigned any label. As the map ¥ is bijective and, omitting
xo, the vertices of L € £9%(N) and T = y(C) coincide, the bijectivity of i follows from the fact that
the intersection characteristics n; for k = 1,...,m, which (together with C) uniquely describe L see
Lemma coincide with the labelling characteristics 6 for k = 1,...,m, which (together with T)
uniquely describe (7,6) see the definition (7.36), that is n; = §; for all k = 1,...m. The statement
|6] = s(L)/2 readily follows. O

The following is a counterpart to Proposition for the dilute loop model, see Figure for an

example of this correspondence.
Proposition 7.3.6. For each m € Ny and N € N, there is a 2™ to 1 correspondence
g LI(N) - T (N) (7.48)

such that if (T,0) = ¢(L) then T = y(C), where C is the triangulation underlying L. Moreover,
6] = s(L).
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Proof. Inheriting the action of ¢ from (7.32)), to define the map ¢ it suffices to define the map &, which
acts in the following way: assign with a label 1 any vertex appearing to the left (viewed outwardly) of
a space-like edge intersected by an arc, and assign a label of 0 to all other vertices of V(T'). Here we
highlight that the vertices x¢ and x are not assigned any label. As the map ¥ is bijective and, omitting
xo, the vertices of L € L% (N) and T = y(C) coincide, the 2" to 1 property of ¢ follows from the fact
that the intersection characteristics ny for k = 1,...,m, which (together with C) are consistent with 2™
possible L’s see Lemma coincide with the labelling characteristics é; for k = 1,...,m, which
(together with T') uniquely describe (7', 6) see the definition (7.36)), that is n; = é; forall k = 1,...m.
The statement |6| = s(L) readily follows. O

7.3.3 Partition functions

Motivated by the correspondences (7.32), and (7.48)), we define partition functions associated
with the ensembles 7;,, 7, and 7;”” such that they can be related to those on causal triangulations
defined in (7.10), and respectively. Accordingly, for a given element in each ensemble,
we assign a weight of « to all vertices labelled by a 1, and a weight of g to all edges except for {x¢,x},

and therefore have

W(g) = ) Wn(g), Wn(g):= ) g™, (7.49)
m=0 TeTm
W(g,a):= ) Wnlg,a), Wa(ga)= ) g™, (7.50)
=0 (T.6)e T
W (g.@) = Y We'(g.0), We(g.a) = Y gl lald, (7.51)
m=0 (T.6)eT,e

where we highlight that Wy (g) = Wo(g,a) = W;"(g,) = 1. Following from Section and the

above construction, we have the relations between partition functions
Z(g)=W(g), Zn(8) =W (g). (7.52)
Similarly, it follows from Proposition and the above construction that we have the relations
Z%(g.a) =W(g,a?), Zy (8.@) = Wi(g.0%). (7.53)

Likewise, it follows from Proposition that we have the relations

2%(g,0) = ) 2" (g,0), Z8(g,@) =2" W' (3,). (7.54)
m=0

Here we observe the 2 to 1 correspondence manifesting in the partition functions (7.54). As
we will see in the following sections, this will prove instrumental in influencing the critical behaviour

of the dilute loop model.
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7.4 Tree partition function analysis

In light of the relations (7.53)) and (7.54)), we analyse the partition functions W(g, @) and W¢ (g, a) as
a means to determine the critical behaviour of the dense and dilute loop models. To further probe the
dilute case, we consider a generalisation of the full partition function (/.51]) which we refer to as the

height-coupled partition function

W (g0, k) = ) K"MW (g,@), (7.55)

m=0

where k > 0 is an arbitrary height coupling, such that W¢"(g, @) is recovered for k = 1, and Z% (g, @)

is recovered for k = 2:
W (g,a) =W (g,a,l1), Zdi(g,a) =W(g,a,2). (7.56)

Throughout this section, we analyse W(g,a), W (g,a) and W (g,a, k), in Section we spe-
cialise to @ = 0 corresponding to unlabelled planar trees, while in Section|/.4.2| we relax this constraint

and consider a label which takes values a € [0, 1).

7.4.1 Planar trees
Under the specialisation o = 0, we have the following relation between partition functions
W(g) =W(g.,0) =W (g,0) =W"(g.,0,1). (7.57)

In the following, using well-known arguments see e.g [101], the partition function W(g) can be

determined in closed form.

Lemma 7.4.1. The partition function W(g), admits the recursion

W(g)=————, (7.58)
1-gW(g)
whose solution is identified with
1—4/1-4g
W(g)=—7———. (7.59)

28
Proof. Each node of a tree in the ensemble 7, apart from the root, admits the possibility of arbitrarily

many successive nodes. Formally,

: :E+g I +g° \/ +g° .\]/. +... (7.60)

where the diagram '« denotes the weighted ensemble of successive nodes and is equivalent to the
partition function W(g). Expressing (7.60) in terms W(g), we have

W(g) = 14gW(g)+8* W (8) +g' W (g)+...= } g"Wr(g) = (7.61)
k=0

N
-gW(g)
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Solving this recursion, we arrive at

1++/1-4g

Performing a power series expansion in g of ((7.62)), and comparing with the definition of W(g) (7.49),
we disregard the positive solution and arrive at (7.59). o

We can immediately conclude that W(g) is analytic on the disk
D:={geCllgl <7}, (7.63)

with a square-root singularity at g. = zlx’ and we note that W(}T) =2.
Applying similar arguments, we can determine a closed-form expression for W,,(g) for all m € Nj.
For each m € Ny, let X,,(g) denote the partition function for trees in 7~ of height at most m + 1. By

definition, it follows that

Wi (g) = Xin(g) — Xin-1(8), (7.64)

where for convenience, we associate X_;(g) = 0. The following is a counterpart to Lemma for
Xin(8)-

Lemma 7.4.2. For each m € Ny, the partition function X,,(g), admits the recursion

Xn(g)=————. (7.65)
X ()
whose solution is given by
Un(3y7)
Xn(g) = —— 0 (7.66)
1
\/§ Un+1 (ﬁ)

where U, (x) is the n'* Chebyshev polynomial of the section kind (with U_;(x) = 0).

Proof. The analogous observation to (7.60) for ensembles of trees of height at most m is given by

m

:E+g I +g° \/ +g° \]/ +... (7.67)

m

where the diagram . denotes the weighted ensemble of successive nodes up to a height m and is
equivalent to the partition function X,,(g). Expressing (7.67) in terms of X,,(g) and X,,—;(g), we have

1

_ 7.68
1-gXn-1(8) (7.68)

Xn(8) = 1+8Xn1(8)+8° X2 () +& Xy (&) +...= > "Xk (g) =
k=0

By direct computation, we see that solves the recursion above. O
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Applying the closed-form expression of X, (g) to (7.64), we arrive at

1
Win(g) = (7.69)
V8 Un (57 Un+1 (537)
and since
U =2"] | (x—cos(%)), (7.70)

j=1

the partition functions W,,,(g) and X,,(g) are analytic on the disk

|
=12 €Cllg| < gm), 2m ::Z(1+tan2(#)), (7.71)

both with a simple pole at g,,.

Under the specialisation of the height-coupled partition function where a = 0, we have

We (g,0,k) := Z K" W, (9) (7.72)
m=0

and can therefore apply the above insights to analyse this partition function. As the coefficients
defining W,,(g) as a power series in g are nonnegative, it follows that W,,,(g) is divergent for g > g,.
Observing that g,, — 4—1‘ as m — oo, it follows that W¢"(g,0, k) diverges for all g > 4—1‘ and k£ > 0. We
therefore conclude that the radius of convergence g.(k) of W¢"(g,0, k) for fixed k is at most % for any

k > 0. In the following, we refine this bound, culminating in Proposition [7.4.5|below.
Lemma 7.4.3. For g € (0, i) and m € N, we have

p(W(g) - 1)

Wo) W(g)-D" <Wu(g) < (W(g)-D" (7.73)

where ¢ is Euler’s function.

Proof. When unlikely to cause confusion, we omit the arguments of a given function. Let us first
establish the upper bound. Applying the recursion relation (7.63) to ( , we have

g(Xm—l - Xm—2)

Wiy =Xm—Xpu-1 = =g(Xm-1—Xm-2) X Xm-1. 7.74

m m m—1 (1—gXpm1)(1 —gXpm2) g(Xm—1 m—2) X Xim—-1 ( )
Iteratively applying this expression for m € N, we have
—

Wy = 8" Xon ]_[ X2, (7.75)

where we recall X_l(g) 0. By definition fori € N, we have 1 < X; < W, hence L < 1, therefore by

applying (7.58)) to ( , we have

m—1 X 2 X
Wm:ngzm_szn(Wl) =(W-1)" —ﬂ( ) <(W=-1", (7.76)
i=1
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establishing the upper bound.
Now for the lower bound, applying we have

W-1- gWXm 1

W-X,= =gWW - X-1) X (7.77)
1 _ng—l
Iteratively applying this expression for m € N, we have
m
W—X,, :ng’”(W—l)l_lX,-. (7.78)
Now, using % < 1,1 <W <2 and (7.58), we have
W—X,, = mWZ”’(W—l)ﬁ&:(W—I)m(W—I)ﬁ&<(W—1)’" (7.79)
m=g W o . :
It follows that
X; W-X; W-1) .
—=1- ’>1—( ) >1-(W-1), (7.80)
W
and since 0 < W—1 < 1, we have
n(l—(W—l) >]—[ 1-(W=1))) = (W -1). (7.81)
i=1 i=1
Finally, applying (7.80) and (7.81]) to ( , we have
2 m 2 2
g"WA [ Xi\T_ (W=D (X ¢(W-1) m
Wy = —| =—— — —(W-1", 7.82
X !:1[ w X El[ W g w ( ) (7.82)
thereby establishing the lower bound. O
The corollary immediately follows.
Corollary 7.4.4. For k >0 and g € (0, }‘), we have
W(g) -1 N
%Z (k(W(g)=1))" < W(g,0,k) Z k(W(g)-1)". (7.83)
m=0 m=0

Finally, we arrive at the proposition below.
Proposition 7.4.5. The critical coupling of W€ (g,0,k) is given by

1 ke (0,1
ge(k)y =17 0.1 (7.84)

ﬁ, kE(l,OO)

Proof. As identified above, g.(k) < zlt' For k € (0,1], we have W¢(g,0,k) < W(g), consequently
gc(k)= }1. While for k € (1, 00), it follows from Corollary (7.4.4{that W€ (g,0, k) is finite if and only if

k(W(g)—1) <1. (7.85)

Solving for g. such that k(W (g.) — 1) = 1, we arrive at the desired result. |
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7.4.2 Labelled planar trees

We now consider a non-trivial labelling, with the associated coupling « taking values in (0,1].
Summing over the labels ¢ of W,,(g,) in (7.50), we can express this partition function in terms of
W, (g), as follows

Wn(g.0)= > (s(1+) "™ =W, (g(1+)), (7.86)
T€Tm

similarly for the full partition function
W(g,a) =W(g(l+a)). (7.87)

Applying results from the previous section, we can immediately identify the critical coupling of

W(g,a)as g= m.
Likewise, summing over the labels ¢ of W¢' (g, @) in (7.51), we have

m

Wil (g0 = )8 | [l +ey s (1-a)], (7:88)

TeTm i=1

where n;(T) = |V;(T)| denotes the number of vertices in 7 at height i + 1. Unlike for the partition
function W,,, (g, @), we do not have an explicit closed-form expression for W;."(g, ). To understand the
critical behaviour of this partition function, we instead bound it by functions whose critical behaviour

is known. We first observe that for @ € (0, 1] and n € N, we have
(1+a)" < (1+2)"+(1—a)" < 2(1+a)" !, (7.89)

which together with

m
Zni =|T|-1, TeT,, (7.90)
i=1

allows us to bound the partition function W€ (g, a, k), as follows

W (g(1+a),0,5) < W (g,a,k) < W (g(1+),0,7%). (7.91)

> 1+a

As will be demonstrated in Section this bound will prove instrumental in analysing the critical
behaviour of Z% (g, a).

7.5 Ciritical behaviour of loop models

In this section, we bring to bear prior analysis to determine the critical behaviour of the pure CDT
model (Section [7.5.1)), the dense loop model (Section and the dilute loop model (Section
[7.5.3). In each case, we show how the largest eigenvalue of the transfer matrix determines the critical
behaviour of the model. For the dilute loop model, where a closed-form expression of the partition

function is elusive, these techniques prove essential.
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7.5.1 Pure CDT model

While much is known about the critical behaviour and large-scale structure of the pure CDT model,
we begin here to outline, in the simplest case, methods that will be applied in the analysis of both loop
models. These techniques naturally divide into two approaches based upon the object of study (i) the
closed-form expression of the partition function Z(g), and (ii) the transfer matrix T(g). While (i) is
indeed the most powerful, it is only applicable in the case of the dense loop model, whereas (ii) can be
analysed for both loop models.

First, we recall the results [[82,99] on the analysis of the pure CDT partition function. It follows
from (7.52)) and (7.59) that Z(g) can be written explicitly as

1 T—4g

2g

Z(g) = (7.92)

We can immediately read off the critical coupling of the pure CDT model denoted by g., and determine
the associated value of the partition function Z. := Z(g.), as
8c =7 Z:.=2. (7.93)

Furthermore, the behaviour of Z(g) near the critical point is given by

Z(g)NZc_4Vgc_g~ (7.94)

Examining the large-scale structure of the pure CDT model, we consider a limiting distribution
of infinite size (or radius) causal triangulations, the precise definition of which is given in [[82], and
determine the associated Hausdorff dimension of such configurations. For a given C in this distribution

with central vertex x, the ball of radius R around x is defined as
B(x,R) :={veV(C)|dc(x,v) <R}, (7.95)

where d¢ denotes the graph distance on C. We can now define the Hausdorff dimension as the

polynomial growth rate of the number of vertices |B(x, R)|, as a function of R:

. In[B(x,R)|
dg(C) := lim ————, 7.96
#(C€) = lim — — (7.96)
where the limit must exist. For the pure CDT model, by making use of the closed-form expression of
the partition function (7.92)) and the associated behaviour about the critical point, it was shown in [82]

that the Hausdorff dimension is given by
dy =2 (almost surely). (7.97)

We now pivot to analyse the transfer matrix T(g). Here unlike above, the techniques are novel and
contrast those presented in [99], as we do not rely on the explicit determination of the transfer matrix
eigenvalues. First observe that the transfer matrix is symmetrisable, admitting a factorisation in terms

of a diagonal matrix D and a symmetric matrix K(g)

T(g) =DK(g), (7.98)
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whose elements are given by

(r+s—1)! rts

r—Dis—1)% (7.99)

Dr,s =—, Kr,s(g) =
r

In light of this factorisation, it is convenient to analyse the symmetric operator K(g) and translate these

results to the transfer matrix.

Proposition 7.5.1. The operator K(g) is trace-class for g € D, positive definite for g € (0, }‘), and the

operator valued function h — K (h?) is analytic on {h € C||h| < %}.

Proof. We first note that for fixed s, we have (K, 5(g)),en € [2(N) for |g| < 1. Denote by V the dense
subspace of sequences with finitely many non-vanishing entries, then K(g) is well defined on V for
|g| < 1. For each n € N, let , denote the orthogonal idempotent acting on I, () that projects onto
the subspace spanned by vectors |w) whose entries w, vanish for r > n. By construction, the operator
K, (g) :=P,K(g)P, is of finite rank and is bounded on /;(N), with matrix elements

Krs(g), r,s<m,

(Kn(8)),.,= (7.100)
0, otherwise.

It is also positive semi-definite for g € [0, 1) as

% = Zk(;)(,’;) implies (WK, (g)|lw) = Zkl Z (;)wsg%Iz >0. (7.101)

k=1 k=1 s=k

With the corresponding trace norm given by

1K ()l = trK,(g) = ZZs(z)(liill)gs < Zs(zss_ l)gs —& (7.102)

= 3 5
s=1 k=1 s=1 (1 _43)7

where the last equality holds for g € (0, i). It follows that the operator norms ||K,,(g)|| are uniformly
bounded in n for any fixed g € [0, %). Having established these basic results, we proceed by establishing
the claims about K(g) by considering K, (g) and the limit n — co.

We first note that since lim,—.(v|K,(g)|w) = (v|K(g)|w) for all v,w € V, it follows that K(g)
4en for g € [0, }‘). It follows
from and Theorem 10 in Section 2.4 of [102] that K(g) is trace-class for g € (0, %), with trace

norm

extends to a bounded operator on /> (N) equal to the weak limit of (K, (g))

8

IK(g)lh =trK(g) = ———.
(1-4g)2

(7.103)

Extending the trace-class domain to all of D, let g € D be arbitrary and parameterise by g = |g|e'

where 6 € R, we can therefore write
K(g) =U(O)K(IgHU(0), (7.104)
where U () is a diagonal and unitary operator with matrix elements

iro

Urs(0)=e'2 6, (7.105)
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It follows that K(g) is well-defined and trace-class for all g € D, with

IK()ll1 = trlK(g)| = IKCUgD - (7.106)

As g — (v|K(g)|w) is analytic for g € D and all v,w € V, the operator K(g) is also analytic on D as a
function of g%, in the sense of Kato (see [7]] Section XII.2).
Finally, we establish positivity. Taking the limit n — oo in (7.101)), it follows that (w|K(g)|w) is

zero if and only if

00 s .
> (k)wsg =0, (7.107)

s=k

for all kK € N. We note that this sum is convergent for |g| < 1 and

> (;)wsg% =& 10(gh, f2) = Zl Wiz’ (7.108)

s=k
where %) (z) denotes the k™ derivative of the function f(z). Accordingly, for g # 0 the expression
(w|K(g)|w) is zero if and only if f(z) =0, i.e. wy =0 for all s € N. It follows that K(g) is positive
definite for g € (0, ). O

As the diagonal operator D is bounded, it follows that the transfer operator T(g) is trace-class for

g € (0, JT) with trace given by

- T=4g

tr(T(g)) = Ne=r

(7.109)

Moreover, since the matrix elements of K(g) are positive for g € (0, i), it thus follows from the Perron—
Frobenius theorem (see e.g. Theorem XII1.43 [7]) that K(g) has a positive largest eigenvalue equal to
the operator norm ||K(g)||, and the corresponding normalised eigenvector has strictly positive entries.
Applying the Kato—Rellich theorem (see e.g. Theorem XII.8 [7]), this largest eigenvalue is an analytic
function for g € (0, i), and up to a phase, the entries of the corresponding normalised eigenvector are
analytic functions for g € (0, zlt)' As D is diagonal and positive definite, these statements are also true
of the positive definite operator D> K( g)D%.

We now define the time-periodic partition functions as
Zy" (g) =u(T()" ™), m>2, (7.110)

which can be interpreted as summing over triangulations of a cylinder of height (m — 1) whose
boundary cycles S| and S, are identified (i.e. S| = S,,), and a weight of g is assigned to each space-like
edge. Equivalently, a weight of g% may be assigned to each elementary triangle.

Relating the partition functions Z,,(g) and Z”

P’ (g), we first observe that the trace of a positive

definite trace-class operator O is equal to the sum of its eigenvalues [102], accordingly tr(O") < (trO)”

for all n € N. As D2 K(g)D% is positive definite, we have

Zh < (rT(g))" . (7.111)
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=S

Figure 7.12: A triangulation contributing to Z,,(g) on the left, and the corresponding contribution to
Zf;l irl (g) on the right. In both diagrams, the left-most and right-most dashed edges are identified. In
the right-most diagram, the bottom and top space-like edges are identified i.e. S| = S,,+1.

Lemma 7.5.2. For eachm € N and g € [0, 31), we have

Zn(8) <Z7 (g). (7.112)

m+1

Proof. Let C denote a causal triangulation of the sphere contributing to the partition function Z,,(g).
Each height m spherical triangulation C can be transformed into a unique time-periodic triangulation
C’ of height m +1 contributing to the partition function Z”%', (¢). This construction is as follows: (i)
remove the |S| backward-directed triangles with space-like edges in Sy, (ii) place them to the right
(viewed outwardly) of the |S,,| forward-directed triangles with space-like edges in S, such that the
right-most forward-directed triangle shares a time-like edge with the left-most backward-directed
triangle thereby introducing a new annulus A, with a standard triangulation between cycles S, and
Su+1, and (ii1) identify the new outer cycle S,,+1 with the initial cycle S;. See Figure for an
illustration.

As the triangle number is conserved under the map taking C to C’, both C and C’ contribute
the same weight to their respective partition functions. Furthermore, we note that this same map is
injective but not surjective, as A, of C’ is restricted to be a standard triangulation. Together, these two

facts establish the inequality. O

Exploiting the cyclicity of the trace, the partition function Z2“" (g) can be expressed as
Zh" () =t((DK (D)), m=z2. (7.113)

Ultimately, we will use properties of the operator D2 K(g) D? to understand the critical behaviour of
Zr’:l irl (g) and hence Z,,(g). The following proposition determines how the largest eigenvalue behaves

as g approaches the critical coupling.

Proposition 7.5.3. The largest eigenvalue 11(g) of D> K(g) D> satisfies

g /1 as g/ (7.114)
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Proof. Note that all matrix elements of D> K(g)D% are strictly increasing functions of g. It follows
from the variational principle (see Theorem XIII.1 in [7]]), that 2;(g) is strictly increasing for g € (0, Alf).
Again, we suppress arguments of functions when unlikely to cause confusion.

First, suppose that 1| < ¢; where ¢; < 1. Consequently, (1 - kD2 KD%)‘1 is a bounded operator

for k € [1,¢7') and we have

[o0)

kazpirl(g) Ztr (kD2 KDz)m)_ (

m=1

kD3KD?

B el k”—tr(T)<oo (7.115)
1 - kDIKD? 1 - kD}KD3

for all g € (0, %). It follows from Lemma that

Wev(g’O,k):l+kaZm(g)<oo, ge(O,%), (7.116)

m=1
in contradiction to Proposition [7.4.5, which states that the critical coupling for W¢"(g,0, k) satisfies
gc(k) < % for k > 1. Therefore limg/%/ll(g) > 1.

Now, suppose that 1; > ¢; where ¢; > 1. It follows that there exists a gog < }L such that 21 (go) = 1.
Denote by A; > 1> > A3 > ... the eigenvalues, and by {|{w™)|n € N} the corresponding set of
eigenvectors of the operator D2KD>. In particular, |w") has been normalised such that it is analytic
and has positive coordinates in an interval / about go. For a sufficiently small /, there exists a constant

¢ > 0, such that
G w WDz |v) > ¢, (7.117)

for g € I. Let us now consider Z(g) for g < gg, we have

Z(g)—1::§:o4D%(D%KD%y”4D—ﬂv> (7.118)

m=1
= > (v|D2(D2KD2)™ ™y (™ D2 |v) (7.119)

m,n=1
= (w|D2w DY (wV|D- z|v>zglzﬁz1«+Z§12§14ﬁ’1<v|Dz|uﬂn>>ov0”|D Yy (7.120)

m=1 n=2
<VID2|W(”)><W(”)ID 2|v)
(7.121)
Sy ;; T
and it follows that
|(v|D?| W(”)><W(”)|D 2 |)| c ID2v|[ID~3 ]|

Z(g) > 1+ > 1 - . 7.122
(8) 2 Z tT 5 (7.122)

Note that while D2 is unbounded, D~2v € [5(N), as the entries of v(g) decay exponentially. It follows
from (7.122) that Z(g) diverges as g ,/* go, which contradicts the fact that Z(g) is analytic for g € D.

This contradiction, together with the previous contradiction, serves to show lim ¢! A1(g)=1. O

This concludes the analysis of the pure CDT model, in the following sections, we apply these techniques

to the novel settings of the dense loop model and the dilute loop model.
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7.5.2 Dense loop model

As we will see in this section, the critical behaviour and large-scale structure of the dense loop model

are identical to the pure CDT model up to a simple shift in the coupling. Beginning with the partition

function, it follows from (7.53)), (7.59) and (7.87)), that we have
—+1-4g(1+a?)

de _ 2 _1
2 (8.0) = Wig(1 +a?) = ——0 K

(7.123)

We can immediately read off the critical coupling of the dense loop model denoted by g% (), and

determine the associated value of the partition function Z% () := Z% (g% (a),a), as

g%(a) = n ! Z%(a) =2. (7.124)

(1+a2)’

Furthermore, the behaviour of Z% (g, @) near the critical coupling matches that of the pure CDT model,

7% (g,a) ~ Z% () = carJ8% (@) — ¢ (7.125)

and is given by

where ¢, =4V1+a?.

The dense loop model and the pure CDT model share the same large-scale structure. It follows
from ((7.123]) and (7.125)), and arguments made in Section that the Hausdorff dimension is given
by

d% =2 (almost surely). (7.126)

Given the similarities between the critical behaviour and the large-scale structure of both pure CDT and
dense loop models, the influence of coupling dense loops to CDT does not manifest in the statistical
behaviour of the underlying triangulation. An analogous situation arises when coupling the Ising
model to random planar trees, whereby a relation of the form (7.125)) can be derived [103]].

For completeness, we proceed by analysing the transfer matrix T4 (g, @) = DK% (g, @). Comparing
equations (7.13]) and (7.23), it is clear that we have

T%(g,a) =T(g(1+a?), K%(g,@) =K(g(1+a?)), (7.127)

and consequently

1-1-4g(1+a?)
Wi—dg(l+a?)

Accordingly, we have a counterpart to Proposition [7.5.3] where for @ € [0, 1], the largest eigenvalue

A1(g,a) of D3Kde (g,a)D% approaches 1 from below as g approaches m from below. The goal of

the following section is to develop a counterpart to Proposition for the dilute loop model and

g(1+a?)

de _
tI'(T (g’a/)) - (1 _4g(1+a2))% .

tr(K*(g,@)) =

(7.128)

thereby determine the critical behaviour of this model.
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7.5.3 Dilute loop model

Unlike the dense loop model, the partition function of the dilute loop model cannot be expressed
explicitly in terms of the pure CDT partition function. Accordingly, the analysis presented in the
previous sections, using the closed-form expression of the partition function, is not applicable here. As
will be established below, the critical behaviour and large-scale structure of the dilute loop model can
be determined using transfer matrix techniques.

We begin by presenting a simplification of the transfer operator 7% (g, @) introduced in Section

-
Ti(g.a)= ) 2(”“_1)g% .“, O=e+ae,  #(e) e 2Ny, (7.129)
r.seN d Pg
s

where we note that the combinatorial factor follows from Lemma [/.3.1] and both the factor of 2
and the parity constraint follow from Lemma Proceeding as in the dense loop model, we
define an effective transfer operator corresponding to 7% (g,«), that assigns the correct weight to
space-like edges within a configuration. We first note that the transfer operator 7% (g, @) generates
both even and odd parity loop configurations, for the dilute loop model on the disk, we will restrict
to even parity configurations only. Now, the two possible elementary configurations corresponding
to a single space-like edge are | and [ , which assign the weight g and ga respectively. For the
dilute loop model, the correct assignment of weights can be achieved by considering a single layer
configuration with n edges which, after summing over an even number of blue labels, is assigned the
weight % g"[(1+a)"+(1—a)"]. Inlight of this observation, we introduce an effective transfer operator

corresponding to 7% (g, @), defined as

r

!

NI—
=

™ ()= (r+i_1)gr2ﬁ[(1+a)r+(l—a)r]

r,seN

[(1+a)’+(1-a)’]

1 : (7.130)
1

N

where each layer with n nodes is considered as a ‘square root’ of a layer of n space-like edges and is

assigned the weight % g2 [(1+a)" +(1-a)"] 3. As in the dense loop model, the algebraic operators

. di . . . . .
appearing in T’ l(g, a)™ do not have a direct relation to the underlying loop configurations, they simply
assign the correct weight to each internal space-like edge.

Proceeding as in the pure CDT case, we denote by T4 (g, @) the corresponding representation of

—=di . .
T l(g, @), that acts on the Hilbert space /;(N), whose matrix elements are given by

D=
=

Ti’fs(g,a):(r+i_l)gr2ﬁ[(1+a)’+(l—a)’] [(1+a)"+(1-a)"]2. (7.131)

We also introduce the sequence |v¥/(g,a)) € [»(N), where

vii(g.a) =g [(1+a)"+(1-a)"]2, neN. (7.132)
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Given the definition of the partition function ((7.27)), the representation Tdi (g,@) (7.131)), and the vector
[v¥i(g,a)) (T.132), the fixed height partition function of the dilute loop model can be written

Z3(g,@) = (v(g,0)| T (g,0)" W (g,)), (7.133)

for all m € N.
Having defined the transfer matrix T% (g, @), we first note that it is symmetrisable, admitting the

factorisation
T%(g,a) =2DK%(g,a), (7.134)
where D is defined in (7.99)), and the matrix elements of K% (g, @) are given by

Kf,is(g,a) _ (r+s—1)! grzﬁ[(1+a’)r+(1—a’)r]%[(1+a’)s+(1—a')s]%, (7.135)

1
T2(r=D!(s=1)!
We also note that K% (g,0) = K(g). Applying arguments developed for the pure CDT model in Section
, we conclude that K% (g, ) and DK (g, a)D% are positive definite and trace-class operators on
[, (N) for g € (0, m) and a € [0, 1], where

,. | g(1+a) g(1-)
tr(K¥ (g, )) :5[tr(K(g(l+a)))+tr(K(g(1—a)))] = T+ 5
2(1-4g(1+a))*> 2(1-4g(1-a))?
(7.136)

and

1-1-4g(1+a) +1—¢m
WT—dg(1+a) 2/1-4dg(l-a)

(7.137)

tr(T(g, @) =te(T(g(1+a))) +tr(T(g(1-a))) =

Examining these expressions, it is clear that for g > m, the operators K% (g, @) and T%(g,a) are

not bounded. Again, arguing as in the case of D2 K(g) D%, together with the inequality
K& (g,0)| < K (Ig](1+]al)), (7.138)

the operator D%Kdi(g,a)D% is analytic in the variables (/g ,@) for || < 1 and |g| < m. Further-
more, the Perron—Frobenius theorem applies to both K% (g, @) and DK (g, oz)D% which implies that
for each operator there exists a largest non-degenerate eigenvalue equal to the operator norm and that
the corresponding eigenvector can be normalised such that it has positive coordinates only.

Adapting arguments made in Lemma(7.5.2] we have

Z%(g, @) < tr((T¥(g,@))™), m €N, (7.139)

for g € (0, m) and « € [0, 1]. In the following, we apply this result to construct a dilute model

counterpart to Proposition
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Proposition 7.5.4. For each a € [0, 1], the largest eigenvalue /lfi (g,a) of DK (g,) D? isa strictly

increasing function of g, and satisfies
- —di
Ag.a) /A (@) a5 g/ gy (7.140)
—di
where 1| (@) < 1 for all .

Proof. The variational principle for eigenvalues (see e.g. Theorem XIII.1 in [7]), together with the
. ; . . . . . . —di

fact that the matrix elements of K% (g, ) are strictly increasing functions of g, implies that A l(a) has
. o . . . . . —di

a positive derivative with respect to g, and is therefore strictly increasing. Suppose that 4, (@) > 1

for some fixed «, then there exists a gg < such that ﬂfi (go,@) = 1. Performing a calculation for

1
4(1+a)
g € (0,g0), analogous to that presented in (7.122)), implies that

’

W (g,a) = 1+Z <vdi(g,a)|(%Tdi(g,a))m_l|vdi(g,a)> > " -B(g,a), (7.141)

c
m=1 _/ltlii(g’a)

where ¢’ > 0, and B(g, @) is bounded for g close to gg. It follows from that W€ (g, a) diverges
as g approaches go, which contradicts the upper bound in (7.91)) for k = 1. We therefore conclude that
Tlh(oz) <l o

Examining the limit Ziﬁ(a) at the bounds of the interval « € [0, 1], we note that T%(g,0) =2T(g)
and T%(g,1) = T(2g), and applying Proposition to these facts, we conclude

) =1, () = (7.142)

1
5

Reexpressing the matrix elements of K% (g, @) as

%@(_rf)sz@l_)!l)g [1 * (:_Z)] : [1 + (:—Z)] : (s(1+a) ™, (7.143)

i
Kis(g. @) =
we see, for fixed g(1+a) € (0, 4—1‘), that these elements are decreasing functions in « € [0, 1]. It follows
that A; (@) is a decreasing function of . With these observations in hand, we present our main result

on the critical behaviour of the dilute loop model.

Theorem 7.5.5. For « real and sufficiently small, the critical coupling g% () of the partition function

Z% (g, ) is determined by the equation

. . 1
29(g% (@), @) = 3 (7.144)
and there exists Ci(a),Cy(a) > 0, such that
C . C
di‘i <Z%g,a) < dlzi (7.145)
ge'(a)—g ge'(a)—g

for g close to g9 (a).
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Proof. We first note that /l‘lii (g, ) is a continuous function that is strictly increasing in g. It follows
from that for a sufficiently small, /_ltlﬁ(a/) > %, and by the intermediate value theorem, the value
of g% (a) satisfying is unique and strictly smaller than m. Thus, for fixed « sufficiently
small, D2 K (g, a)D% is analytic in g in a neighbourhood of g%/ (a).

Determining the lower bound, we perform a calculation similar to (7.122)), which implies that for
g € (0,g%(a)), we have

Ci(a)

7% (g, a) > —————
) e

- B(g,a), (7.146)
where C|(@) > 0, and B(g,a) is bounded for g close to go. Recalling that for fixed a, A‘lii(g,a) is
a strictly increasing analytic function of g € (0,g%(a)), together with (7.146)), the lower bound in
follows.
For the upper bound, we apply (7.139) for g € (0, g% (a)) and write
~ S % . > 220(g,a)
Z% g, 0) <1+ > (T (g,@))" =1+ Y 2"tr(DIKY(g,a)D?)" =14+ Y —1 -T2
(8.@) le (T(.)) mzl (D3K(g.mD3)" =1+ ) T =

n=1

, (7.147)

where 1{(g,a) > 29'(g,a) > 1{(g,@) > ... denote the eigenvalues of D>K(g,a)D>. Separating
the first summand, the contribution from the remaining terms is bounded for g close to g% (a), and the
upper bound follows as before. From the first term in the summand of the upper bound of (7.147), one
arrives at the constraint (7.144), defining gfi(a). |

Theorem [7.5.5] together with the fact that A 1l (@) is a decreasing function of @, implies two possible

outcomes for the critical behaviour of the dilute loop model:
@) Ziﬁ(a/) = % for @ = 1 only, the constraint (7.144)) holds for all a € [0, 1);
(ii) /_ltlﬁ(a) = % for @ € [ag, 1] where 0 < @ < 1, constraint holds for all @ € [0, ap).

In the case of (ii) the critical behaviour of Z% (g,a) for @ € [y, 1], in particular at the transition point
a = ap, would be an interesting subject of study.

At least for small @, the critical behaviour of the dilute loop model is distinct from that of the pure
CDT model, in particular, the critical exponent characterising the singular behaviour of the pure CDT
model is % and is shifted to —1 in the dilute case. This change proves influential on the large-scale
structure of the model where for @ = 0, a more detailed analysis carried out in [[100], reveals that the
simple pole of Z%(g,0) at gfi (0) implies that the Hausdorff dimension equals 1 in this case. It follows
from Theorem [7.5.5]that for at least @ < 1, the singularity remains a simple pole, and we similarly

conclude that the Hausdorff dimension is given by

d%(a<1)=1 (almost surely). (7.148)
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7.6 QOutlook

In this chapter, we defined a pure CDT model, a dense loop model and a dilute loop model on causal
triangulations, and formulated each in a planar-algebraic setting. By developing tree correspondences
in each case, we were able to apply tree techniques, together with the analysis of the transfer matrix,
to study the critical behaviour of each model. The dense loop model was found to be equivalent to
the pure CDT model up to a shift in the coupling, indicating no significant interaction between dense
loops and causal triangulations. While the dilute loop model was found to possess a distinct critical
behaviour and Hausdorff dimension, at least for small . The origin of this behaviour owes to an
effective height coupling, absent in the pure CDT model. It should be noted that though the tree
correspondences are invaluable in the analysis of the partition functions, they may limit non-trivial
couplings between matter and geometry. To account for the absence of the tree correspondences, we
envisage an analysis whereby the transfer matrix has an increased role.

In light of these comments, we consider a natural generalisation of the dilute loop model that does
not readily admit a tree correspondence. Here, we assign a separate weight y to arcs that intersect
time-like edges only, i.e. the second diagrams of each row in Figure and let 7(L) denote the

number of such arcs in L € £%. We define the fixed height partition functions as

Za(g.ay) = ) gHa Wy ™, (7.149)
LeLd

where for a given a,y € [0, 1], there exists a critical coupling g% («,y) such that Z% (g, a, ) is finite
for g < g4 (a,y) while divergent for g > g% (a,7y). Noting the inequality Z%(g,a,y) < Z%(g,a,1) =

Zdi(g,a), between dilute loop models, it follows that

g% (a,y) 2 g%(a,1) = g% (). (7.150)

The relation between the loop configurations and underlying triangulations ensures that one cannot
perform an independent summation of loop configurations and triangulations in (7.149)), as was
possible for the dense and the dilute loop model partition functions. While the inseparability of matter
and geometry of this new model suggests a deep connection between these structures, uncovering the

details of this interaction requires the development of new techniques.
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Chapter 8

Quantum field theory

Up to now, this thesis has focused on describing statistical mechanical models with planar algebras. In
this chapter, we sketch how planar algebras can describe quantum field theories (QFTs) and where
planar-algebraic models fit in. We introduce a new class of QFTs and identify Jones’ semicontinuous
models as ‘almost’ examples. After detailing some recent efforts to endow semicontinuous models
with the properties of fully-fledged examples, we outline the applicability of the planar-algebraic

framework in this context and find that the single-row transfer operator plays a central role.

8.1 Conformal nets

Algebraic quantum field theory (AQFT) provides a rigorous mathematical framework for quantum
field theory (QFT) [104-106]. To each region of the spacetime manifold, one associates an algebra
of observables which are subject to fundamental physical principles such as causality, relativistic
covariance and energy positivity. Conformal nets are versions of AQFTs where the spacetime manifold
is S and where relativistic covariance is enlarged to conformal covariance.

Let Diff,(S') denote the group of orientation-preserving diffeomorphisms of the unit circle and let
Rot(S') denote the subgroup of rotations of the unit circle. A conformal net consists of (i) a Hilbert
space H, (ii) a von Neumann algebra A (/) acting on H for each open interval I ¢ S!, and (iii) a

continuous unitary representation U of Diff, (S') on H, subject to:

Isotony: A(I) € A(J), ifr1cJ
Locality: [A(1),A(J)] =0, ifINJ=0 @1
Covariance: U(a)A(DU(a)*=A(a(l)), VY a e Diff, (S
Positivity:  Spec(U(p)) c Ny, ¥ p € Rot(S)

where Spec denotes the set of eigenvalues of an operator. See Figure [8.1] for diagrams illustrating
Isotony, Locality and Covariance.
Inspired by Jones [20,/107]], we define an analogue of conformal nets whereby the underlying

spacetime is not a smooth manifold but instead has an ‘atomic’ structure. In preparation for this
153
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J ! y L

a(l)

(a) Isotony (b) Locality (c) Covariance

Figure 8.1: For conformal nets, we present diagrammatic representations of the properties of Isotony,
Locality and Covariance.

definition, we introduce a few prerequisites. A direct system (A;, f;;) consists of (i) a directed set
(S, =), (ii) a vector space A; for each i € S, and (iii) a homomorphism f;; : A; — A, foreachi < j,
subject to:
= 1d;, VieS
Ju =14, o (8.2)
fik=fijofik, ViZj=<k

where id; denotes the identity automorphism for each i € §. We say that the direct system (A;, f;;) is

defined over S. A direct limit A, of a direct system (A;, f;;) over S, is defined
A= A/~ (8.3)
i€S

where the equivalence relation ~ on | |;c5 A; is defined as

(x,0) ~ (v, )) = Jie(x) = [ (y)- (8.4)
We denote elements in A by [(x,7)], which corresponds to the set of elements in | |;c5 A; equivalent to
(x,7) under the relation ~.

Remark. Direct limits can similarly be defined when each vector space A; comes equipped with
additional structure, provided that each homomorphism respects this structure. For our purposes, we
will define the direct limits of two directed systems, one of Hilbert spaces and another of von Neumann

algebras.
Let D denote a set of countable subsets of S!. For each closed interval I ¢ S', denote by D; the
set of all elements in D, containing the endpoints of 1. A discrete conformal net consists of:
(i) a directed set (D, <) of countable subsets of S!;
(i1) a Hilbert space H; for each i € D;
(iii) a von Neumann algebra (A; (/) acting on H;, for each closed interval I C § l'and each i € Dy;
(iv) anisometry fi; : H; — H; foreachi < j,ie. f o fij =id;;

(v) a discrete realisation of Diff,(S') denoted D;
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t —~~— t ] \ i
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(a) Isotony (b) Locality (c) Covariance

Figure 8.2: For discrete conformal nets, we present diagrammatic representations of the properties of
Isotony, Locality and Covariance.

(vi) a continuous unitary representation U of D on the completion of H (see below).

From these elements we define H as the direct limit of the direct system (7;, f;;) over D, and define

A(I) as the direct limit of the direct system (A;(/), g;;) over D, where

gij - A(I) = A; (1), x> fijoxo fi. (8.5)

Remark. We highlight that (i) H is a pre-Hilbert space, (ii) A(/) is an algebra for each I where
Dy # 0, and (iii) there is an action of A (1) on H. To illustrate the point (iii), see (8.7]) below.

The algebras A (1) and the pre-Hilbert space H are subject to

Isotony: A(I) € A(J), ifr1cJ
Locality: [A(I),A(J)] =0, ifINJ=0 (8.6)
Covariance: U(a)A(NU(a)* = A(a(l)), VYaeD
Positivity:  Spec(U(p)) c No, Y p € Rotp

where Rotp denotes the rotation subgroup of D. We highlight that the conditions (8.6) are discrete
analogues of the conditions (8.I). See Figure [8.2] for diagrams illustrating Isotony, Locality and
Covariance.

To illustrate how the direct limits A (1) and H give rise to structures similar to conformal nets, we
show how the action of A(I) on H is inherited from the corresponding direct systems over D. Let
[(a,i)] € A(I) and [(v, )] € H, we have

[(a,)](L(v, N]) = [(gix (@), ([ (S (), k)]) = [(fix 0 ao fiz. 0 f1) (v), k)], (8.7)

where i < k and j < k, and where the second equality uses the action of Ay (1) on Hj. We proceed by
showing that the action (8.7) is independent of the representatives of each equivalence class. Consider
[(a.0)],[(a’, /)] € A() and [(v,i)], [(v', /)] € H, satistying

gix(a) = gk (a’), fitW) = fie(V), (8.8)
so [(a,i)] =[(d’,j)] and [(v,i)] = [(V",j)]. Comparing the following two actions, we have

[(a.D)]([(v.D]) = [(a(v),D)], [(a", DI(LO, )]) = [(@ (), )], (8.9)
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and

[(a,)](L(v,)]) = [(gix(a), ) ([(fix (), K)]) (8.10)
[(gjx(a"), OIS (v). 5)])
[((fixoa'o fiyo fix) (V') k)]
[
[

((fikoa)(v'), k)]
(a’(v"), )1,

where in the second equality we have used (8.8), and in the fourth equality we have used that f; is an
isometry.

Stepping back, let us briefly describe the intuition behind the features of a discrete conformal
net. An element of D is a ‘discretisation’ of spacetime, to which we associated a Hilbert space of
states and a von Neumann algebra of observables. The direction defined on 9 indicates a ‘resolution’
or ‘scale’ of a given discretisation. Discretisations with a ‘finer’ resolution, better approximate S'.
It follows from the injectivity of f;; respectively g;;, that states, respectively, observables on one
resolution are present on a ‘finer’ resolution, so we have H; € H; and A;(I) € A;([). Two states
or two observables defined on different resolutions, equivalent up to the action of the appropriate
maps, are considered ‘physically indistinguishable’. Direct limits of the Hilbert spaces, respectively,
von Neumann algebras, collect states respectively observables and identify those that are physically
indistinguishable. Moreover, direct limits facilitate the action among observables and the action of
observables on states across all scales.

To get a better feel for discrete conformal nets and their relation to planar algebras, we present
so-called semicontinuous models in the following section. As we will see, these are almost examples

of discrete conformal nets.

8.2 Semicontinuous models

8.2.1 Spacetimes

Starting with the directed set D, we proceed by introducing the components of semicontinuous models.

For k € N+, a standard k-adic interval is an interval of the form

1
[m m ] m.n €N, 8.11)

ok
The partition of the interval [0, 1] into standard k-adic intervals is called a k-adic subdivision of [0, 1].
Similarly, if we define the unit circle S! as [0,1]/{0 ~ 1}, the partition of ' into standard k-adic
intervals is called a k-adic subdivision of S', and can be characterised by a tuple consisting of the
endpoints of each interval. Rotating, equivalently, shifting the points of a k-adic subdivision of S! by a
k-adic rational will, in general, result in a distinct subdivision. See Figure @for the enumeration of

dyadic subdivisions of S with up to four points.
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Figure 8.3: The enumeration of dyadic subdivisions of S! with up to four points.

We refer to an annular k-tree, as a planar tree whose root is at the centre of § I whose leaves
lie on S', and where each vertex has valence k + 1. There is a one-to-one correspondence between
k-adic subdivisions of S! and annular k-trees. To illustrate this correspondence, we use the dual-tree

notation [108]] and present the infinite annular 2-tree and the infinite annular 3-tree

=

) ‘ ‘ (RN BN
01« -1 0l1e - \l/E - (8.12)

SN[}

Any k-adic subdivision of S', equivalently, annular k-tree can be obtained by ‘filling out’ a finite

region and/or rotating the infinite annular k-tree. Taking k = 2, we present some examples:

A
=
ool
ool

ool—

, i £ 7, i ¥ -3 (8.13)

sl-

7/

=SB\
7/

=SB\

s 1
0l1 1

W

L
6 0|1

5l
(s

01 T

We refer to an annular k-forest, as a disjoint union of planar trees whose roots lie on S! x {0},
whose leaves lie on S' x {1}, and where each vertex has valence k + 1. An annular k-tree (equivalently
k-adic subdivision of S') with m leaves (equivalently points) can be ‘refined’ to one with n leaves
(where m < n), by filling out more of the infinite annular k-tree. This operation can be performed by

‘composing’ the corresponding annular k-tree with m leaves with the appropriate annular k-forest with
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m roots and n leaves. To illustrate, we present the following example:

"ll

N / :
i= 6, poi= , (8.14)
/ \ J\g\\/_

where i and p oi correspond to the first and third diagrams in (8.13)) respectively. The operation
can be formalised as the composition of morphisms in the annular forest category A%, where
Ob; A% =N and Mor4g, (m,n) is the set of all annular k-forests with m roots and n leaves, see [20]
for details.

Let D) denote the set of all annular k-trees (equivalently k-adic subdivisions of S')

D® := | JMorg, (1,n), (8.15)
neN

and define the partial order on D) as
i<j = j=poi. (8.16)

For each k € N, the directed set (D®), <) is a valid set of spacetimes for a semicontinuous model.

We proceed by introducing the relevant direct systems of Hilbert spaces and von Neumann algebras
defined over D),

8.2.2 Hilbert spaces

Let P denote an involutive planar algebra (P,),en, and let (V,)qen, denote a Hilbert representation of

P. Denote by J an element of Py, that satisfies

e
[l = | (8.17)
3
I

For each annular k-forest p with m roots and n leaves, we denote by ®x(p), the corresponding element

in Moryiib (Vin, Vi), where each vertex in p has been replaced by the element J € Py, for example:

\\\ ,// \\S\\/‘S/

= K , ) « 8.18
» YO Ny s(p) = (8.18)
7 \ /V 3
/
Remark. Courtesy of the Hilbert representation of P, we will express linear maps in Mory;ip (Vin, Vir)

diagrammatically as the corresponding affine tangles in Morag(p) (m,n).
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By construction, @x(p) is an isometry for every p, that is, @3(p)* o ®gy(p) =idy, . Define the Hilbert
spaces H; := V);, and the maps

£ H - H,, a - O5(p)(a), (8.19)

where j = p oi. It follows from the properties of ®x(p), that each ff) is an isometry and that
(H;, ff)) is a direct system over D®). Accordingly, we introduce the corresponding direct limit
H =| |Hi/ ~, )~ G0 = fIW=fP0) (820)
i€S

Specialising to k =2 and V,, = P,,, we can view a representative of a vector in H diagrammatically as

* K|—

\/
/ X = -:-X—EP7,
(X,8)= 0+ X o5, I (8.21)
~ _ 1 11511 3 2
/ ‘\.5 s_(oagaz’ivgaﬁaz)eﬂ( )’
s

1 1 3
8«4\ Ba \/\/ 4
~ / :x 3
[(x,9)] - X 3 = 0" X s 1 (8.22)
/ v, JER AR ™y
1 Q

NS 7%/ Vs
TR 8 TR

I 16 i 1

8.2.3 von Neumann algebras

For each m,n € N such that m < n and each s = 1,...,n, we define the inclusion map

Loy f I~ T
Ls.n - Py — HomHilb(VnaVn)’ .I Ia... : = '/' \; a |, (8.23)
s+m modn

and denote by ¢ ,(P,,) the subalgebra in Hompyj(V,,, V,) induced by the inclusion map. For each
closed interval I ¢ S' and each i € Dy, denote by s(i,I) the index of the starting point of I in the tuple
i. Define the von Neumann algebras A; (1) := 5(;,1),1i| (P|in1-1) and the maps

s A A, am fPoao(fV. (8:24)

It follows from properties of ff ) that (A;(I),g;- i 3 ) is a direct system over D), and we introduce the

corresponding direct limit

ANy = A/ ~, i) ~(n)) = g @=gPG). (825
ieS
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Specialising to k =2, we can view a representative of an element in A (/) diagrammatically as

B

1

=N \
/ o~
(as)= 0b 3 % T4 RN € u7(Ps) (8.26)

- th
=%
L}

1 11511 3 2
S:(05§919§9§’E’Z)€D( )$

/

E S o
(=)l
ool

and we note that the representative (a, s) has a natural diagrammatic action on the representative (x, s)

in (8.21) as follows

® K|—

'\\./ Y
(a,5)((x,8))= 0e = x oy = -‘/a(x) + 1 =(a(x),s). (8.27)
S Ba

11

1

Al e
ool

By construction, this action extends to an action of A (I) on H®), see (8.7)-(8.10). It readily
follows from properties of planar algebras, that the algebras A (I) satisfy isotony and locality.

8.2.4 Groups and representations

Let (d,r) denote a pair of k-adic subdivisions of S! with the same number of points. To (d, r), associate
a piecewise-linear homeomorphism f : S! — §' that acts by sending each subinterval of d onto the
corresponding subinterval of . We refer to f as a k-adic rearrangement of S'. Thompson’s group Ty
is the group of k-adic rearrangements of S' [109,/110]. It is a remarkable fact that Thompson’s groups,
for each k € Ns», offer a discrete realisation of Diff,(S') [111,/112], see also [113] for the case k = 2.

Theorem 8.2.1. For each f € Diff,(S') there exists g € Ty and € > 0 such that

sup [f(x) —g(x)| <e. (8.28)

xes!

The Jones action [[107] defines an action of Ty on H ), which induces a unitary representation
of Ty for each J € Py1. While this construction ensures semicontinuous models satisfy the unitary
requirement of (iv) in (8.6), it remains to show that these representations are continuous. For a semi-
continuous model based on a Temperley—Lieb planar subalgebra, Jones showed that representations of
the rotation subgroup are “hopelessly discontinuous” [20,/107]. This result was later extended to tensor
planar algebras by Kliesch and Koenig [114], who showed that such representations are generically
discontinuous. Both results [20] and [114]] were established for k =2 only.

We briefly mention some recent efforts to avert these ‘no-go theorems’. Our goal is to select

3 € P41 to endow the corresponding representations with continuity. We highlight that the dimension
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of Pr4+1 grows at least exponentially for subfactor planar algebras. It is therefore conceivable that
as we consider larger k € N3, there are increasingly many J giving rise to a continuous unitary
representation. It remains to identify these elements. For the rotation subgroup, we have developed
sufficient conditions, expressible in terms of planar-algebraic relations among J, 3" € Py, 1, that endow
the corresponding representations with continuity. We have found an infinite class of solutions for a

semicontinuous model based on the Brauer planar algebra for each k = 2n+3 where n € N.

8.2.5 Integrable operators on spacetime

Putting the continuity issue aside, we proceed by introducing some operators that act on the spacetime
of semicontinuous models. Denote by A; = A;(S!) the algebra of observables that act on all of
spacetime. Of immense physical interest is the Hamiltonian — the generator of infinitesimal time-

evolution. For each A;, this element simply corresponds to the rotation

pii = + ( ) (8.29)

and by the positivity axiom (8.6), U(pj;) necessarily has a positive spectrum.

A related class of operators are those with the property of integrability. Translating the planar-
algebraic models of Chapter [3]to this setting, we introduce two classes of integrable operators acting
on spacetime. Let (P,)ncn, denote the planar algebra underlying the semicontinuous model and recall

the parameterisation of the R- and K-operators:

) = Z ko(u)a, = Z rqe(u)a, th = Z K.(u)a, (8.30)
|

| aceB aeB;

where B and B, denote bases for P, and P4 respectively, and ka,ra,za : Q — C. For each algebra

A;, we introduce the global transfer operator
T(s)(u) = [ - ) (8.31)

It follows from Proposition [3.2.1] that if the R-operators satisfy a particular set of relations, then each
of the global transfer operators are integrable. In this case, following the prescription in Section [3.5]
we can associate to each A; a corresponding set of global Hamiltonians {Hj(.s) | j € S} that satisfy

1w a1 =0, [HHT=0. Vjkes. (8.32)
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Moreover, if the R-operator has an identity point (in the sense of Proposition , then p|; is among
the global Hamiltonians derived from the transfer operator T|§|S) (u)! It follows that the transfer operator
and each of the global Hamiltonians share a common set of eigenvectors with the generator of infinites-
imal time-evolution. Returning to observations made in Chapter[I] a solution to a statistical mechanical
model described by a transfer operator T|§|s)(u), can immediately be passed to the corresponding
semicontinuous model. We, therefore, regard the global transfer operator as playing an essential role
in describing the dynamics of semicontinuous models [115].

Similarly, for each A;(I), we introduce the local transfer operator

. \/ &
'.\.u'_
T(d) \. ”"u‘.e\._

(u) = = - 1 - (8.33)

l7] 4
/. \':_:ul~o
T\

It likewise follows from Proposition [3.2.2] that if the R- and K-operators satisfy a particular set of
relations, then each of the local transfer operators are integrable. In this case, we associate to each
A; (1) a set of local Hamiltonians analogous to those in introduced (8.32).

While the results reported in this chapter are preliminary, they do indicate the applicability of
planar-algebraic models beyond statistical mechanical systems. In the following chapter, we outline
future projects that aim to strengthen the ties between the planar-algebraic framework and the QFTs

sketched here.
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Chapter 9

Conclusion

In this thesis, we developed a planar-algebraic framework to describe two-dimensional statistical
mechanical models defined on the strip and the cylinder. In each case, we introduced a set of sufficient
conditions implying integrability that are more general than is typically presented in the literature. For
integrable models, we have revisited the notion of integrals of motion algebraically and considered
algebraic relations among those that arise from the transfer operator, which we refer to as Hamiltonians.
To characterise one extreme, where each of the Hamiltonians is polynomial in a single algebraic
element, we have introduced the notion of polynomial integrability and have developed necessary
and sufficient conditions for a large class of planar-algebraic models to be polynomially integrable.
A simple corollary of this result is that models described by integrable and diagonalisable transfer
operators are polynomially integrable — indicating the ubiquity of this property.

We then applied this framework to planar-algebraic models encoded by the class of singly generated
planar algebras on both the strip and the cylinder. We showed that such models are homogeneous
Yang—Baxter integrable if and only if the underlying planar algebra satisfies a Yang—Baxter relation.
In establishing this result, we incorporated the well-known homogeneous Yang—Baxter integrable
models encoded by the Fuss—Catalan and Birman—Wenzl-Murakami algebras into our framework and
constructed a new integrable model based on the Liu planar algebra. We also showed that each of these

models on the strip is polynomially integrable, although we did not determine the explicit polynomials.

As another application of our framework, we considered two planar-algebraic models defined on
the strip, one underlied by the Temperley—Lieb planar algebra and the other underlied by the tensor
planar algebra. In each case, we highlighted when the model is polynomially integrable and determined

explicit polynomials in terms of which the transfer operator is expressible.

To demonstrate an application of the planar-algebraic framework beyond regular lattices, we
introduced a dilute loop model and a dense loop model underlied by the tensor planar algebra, defined
on causal triangulations of the cylinder. In each case, we showed that these models admit a description
as labelled planar trees. However, only for the dense model could the corresponding tree model
be solved exactly using standard methods. For the dilute loop model, we determined the critical

behaviour by developing transfer operator techniques, which revealed that this model induces a change
165



in the Hausdorff dimension relative to the pure triangulation model. This result suggests a non-trivial
interaction between the dilute ‘matter fields’ and the ‘gravitation’ of the pure triangulations.

Last of all, we demonstrated the applicability of planar-algebraic models beyond statistical mechan-
ics by showing how these models relate to a particular class of QFTs. For this class, we introduced
Jones’ semicontinuous models as ‘almost’ examples and detailed some recent efforts to make them
fully-fledged examples. Within semicontinuous models, we highlighted the relevance of the planar-
algebraic framework and showed that the corresponding single-row transfer operator plays a crucial
role.

We conclude this thesis with a brief discussion of avenues for further research. Starting with
integrable planar-algebraic models, an immediate continuation of Chapter [5| would be to develop a
similar classification for doubly generated planar algebras. Indeed, this would require advances on
two fronts (i) a classification of the algebras themselves, analogous to Liu’s classification, and (ii) a
classification of those that admit solutions to the integrability sufficient conditions. An intermediate
step along these lines would be to develop singly generated extensions of the Fuss—Catalan, Birman—
Wenzl-Murakami and Liu planar algebras; and determine whether these give rise to Yang—Baxter
integrable planar-algebraic models. Another avenue is to develop an inhomogeneous Yang—Baxter
integrability framework, wherein the transfer operators are not spatially uniform. In principle, this
framework would incorporate the possibility of a shaded transfer operator.

Focusing on polynomial integrability, it would be interesting to consider the physical consequences
of this property. A natural approach would be to construct explicit models that are not polynomially
integrable and compare them to related models that are. Initial indications suggest that polynomial
integrability is less common on the cylinder. The reason for this is likely related to the natural
tendency for rotation on the cylinder, the generation of which requires an additional operator. Another
avenue of interest is to reinterpret known results in light of polynomial integrability, for example, the
T-systems [[116,117] and Y-systems [[118,119], and functional relations more generally [46,(120-122].

A natural extension of the work in Chapter([7] is to consider the generalisation of the dilute loop
model outlined in Section in addition to considering dense and dilute loop models where the
loop fugacity is different to one. An immediate consequence is that these models would no longer
admit a natural description in terms of the tensor planar algebra. An obvious replacement would be
the Temperley—Lieb planar algebra or a dilute version thereof. Why stop at Temperley—Lieb planar
algebras? One may also consider other types of loop models on causal triangulations, for example, the
so-called fused Temperley—Lieb loop models [[61}122,123] based on [[124.|125]], and loop models with
an underlying Birman—Wenzl-Murakami algebraic structure [59,126]]. Thinking beyond loop models,
one may adapt vertex models [11,34./66.67,127] and RSOS models [128.|129] to the setting of causal
triangulations. In all of these cases, we envisage the applicability of the planar-algebraic framework.
In particular, the prominence of the transfer operator in analysing the partition functions, in addition to
correlation functions more broadly.

Finally, we consider projects strengthening the connections between the planar-algebraic framework

and QFTs sketched in Chapter 8] Of immediate interest is to construct semicontinuous models that are



examples of discrete conformal nets. A promising approach is to develop and solve sufficient conditions
endowing continuity to representations of 7j via the Jones action. It would also be interesting to
consider semicontinuous models whose symmetry group is enlarged, i.e. replacing Thompson’s group
T} with one of the so-called forest-skein groups introduced recently by Brothier [130,(131]]. Planar
algebras need not be the only structures giving rise to discrete conformal nets, we envisage considering
other examples and studying their properties. It would also be appealing to develop a ‘continuum
limit’ that takes discrete conformal nets to conformal nets. This limit, if successfully developed, would
be a systematic procedure to associate a subfactor to conformal field theory [107]. We also note
that conformal nets are one example of AQFTs. It would be interesting to define discrete algebraic

quantum field theory and consider examples beyond discrete conformal nets.
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Appendix

A.1 TL algebra Baxterisation

We begin with the YBEs (3.31), and define

|
NV m TEN
Ayp=20 | -+ | 4 (A.1)
INu—= =N
| |
| | | |
NV T TEN NS TN
Aya=22 | -+ | 2 Ayz=23 | -+ | 3 . (A.2)
A A A AN

Similarly for the Invs (3.30), we define

Ve Ve -
Al,i = 1 vy - . (A.3)
A A

Expanding O = Ay ; and collecting coefficients, we arrive at the constraint:

er—ex: 0=[re(wre(v)=ra@riM]F + [re(@re(v) +re(@ry (v) +6rewr. () ]7". (A4)
Similarly for 0 = A; 1, we have:

1: 0=yMyh_q (A.5)
1=(1 1=(1 1—(1
e 0=y 4y U5y 4oy v (A.6)
Applying the functions of Proposition [5.1.1]to the constraints 0 = Ay ; and 0 = A; 1, we indeed have a

homogeneous Baxterisation.
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A.2 FC algebra Baxterisation

Expanding 0 = Ay ; and collecting coefficients, we arrive at the constraints:

E\Py-P\Ey:  0=[ry)rp(v) —rp(u)rg(W)]5y —re(v) [r1 () +yrp(u) |7 (A7)
PyEi—ExPr: 0=[rp(u)ri(v) =re()rp()|5y) = re(w)[re(v) +yrp (1) 70 (A.8)
Pi=Py: 0=ry(wri (75 = [rp)ry(v) +r1@rp(v) +yrp(rp(v) |7y (A.9)
E\-Ey: 0=[ri(ri(v)—re@rg()]5 —yre@rg vy (A.10)

= [re @re) +re@)ry (v) +y (re@re (V) +r@rp(v) +yre@re(v)].

Similarly for 0 = Ay ;, we have:

1: 0=yP5 -1 (A.11)

1)—(1 1)—(1 1)—(1
P 0=y05 0 4y 050 4y D5 (A.12)

1)—(1 1)—(1 1)—(1 1)—(1 1)—(1
E: 0=y 5 +y 3y (05 + 5 5)) +r5. (A.13)

Applying the functions of Proposition [5.3.2]to the constraints 0 = Ay ; and 0 = A;;, we indeed have a

homogeneous Baxterisation.

A.3 BMW algebra Baxterisation

Expanding O = Ay ; and collecting coefficients, we arrive at the constraints:

e1g2-g1e2: 0=[ri(w)rg(v) —rg()re(v) +Qrg(wrg (W3 = ri(wyre ()7 (A.14)
goer—exgr: 0=[rg(Wr1(v) =re(w)rg(v) +Qre()ry(]5e" = re(u)r1 ()7 (A.15)
gi-g2: 0=rp)ri(M¥Y = [re@ri(v) +r1@)rg(v) +Qre()rg(]5" (A.16)
ej—ey: 0= [re(u)re(v) —Q(rg(W)re(v) +re(w)re(v)) + erg(u)rg(v) (A.17)

10 (re (W)re (v) + 71 (1) re (v) + 1 (w)ry () = re (W)re (V)T | F = 7207, ()7, (v) 7"
+7Q[r1(w)r1 (V) = re (W)re (V) + O (rg (0)re (V) + 1o (u)rg (v)) = Q%r (0)rg (V) | TV

Similarly for 0 = A; 1, we have:

1)—(1 1)—(1 1)—(1 1)—(1
1)—(1 1)—(1 1)—(1
1)—(1 1)—(1 1)—(1 1)—(1 1)—(1 1)—(1 )

1 1 —(1 —(1 1H)—(1
w2 v+ 0y ][5y + 03 -0y

Applying the functions of Proposition [5.4.2]to the constraints 0 = Ay ; and 0 = A; 1, we indeed have a

homogeneous Baxterisation.



A.4 Liu algebra Baxterisation

Expanding 0 = Ay ; for each i = 1,2, 3, we arrive at the constraints:

e1852— 95162 ¢
§y€e1—ens -
S1—982 ¢

e|1—en.

€182 —Ss1€62 .
§y2e1 —ens81 -
S1—582 ¢

e1—en.

e152—81€7 ¢
§2€1—e€r2S51 .
S1—82:

e1—en.

0=6> [r]l(u)rs(v)—ers(u)re(v)]_(l) [62r1(u)re(v) ers(u)rs(v)] yib
0=6> [ers(u)rﬂ(v)—re(u)rs(v)] yb e[ézre(u)rﬂ(v)+er;(u)rs(v)]y(l)
0= =8 [rs(r1(v) +ri(rs]7y +[8°r1 (Wry () =rs(wyrs (1) |3
0==6[re(Wre(v) = ry(wr1 () ]5:" +€ ! [rs(yre(v) + re (wyry(v) |55
+[r@ry () =5 (ra@re () +re@ry (V) =8 re(Wre (5,

0= =8 [r(Wre(v) =re(Wr(» ]3¢ +VAme>5%Ameﬂf”

0=6[rs(u)ry(v) = r1 (W)rs(v) |75 = €[rs (@)rs(v) + 62ry (0)ry (v) | 72

0=-6> [rs(u)rﬂ(v)+ere(u)rs(v)] 32 [eézre(u)rﬂ(v)—r;(u)rs(v)]y(z)

0=—e8[r1 (Wre(v) = re(Wri (|5 + e [r@re(v) +r1(w)ry(v) € |78
+ [ s (v) = €6 (re (Wre (V) +r1 (W)ry (v)) — €8%rg (W)re (V) |77

0=€62[rs(uyrs (v) = ra Wyrs(W]5¢ + [€r(@rs(v) = 62ry (w)ry ()3

0=—6[rs(Wre(v) = re(Wrs(]3E = [6%re (Wre (v) + €15 (w)rs (1) |71

0=-6> [re(u)rs(v)+6rs(u)r1(v)] 33 [52re(u)r1(v)—ers(u)rs(v)]y(3)

0==6[r1(Wre(v) =re(@ri (]38 + € [rars () + Erywre (v) |75
+ [ers(Wry(v) = (re(Wre (v) +r1 (Wry (v)) = 6%y Wre (V) |75

Similarly for 0 = A;; we have:

1: 0=yP30 420050 1

s: 0=y30 4 y050 L5y 050 _ 2571, 050

e 0=yy +y5

(A.21)
(A.22)
(A.23)
(A.24)

(A.25)
(A.26)
(A.27)
(A.28)

(A.29)
(A.30)
(A.31)
(A.32)

(A.33)
(A.34)
(A.35)

fori=1,2,3. Applying the functions of Proposition [5.5.2]to the constraints 0 = Ay; and 0 = A;; for

each i =1,2,3, we indeed have a homogeneous Baxterisation.



A.5 TL,(6) polynomials

A.5.1 Principal hamiltonian A

Forn=2,...,7 and ¢ an indeterminate, the minimal polynomial for /¢ is given by
m{? (h) = k2 +6h, (A.36)
m (h) = > +260% + (6% - 1)h, (A.37)

m? (h) = h®+66h° +14(62-2) h* + 166 (62~ 3) 1> +9(6*~ 1062+ #) h2 +26 (6% ~352+2) h,  (A.38)

m (h) = h'°+126h° +63 (62— 1) +1906 (62 - &)+, (A.39)
m® (h) = B*°+306h" +423(6> - 13 )n'® +37266 (62 - 199)n17 4., (A40)
m{? (h) = k¥ +606h>* + 1740(6% — 27) k>3 + 324885 (62 - %) n*2 +. (A.41)

In a matrix representation of p,(hg), the off-diagonal elements are independent of §, whereas the

diagonal elements are of the form —i¢, i € {0,...,[5]}. Since the number of elements equal to —i¢ is

()14, ang
(L%J)(f%])l _ L%Jcn—l’ (A.42)

5

—

i=0 ! !
it follows that

m{” (h) = hen+ | 2 |epmr6he 4. (A.43)

We also note that the degree of the monic §-polynomial multiplying 4’ in m(()") (h) is given by ¢, —1,
and that this 6-polynomial is even (respectively odd) if the degree is even (respectively odd).
For 6 =0 and n > 2, there are spurious degeneracies in the spectrum of p, (%), so l(()"o) could be

smaller than l(()”). Through direct computation, we find

mg" (h)|s_g=min(h),  n=2,34, (A.44)
mg (h)]s_y = hm{ (), (A.45)
m ()| = H*mgy (h), (A.46)
my ()]s = *Us(4)myly (h). (A.47)

We thus have

n [|[23]4]5]6]|7

(
0213 16]9|18]27

1121316102035

which confirms the following conjecture forn =2,...,7.



Conjecture A.5.1. For n € Ny, we have

n ntl Al 2ol
1§ =13+ (-nym3lT), (A.48)

A.5.2 Principal hamiltonian /_ 2

For n =2,3,4,5, the principal hamiltonian hn,_ 2 is given by

hz’_% =ey, (A.49)
hy 2= — (87 +4) (e1 +e2) +erer+ezen, (A.50)
h4’_% = #(54+462+ 16)(e1 +e3) +$(62+4)262 - 2%(62+4)(elez+ezel +ere3+e3er)

§e163+eleze3+egezel+e1e3e2+eze1e3, (A.51)
hs 2 =—g5 L(67+4) (8% +16) (e +e4) — o5 (87 +4) (6" +46° +16) (e2+e€3)

462 (64+462+16)(elez+ege4+e4e3+e2e1)+4(52 (52+4)2(€263+e382)
2 (52 8 4

+§((5 +4)(€1€3+€2€4)+6—26164—3(61€2€4+€1€3e4+ele4e3+€2€1€4) (A.52)
12

—55(0°+4)(e1ere3 +ejezer +ererez+erezes+ereses +ezere) +ezeres+eqezer)

+e1epe3eq4+e1epeq4e3+e€1e3epe4+¢€1e4e3er+e0¢e1e3e4+ep¢e1e4e3+e3e0e1e4+e4e3er¢e,

and for ¢ an indeterminate, its minimal polynomial is given by

m_(? (h) = h* = 6h, (A.53)
m_(?(h) = 17+ B (6> +2) W + 55 (8°+ 36" + 1257 ~ 16) h, (A.54)

(4)(h) B - 20 (60 + 567+ L)+ i ("0 BB+ )t - L (M), (ASS)
m_(S%)(h):h10+ 2B (65436 +857 +16) 1+ L35 (8"+ )RS+ B (6% 4+ )W +.... (AS6)

We note that the numerators of the fractions multiplying the even monic 6-polynomials in these
minimal polynomials are the same as the coefficients to the similar terms in (A.36)—(A.39). We also
note that the degree of the monic 6-polynomial multiplying 4’ in m(()") (h) is given by (n—1)(c, —1i),
and that this 6-polynomial is even (respectively odd) if the degree is even (respectively odd). For the
h. 2 counterpart to 1} , we conjecture the following expression.

Conjecture A.5.2. For n € Ns,, we have

mf’g(h):h%—(—nn{ J; 1(5" ! ‘“:%12)5"—3+...)h6n—1+.... (A.57)



A.5.3 Decomposition conjectures

Conjecture A.5.3. Let n € Nx3 and 6 an indeterminate. Then, T, (x) admits a unique decomposition

of the form
cn—1n-4
Tn(x):[5U”(§)+2Un_1(§)]11n+(52+25x+4)( 3[(6—x)ho+ 3] + - (5) Z;kz(:)~"0(5)xkh’)

(A.58)
where f,0(0) is as in Conjecture|6.1.15|and dl’.”/?(é) are polynomials such that no root of f,0(9) is a
root ofd:l’]?(é) forallik.

The form of the contribution x"3 [(6 —x)ho+ h(z)] follows from continuing the expansion || to

third order in €:

Tu(€,6) = [6+2e—(n—1)e*6 -2(n-2)€| 1,

—2€5ho+€*[26h% + (5 = 4) ho| + € (4+82) (h§ + 5 ho) + O (€”). (A.59)

We have verified Conjecture[A.5.3|for n = 3,4,5, 6, finding

~40(5) 15t — 26242, ~40(5)__ 5 -1s, ~40(6)__ -3, ~40(5) 56, ~40(5)_4’
(A.60)
and
ayo(8) =165" —205"" —12666° + 2897 - 169155 _ 1330153 1 17496, (A.61)
ay](6) = =726"2 + 1083610 _ 15458 _ 2902556 4 8961 54 _ 352 _ L33 (A.62)
~5 0(5) _ 104512 57510 799658 46665 (56 2103154 16;9952 + 1320’ (A.63)
~5 0(5) — —460511 1113959_’_ 194?1 57 _ 7332955 + 7216153 _ 32%5’ (A.64)
Pl 0(5) 202511 4 59959 _ 88245 57+ 178423965 _ 3126153 —70965, (A.65)
~5 0(5) _ 1270510 + 5251;5758 + 53(§7156 _ 291834954 + 152871152 _ %, (A.66)
dy0(5) =4626'0 +5185° - BP0 4 853954 1 31352 2134, (A.67)
ay1(6) = —19776° + 18557 + 154525° — B23153 83475, (A.68)
a20(5) =4506° + Z1367 — 336436° +243585° + 31060, (A.69)
ay'1(6) =—18966° + 3B5° + 176126* — 197835% + 1254, (A.70)
dg(6) =2765°+ 1921 5° — 4337 5% 163286 + 924, (A.71)

ay)(6) = 114667 + 142155 4 4396153 — 54325, (A.72)



ay(6) = 10467 + 825% - 323153 4 3156, (A.73)

~5 0(5) — —42656 9827 (54 34447 52 11277’ (A.74)
g o(6) = 226° +446* — 174767 - 110, (A.75)
ag(6) =—-895°+2476° + L, (A.76)
Pl 0(5) 285 + 15(53—1646, (A.77)
& 0(5) _ 8644_%52 14213. (A.78)

Although the polynomials d?’,? (6) are not provided here, we note that, for n =4,5,6 and all i, k,
deg(al) =dpo—i=1(1=(=D¥),  dig=5, dsg =14, dgo=63, (A.79)

and that de () is even (respectively odd) if its degree is even (respectively odd). This is seen to

correspond to the parity of n+i+k +1.
Conjecture A.5.4. Let n € Ns3 and 6 an indeterminate. Then, T,(x) admits a unique decomposition

of the form

a FH20x+45 3 a2
To(x) = [6Un (%) +2U,-1 (5) | 10+ 2(5) Z Z 3 (6)x hlz, (A.80)
’1, =1 k=l

n-2
5

(6) are polynomials such that no root of f,, . 2 (0) is

where fn’_% (0) is as in Conjecture|6.1.15and d a; ”

2
a root ofd?’k °(6) for all i, k.
We have verified Conjecture for n = 3,4, 5, where we note that, for all 7, k,

deg(a"’é) d, 2—(n=-1i-k,  d; =54, d,_» =235, (A81)

Sz
)

2
and that d?’ké (0) is even (respectively odd) if its degree is even (respectively odd). This is seen to

correspond to the parity of n+i+k.
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