

Comp-Mech for logits:

Modular addition as a case study

Xavier Poucini

PIBBSS Symposium 2025

Outline :

- 1) (Just enough) Comp-mech
- 2) Modular addition
- 3) Results
- 4) Outlook

(Just enough) Comp-Mech

Hidden Markov Model (HMM):

A HMM consists of:

* A set \mathcal{X} ^{"think"} *means* vocabulary of emissions

* A collection of transition matrices $(T^{(x)})_{x \in \mathcal{X}}$

$$\text{where } T_{ij}^{(x)} = P(X=x, S_j=s_j | S_i=s_i)$$

^{"think"}
means

dynamic that
determines
emissions &
hidden state
transitions

Fix an initial dist. over hidden states $(P(S_i))$; the prob. of obs. $w = w_1 w_2 \dots w_n$ is:

$$P(w) = \sum_{i_1, i_2, \dots, i_n} P(S_{i_1}) P(w_1, s_{i_1} | s_{i_1}) P(w_2, s_{i_2} | s_{i_1}) \dots P(w_n, s_{i_n} | s_{i_{n-1}})$$

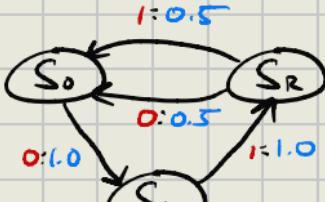
$$= \underbrace{\langle \gamma_1 | T^{(w_1)} T^{(w_2)} \dots T^{(w_n)} | \tau \rangle}_{T^{(w)}}$$

where $\langle \gamma_1 | = [P(S_{i_1}) \dots P(S_{i_{n-1}})]$

$$| \tau \rangle = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Example:

$$\mathcal{X} = \{0, 1\}$$



$$T^{(0)} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$

$$T^{(1)} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}$$

What information about the past is relevant to predict the future?

Consider conditional probabilities:

$$P(W^{(F)} | W^{(P)}) = \frac{P(W^{(P)} W^{(F)})}{P(W^{(P)})} = \frac{\langle \eta | T^{(W^{(P)})} T^{(W^{(F)})} | 1 \rangle}{\langle \eta | T^{(W^{(P)})} | 1 \rangle}$$

The predictive vector $\langle \eta^{(W^{(P)})} | = \frac{\langle \eta | T^{(W^{(P)})}}{\langle \eta | T^{(W^{(P)})} | 1 \rangle}$ is relevant to all future predictions:

$$P(W^{(F)} | W^{(P)}) = \langle \eta^{(W^{(P)})} | T^{(W^{(F)})} | 1 \rangle$$

Observation 1: [Shai et al.]

The predictive vector of the HMM is often linearly decodable from the activations of a neural network trained on data from the HMM.

Observation 2:

Transformers (& other NNs) produce probabilities by passing logits through an "intense" non-linearity — the softmax function:
(Boltzmann dist.)

$$P(w) = \frac{e^{z(w)}}{\sum_w e^{z(w)}}$$

Question:

Can we develop a notion of a HMM for logits that admits an analogue of predictive vectors?

Energy-based hidden Markov model (EHMM):

A EHMM consists of:

- * A set \mathcal{X}
- * A collection of transition matrices $(H^{(x)})_{x \in \mathcal{X}}$
- * An initial vector $\langle \gamma |$ & a final vector $| \varphi \rangle$

such that $\langle \gamma | H^{(w)} | \varphi \rangle \in \mathbb{R}$, for all $w \in \mathcal{X}^N$ & $N \in \mathbb{N}$

$\textcolor{blue}{H^{(w_1)} H^{(w_2)} \dots H^{(w_N)}}$

We can then associate these matrix elements with logits (energies)

$$z(w) = \langle \gamma | H^{(w)} | \varphi \rangle \quad \rightsquigarrow \quad P(w) = \frac{e^{z(w)}}{\sum_w e^{z(w)}}$$

What information about the past is relevant to predict the future?

Consider "conditional logits" i.e. $z(w^{(f)}|w^{(p)})$ such that:

$$P(w^{(f)}|w^{(p)}) = \frac{e^{z(w^{(f)}|w^{(p)})}}{\sum_{w^{(f)}} e^{z(w^{(f)}|w^{(p)})}}$$

Claim: $z(w^{(f)}|w^{(p)}) = z(w^{(p)}|w^{(f)})$ (proof is easy)

Expressing conditional logits in terms of ETMM objects:

$$z(w^{(f)}|w^{(p)}) = z(w^{(p)}|w^{(f)}) = \langle \eta | H^{(w^{(p)})} H^{(w^{(f)})} | \varphi \rangle$$

The predictive vector $\langle \eta^{(w^{(p)})} | = \langle \eta | H^{(w^{(p)})}$ is relevant to all future predictions:

$$z(w^{(f)}|w^{(p)}) = \langle \eta^{(w^{(p)})} | H^{(w^{(f)})} | \tau \rangle$$

Summary:

Process	Output	Predictive vector
HMM	$P(w) = \langle \gamma T^{(w)} \tau \rangle$	$\langle \gamma \tau^{(w^{(p)})} \rangle = \frac{\langle \gamma T^{(w^{(p)})} \tau \rangle}{\langle \gamma T^{(w^{(p)})} \tau \rangle}$
EHMM	$Z(w) = \langle \gamma H^{(w)} \tau \rangle$	$\langle \gamma \tau^{(w^{(p)})} \rangle = \langle \gamma H^{(w^{(p)})} \tau \rangle$

Questions:

- * Do neural networks represent the predictive vector of the EHMM?
- * Do neural networks prefer the predictive vector of the HMM over the EHMM when given the chance?

Modular addition

$$a + b = c \bmod p$$

Cyclic group (C_p) :

The group C_p is generated by r subject to:

$$r^p = \text{id}$$

E.g. $r^{a+b} = r^c \iff c = a+b \bmod p$.

A C_p -action describes the action of C_p on a set:

$$\alpha: S \times C_p \rightarrow S$$

That respects the group structure i.e.

$$\alpha(r^a, r^{a+b}) = \alpha(\alpha(r^a, r^b), r^a).$$

Consider two C_p -actions: [Chughtai et al.]

$$\begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ \scriptstyle 0^{\text{th}} & & & & \scriptstyle i^{\text{th}} & & \\ & & & & & \scriptstyle (p-1)^{\text{th}} & \end{bmatrix}$$

1) $S_p \times C_p \rightarrow S_p$, $S_p = \{e^i 1 / i = 0, 1, \dots, p-1\}$

on the vertices of a $(p-1)$ -simplex S_p . Inducing:

$$e: C_p \rightarrow \text{Mat}_{p \times p}(\{0, 1\}), \quad e(r) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \cdots & 0 \\ 0 & & 0 & \cdots & 1 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \cos\left(\frac{2\pi\omega i}{p}\right) & \sin\left(\frac{2\pi\omega i}{p}\right) \\ \sin\left(\frac{2\pi\omega i}{p}\right) & -\cos\left(\frac{2\pi\omega i}{p}\right) \end{bmatrix}$$

2) $V_p^{(\omega)} \times C_p \rightarrow V_p^{(\omega)}$, $V_p^{(\omega)} = \{e^{i\omega} 1 / i = 0, 1, \dots, p-1\}$

on the vertices of a p -gon V_p . Inducing:

$$e_\omega: C_p \rightarrow \text{Mat}_{2 \times 2}(\mathbb{R}), \quad e(r) = \begin{bmatrix} \cos\left(\frac{2\pi\omega}{p}\right) & \sin\left(\frac{2\pi\omega}{p}\right) \\ -\sin\left(\frac{2\pi\omega}{p}\right) & \cos\left(\frac{2\pi\omega}{p}\right) \end{bmatrix}$$

Random - Random Mod p (RRMod_p):

Vocabulary: $\mathcal{X} = \{0, 1, \dots, p-1\}$

Hidden states: $S = \{S_0^{(0)}\} \cup \{S_0^{(1)}, \dots, S_{p-1}^{(1)}\} \cup \{S_0^{(2)}, \dots, S_{p-1}^{(2)}\}$

Intuitively, the RRMod_p HMM is given by:

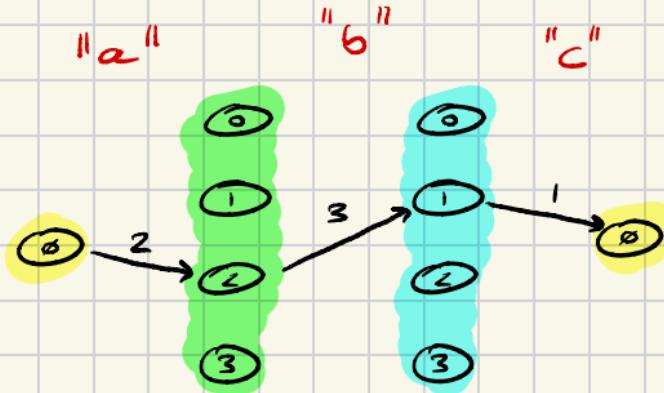
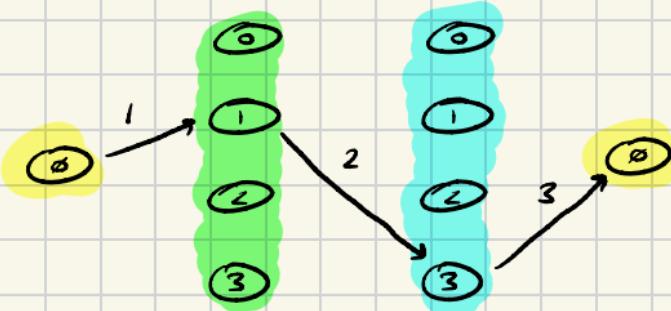
0) Process initialised in state $S_0^{(0)}$

1) Sample a from \mathcal{X} & transition $S_0^{(0)} \xrightarrow{a} S_a^{(1)}$

2) Sample b from \mathcal{X} & transition $S_a^{(1)} \xrightarrow{b} S_{a+b \bmod p}^{(2)}$

3) Transition $S_{a+b \bmod p}^{(2)} \xrightarrow{c} S_0^{(0)}$ where $c = a+b \bmod p$

Examples: $p = 4$



Formally, the RRMod_p HMM is defined:

$$\mathcal{X} = \{0, 1, \dots, p-1\}, \quad T^{(i)} =$$

$$\langle \eta | = [1 \quad 0 \quad 0]$$

$$\begin{bmatrix} S^{(0)} & S^{(1)} & S^{(2)} \\ 0 & \frac{1}{p} e_{i,1} & 0 \\ S^{(1)} & 0 & \frac{1}{p} e^{(r^i)} \\ S^{(2)} & 0 & 0 \end{bmatrix}$$

Probabilities:

$$P(a) = \langle \eta | T^{(a)} | \gamma \rangle = [0 \quad \frac{1}{p} e_{a,1} \quad 0] \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{p} \quad \langle e_a | e(r^b) \rangle$$

$$P(ab) = \langle \eta | T^{(a)} T^{(b)} | \gamma \rangle = [0 \quad 0 \quad \frac{1}{p^2} e_{a+b \bmod p, 1}] \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{1}{p^2}$$

$$P(abc) = \langle \eta | T^{(a)} T^{(b)} T^{(c)} | \gamma \rangle = \left[\frac{1}{p^2} e_{a+b \bmod p, 1} e_c \quad 0 \quad 0 \right] \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = \frac{\delta_{a+b \bmod p, c}}{p^2}$$

Predictive vectors of RR Modp:

Recall the HMM predictive vector: $\langle \gamma^{(w)} \rangle = \frac{\langle \gamma | T^{(w)} \rangle}{\langle \gamma | T^{(w)} | \gamma \rangle}$

Reusing parts of previous calculations:

$$\langle \gamma^{(a)} \rangle = \frac{\langle \gamma | T^{(a)} \rangle}{\langle \gamma | T^{(a)} | \gamma \rangle} = [0 \ \text{e}_a \ 0]$$

$$\langle \gamma^{(ab)} \rangle = \frac{\langle \gamma | T^{(a)} T^{(b)} \rangle}{\langle \gamma | T^{(a)} T^{(b)} | \gamma \rangle} = [0 \ 0 \ \text{e}_{a+b \text{ mod } p}]$$

$$\langle \gamma^{(abc)} \rangle = \frac{\langle \gamma | T^{(a)} T^{(b)} T^{(c)} \rangle}{\langle \gamma | T^{(a)} T^{(b)} T^{(c)} | \gamma \rangle} = \begin{cases} \langle \gamma | & , c = a+b \text{ mod } p \\ \text{undefined} & , \text{else} \end{cases}$$

Projecting out the zero entries, the set of predictive vectors is given by:

$$S_p = \{ \langle e_i | / i = 0, 1, \dots, p-1 \} \quad \begin{matrix} [0 \dots 0 | 1 | 0 \dots 0] \\ \text{vertices of a} \\ (p-1)\text{-simplex} \end{matrix}$$

Soft Random - Random Mod p (SRRModp) :

Vocabulary: $\mathcal{X} = \{0, 1, \dots, p-1\}$

Vectors: $\langle v_a^{(w)} \rangle = \left[\cos\left(\frac{2\pi w}{p}\right) \quad \sin\left(\frac{2\pi w}{p}\right) \right]$

Intuitively, the SRRMod_p EHMM is given by:

- 0) Process initialised in vector $\langle v_1 \rangle = [1 \ 0 \ 0]$
- 1) Sample a from \mathcal{X} & transition $\langle v_1 \rangle \xrightarrow{a} \langle v_a^{(w)} \rangle$
- 2) Sample b from \mathcal{X} & transition $\langle v_a^{(w)} \rangle \xrightarrow{b} \langle v_{a+b}^{(w)} \rangle$
- 3) Transition $\langle v_{a+b}^{(w)} \rangle \xrightarrow{c} \langle v_1 \rangle$ $\text{argmax } P(*|ab) = c$
where $c = a+b \bmod p$

Fix a tuple of frequencies $\omega = (\omega_1, \omega_2, \dots, \omega_N)$ where $\omega_i \in \{1, 2, \dots, \lfloor \frac{p}{2} \rfloor\}$.

Formally, the SRRMod_p EHMM is defined:

$$\mathcal{K} = \{0, 1, \dots, p-1\},$$

$$H^{(i)} = \begin{bmatrix} 0 & \frac{1}{p} \bigoplus_{j=1}^N \langle \nu_i^{(\omega_j)} \rangle & \tilde{0} \\ \tilde{0} & \tilde{0} & \frac{1}{p} \bigoplus_{j=1}^N \nu_{\omega_j}(r_i) \\ \bigoplus_{j=1}^N \langle \nu_i^{(\omega_j)} \rangle & \tilde{0} & \tilde{0} \end{bmatrix}$$

$$\langle \eta \rangle = [1 \ \tilde{0} \ \tilde{0}], \quad (r) = \begin{bmatrix} 1 \\ 0 \\ \tilde{0} \end{bmatrix}$$

Recall:

$$\langle \nu_k^{(\omega)} \rangle = \begin{bmatrix} \cos\left(\frac{2\pi\omega k}{p}\right) & \sin\left(\frac{2\pi\omega k}{p}\right) \end{bmatrix}$$

$$e(r) = \begin{bmatrix} \cos\left(\frac{2\pi\omega}{p}\right) & \sin\left(\frac{2\pi\omega}{p}\right) \\ -\sin\left(\frac{2\pi\omega}{p}\right) & \cos\left(\frac{2\pi\omega}{p}\right) \end{bmatrix}$$

Logits:

$$z(a) = \langle \zeta | H^{(a)} | \varphi \rangle = \left[0 \ \frac{1}{p} \bigoplus_{j=1}^N \langle \nu_a^{(w_j)} | \ \underline{0} \right] \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = 0$$

$$z(ab) = \langle \zeta | H^{(a)} H^{(b)} | \varphi \rangle = \left[0 \ \underline{0} \ \frac{1}{p^2} \bigoplus_{j=1}^N \langle \nu_{a+b \bmod p}^{(w_j)} | \right] \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = 0$$

$$z(abc) = \langle \zeta | H^{(a)} H^{(b)} H^{(c)} | \varphi \rangle \\ = \left[\frac{1}{p^2} \sum_{j=1}^N \langle \nu_{a+b \bmod p}^{(w_j)} | \nu_c^{(w_j)} \rangle \ \underline{0} \ \underline{0} \right] \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \frac{1}{p^2} \sum_{j=1}^N \cos \left(\frac{2\pi w_j (a+b-c)}{p} \right)$$

→ [Nanda et al.]

logits

When $c = a+b \bmod p$ cosines constructively
interfere & $z(abc)$ is large.

When $c \neq a+b \bmod p$ cosines destructively
interfere & $z(abc)$ is small.

Probabilities:

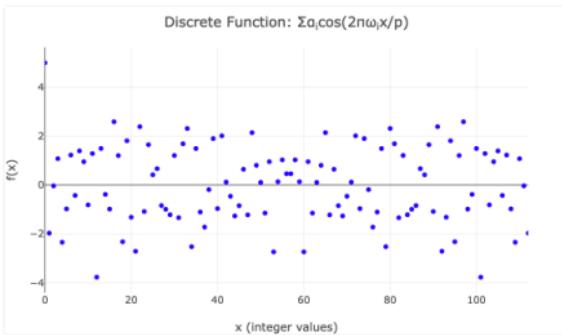
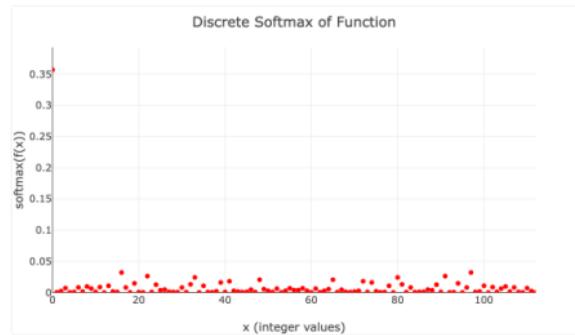
We have $P(w) = \frac{e^{z(w)}}{\sum_{w \in \mathcal{X}^L} e^{z(w)}}$ and:

$$z(a) = z(ab) = 0, \quad z(abc) = \frac{1}{p^2} \sum_{j=1}^N \cos\left(\frac{2\pi w_j(a+b-c)}{p}\right)$$

so $P(a) = \frac{1}{p}$, $P(ab) = \frac{1}{p^2}$ and

$$P(abc) = \frac{\exp\left(\frac{1}{p^2} \sum_{j=1}^N \cos\left(\frac{2\pi w_j(a+b-c)}{p}\right)\right)}{\sum_{a,b,c} \exp\left(\frac{1}{p^2} \sum_{j=1}^N \cos\left(\frac{2\pi w_j(a+b-c)}{p}\right)\right)}$$

Interactive Discrete Cosine Sum & Softmax Visualization



N (terms): 5 p: 113

Term 1
 $a_1:$ $\omega_1:$

Term 2
 $a_2:$ $\omega_2:$

Term 3
 $a_3:$ $\omega_3:$

Term 4
 $a_4:$ $\omega_4:$

Term 5
 $a_5:$ $\omega_5:$

Predictive vectors of SRR Modp:

Recall the EHMM predictive vector: $\langle \gamma^{(w)} \rangle = \langle \gamma | H^{(w)} \rangle$

Reusing parts of previous calculations:

$$\langle \gamma^{(a)} \rangle = \langle \gamma | H^{(a)} \rangle = \left[0 \ \frac{1}{p} \bigoplus_{j=1}^N \langle v_a^{(w_j)} | \ \underline{0} \right]$$

$$\langle \gamma^{(ab)} \rangle = \langle \gamma | H^{(a)} H^{(b)} \rangle = \left[0 \ \underline{0} \ \frac{1}{p^2} \bigoplus_{j=1}^N \langle v_{a+b \bmod p}^{(w_j)} | \right]$$

$$\langle \gamma^{(abc)} \rangle = \langle \gamma | H^{(a)} H^{(b)} H^{(c)} \rangle = \left[\frac{1}{p^2} \sum_{j=1}^N \langle v_{a+b \bmod p}^{(w_j)} | v_c^{(w_j)} \rangle \ \underline{0} \ \underline{0} \right]$$

Projecting out the zero entries, the set of predictive vectors is given by:

$$V_p^{(w)} = \left\{ \langle v_i^{(w)} | \ / i = 0, 1, \dots, p-1 \right\}$$

$\left[\cos\left(\frac{2\pi w_i}{p}\right) \ \sin\left(\frac{2\pi w_i}{p}\right) \right]$ vertices of a p -gon

Summary:

Process	Output	Predictive vectors
RR Mod _p	$P(w) = \langle \gamma T^{(w)} \gamma \rangle$	$(p-1)$ - simplex
SRR Mod _p	$Z(w) = \langle \gamma H^{(w)} \gamma \rangle$	p - gon

What do models represent ?

Results

Recipe :

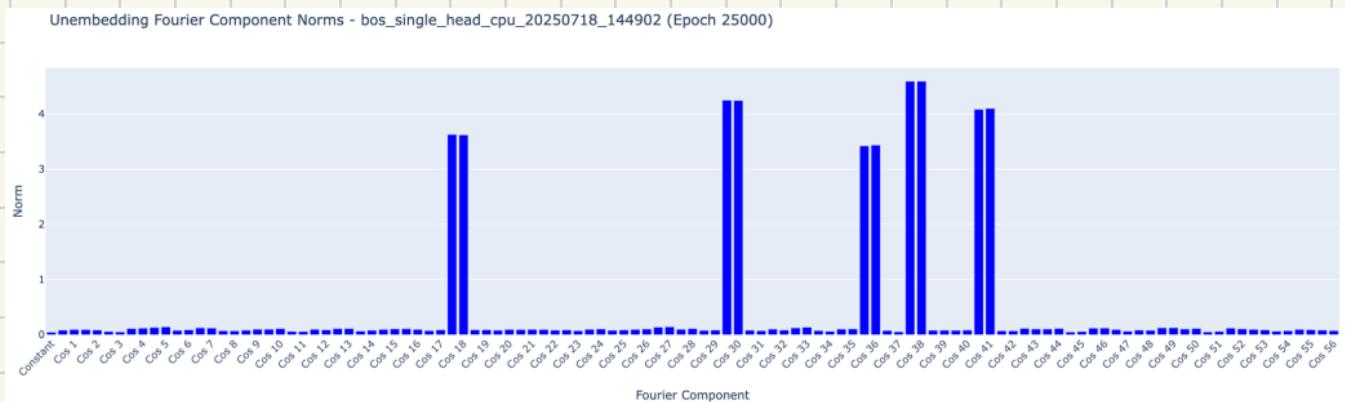
- 1) Train a one-layer one-head transformer to "grate" molecular addition
- 2) Fit the logits of the transformer to:

$$\sum_{i=1}^N \cos\left(\frac{2\pi w_i(a+b-c)}{p}\right)$$

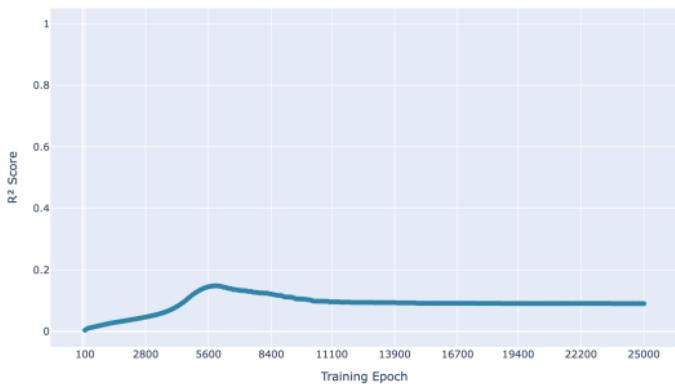
to determine $w = (w_1, w_2, \dots, w_N)$ of SRRMod_p

- 3) Analyse model activations with:
 - * linear regression
 - * PCA

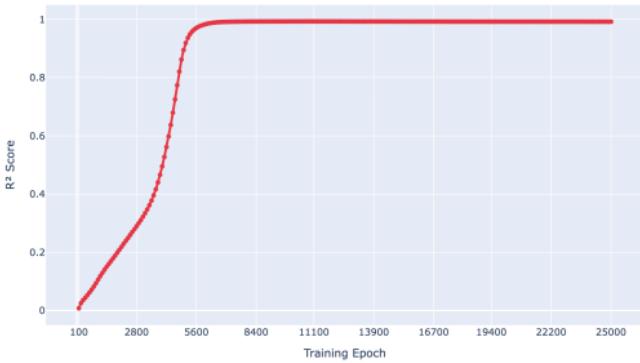
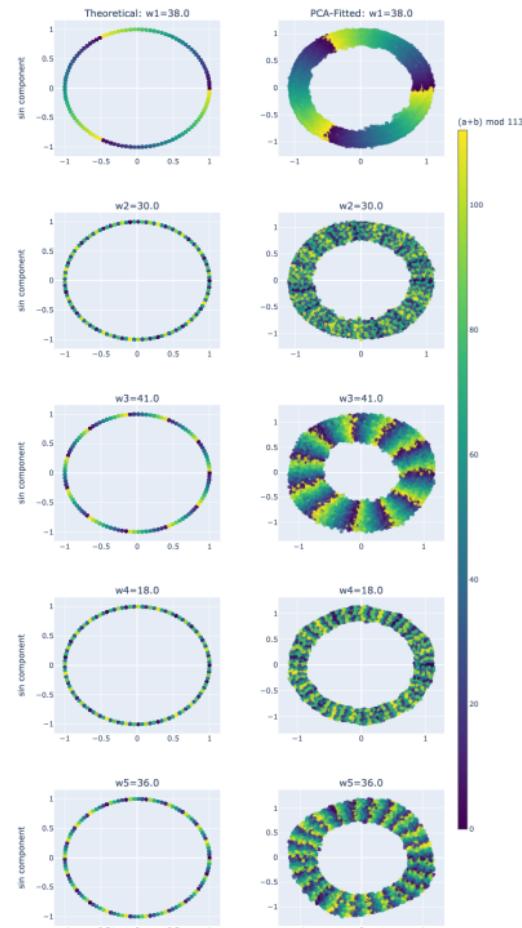
Find frequencies: [Nanda et al.]



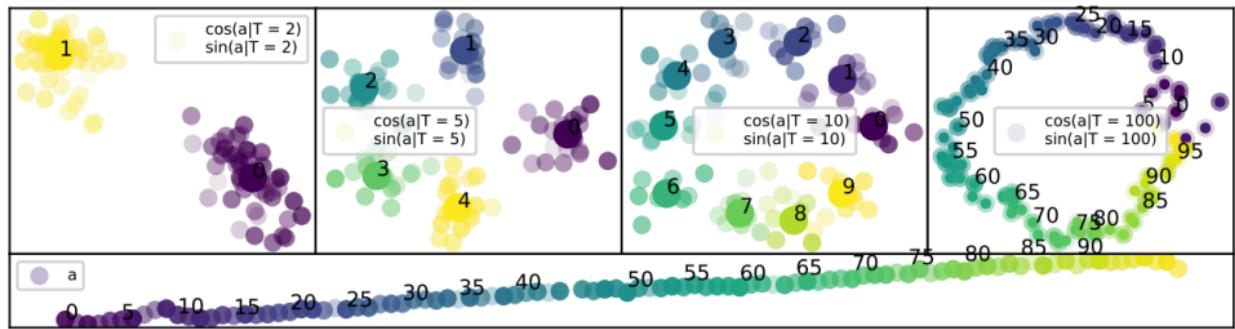
Simplex Linear Regression R² Evolution: $[\text{BOS}, a, b] \rightarrow (p-1)\text{-Simplex Vertices}$
 $p=113$ | Target: One-hot vectors at position $(a+b) \bmod p$



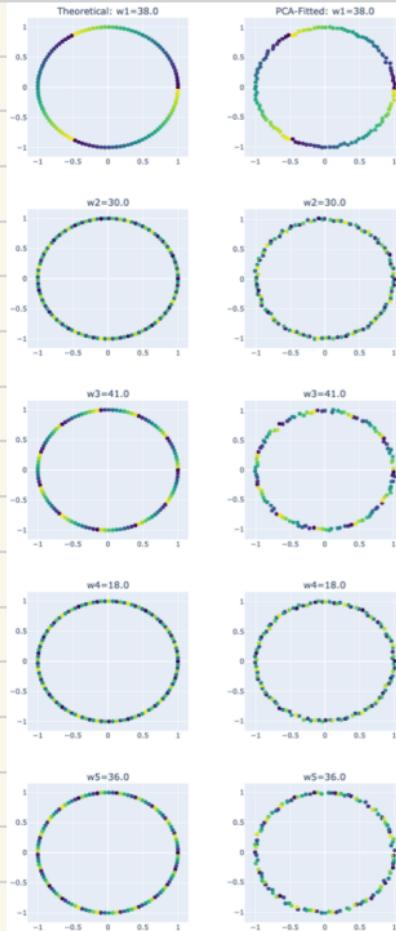
Fourier Linear Regression R² Evolution: $[\text{BOS}, a, b] \rightarrow \text{Fourier Components}$
 $p=113$ | Frequencies: $[38.0, 30.0, 41.0, 18.0, 36.0]$ | Target: cos/sin components of $(a+b) \bmod p$



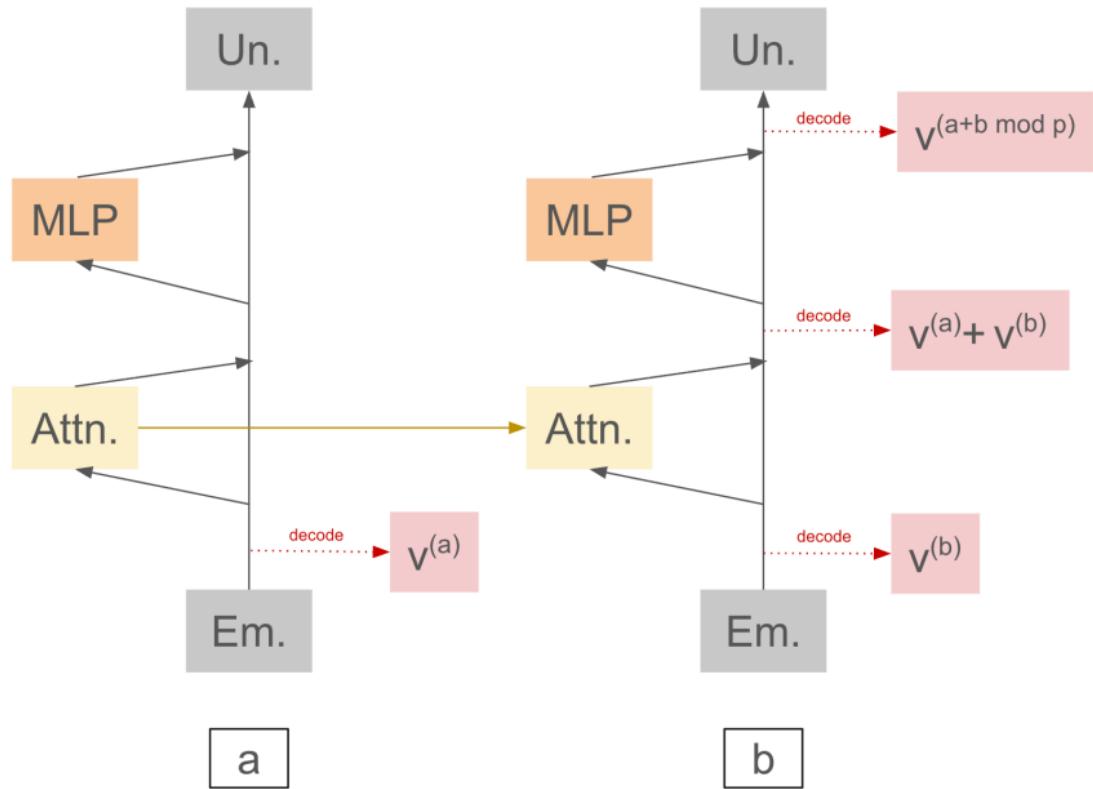
These results seem like toy versions of the
[Kantamneni et al.] results:



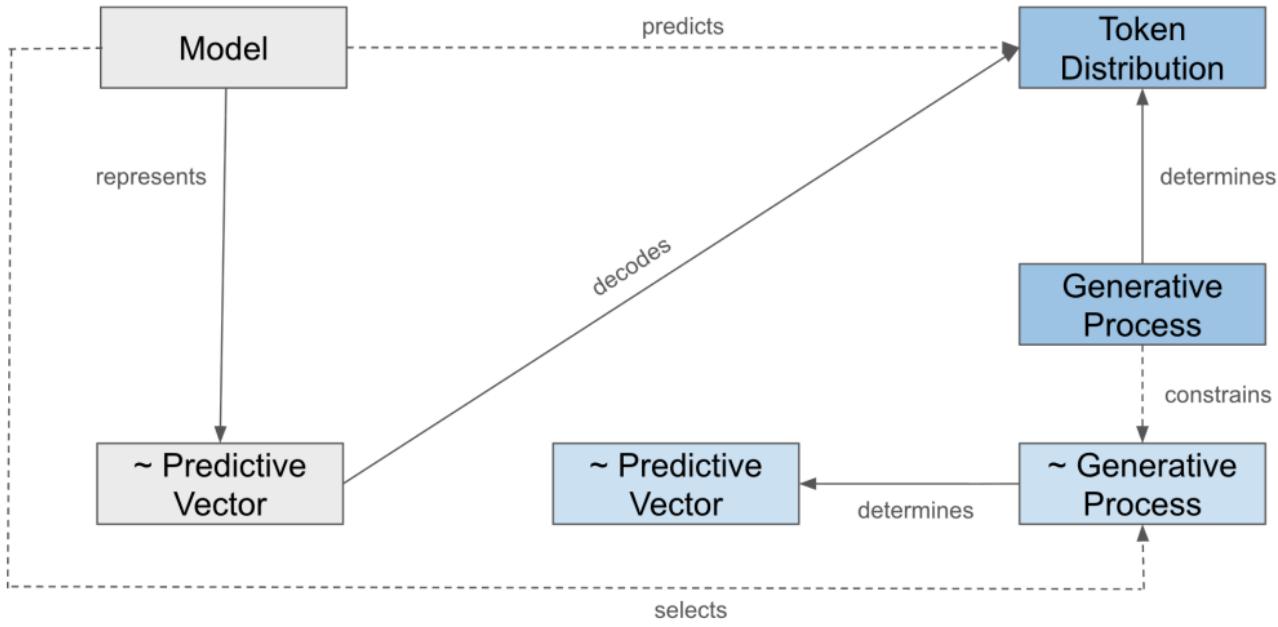
Bonus !



... actually
represents more
fourier components
see [Yip et al.] for
details



Outlook



Questions :

- * What if we don't initialise in a synchronised state?
- * If we directly train models to predict EHMM processes, are the predictive vectors decodable from activations?
- * Is there a EHMM corresponding to familiar HMMs, e.g., is there an EHMM for Mess3?

Thanks for
Listening !